A continuous-state polynomial branching process

Pei-Sen Li

(Beijing Normal University)

2017/5/9

Pei-Sen Li (Beijing Normal University)

A continuous-state polynomial BP

2017/5/9 1 / 20

Classical branching process

The transition function $(P_t)_{t\geq 0}$ of a classical continuous-time branching process satisfies the following so-called branching property:

$$P_t(x,\cdot) * P_t(y,\cdot) = P_t(x+y,\cdot), \qquad x, y \in E, \tag{1}$$

where "*" denotes the convolution operation.

In the continuous-time Markov chain case, the branching property implies that the Q-matrix (q_{ij}) of the process must be of the form:

$$q_{ij} = \begin{cases} \alpha i b_{j-i+1}, & j \ge i+1, i \ge 1, \\ -\alpha i, & j = i \ge 1, \\ \alpha i b_0, & j = i-1, i \ge 1, \\ 0, & \text{otherwise}, \end{cases}$$
(2)

where $\alpha > 0$ and $\{b_i : i \in \mathbb{N}\}$ is a probability measure satisfying $b_1 = 0$.

Here the jumping rate is given by the linear function αi , so we also call it a linear branching process.

Pei-Sen Li (Beijing Normal University)

In realistic situations, the particles may interact with each other. Then the branching property may does not hold and the jumping rate could be a nonlinear function.

Let $\{r_i : i \ge 0\}$ be a sequence of positive constants. Chen (1997) considered following Q-matrix $(q_{ij})_{i,j\in\mathbb{N}}$:

$$q_{ij} = \begin{cases} r_i b_{j-i+1}, & j \ge i+1, i \ge 1, \\ -r_i, & j = i \ge 1, \\ r_i b_0, & j = i-1, i \ge 1, \\ 0, & \text{otherwise.} \end{cases}$$
(3)

The corresponding Markov chain is called a extended branching process or a nonlinear branching process.

See also Chen (2002a, b), Chen et al. (2002, 2006, 2008), Pakes (2007) and Zhang (2001).

★聞▶ ★ 国▶ ★ 国▶

Special case: polynomial branching process: $r_i = \alpha i^{\theta}$ ($\theta > 0, \alpha > 0$). When $\theta = 1$, it reduces to the linear branching process.

The Q-matrix of discrete-state polynomial branching process (q_{ij}) has the representation $q_{ij} = i^{\theta} \rho_{ij}$, where (ρ_{ij}) is a Q-matrix of a random walk with jumps larger than -1:

$$\rho_{ij} = \begin{cases}
\alpha b_{j-i+1}, & j \ge i+1, i \ge 1, \\
-\alpha, & j = i \ge 1, \\
\alpha b_0, & j = i-1, i \ge 1.
\end{cases}$$
(4)

The generator of a spectrally positive Lévy process is given by :

$$Af(x) = -bf'(x) + cf''(x) + \int_{(0,\infty)} (f(x+z) - f(x) - zf'(x) \mathbb{1}_{\{z \leq 1\}})m(dz),$$

where $b \in \mathbb{R}$, $c \geq 0$ be constants and m(du) a σ -finite measure on $(0,\infty)$ satisfying $\int_{(0,\infty)} (1 \wedge u^2) m(du) < \infty$.

The generator L of continuous-state polynomial branching process is defined by:

$$Lf(x) = x^{\theta} Af(x), \qquad x \in [0, \infty).$$

Continuous-state polynomial branching process

Let $(B_t:t\geq 0)$ be a Brownian motion and M(ds,dz,du) a Poisson random measure with intensity dsm(dz)du. Consider positive solutions of the equation

$$X_{t} = X_{0} + \sqrt{2c} \int_{0}^{t} \sqrt{X_{s}^{\theta}} dB_{s} + \int_{0}^{t} \int_{(0,1]} \int_{0}^{X_{s-}^{\theta}} z \tilde{M}(ds, dz, du) - b \int_{0}^{t} X_{s}^{\theta} ds + \int_{0}^{t} \int_{(1,\infty)} \int_{0}^{X_{s-}^{\theta}} z M(ds, dz, du),$$
(5)

where $\tilde{M}(ds, dz, du) = M(ds, dz, du) - dsm(dz)du$. The case $\theta = 1$ was studied by Dawson and Li (2006, 2012) and others. Lambert (2005) and Pardoux (2016) considered another nonlinear structure.

By saying $(X_t : t \ge 0)$ is a solution to (5), we mean it satisfies (5) before hitting the state 0 or ∞ and is trapped by those states.

Proposition

For any $X_0 = x \in [0,\infty)$, there exists a pathwise unique positive solution to (5).

Research topics:

Explicit representation of mean hitting times; Sufficient and necessary conditions for extinction and explosion; The process coming down from infinity.

Main difficulty: The process doesn't satisfy the branching property, so the traditional methods based on Laplace transform are not available.

Main methods:

Stochastic integral equation;

Equation for resolvent;

Random time change.

Equation for resolvent

From the transition semigroup $(P_t)_{t\geq 0}$ of the process we define its resolvent $(U^\lambda)_{\lambda>0}$ by

$$U^{\lambda}(x,dy) = \int_0^{\infty} e^{-\lambda t} P_t(x,dy) dt, \qquad x \in [0,\infty).$$
(6)

Let $e_\lambda(x)=e^{-\lambda x}.$ We have $Le_\lambda(x)=x^ heta\psi(\lambda)e_\lambda(x)$, where

$$\psi(\lambda)=b\lambda+c\lambda^2+\int_{(0,\infty)}(e^{-\lambda z}-1+\lambda z \mathbb{1}_{\{z\leq 1\}})m(dz).$$

Kolmogorov forward equation

$$rac{d}{dt}P_t e_\lambda(x) = \psi(\lambda)\int_{[0,\infty)} y^ heta e^{-\lambda y} P_t(x,dy).$$

Pei-Sen Li (Beijing Normal University)

(E) E ∽Q (?) 2017/5/9 8 / 20

The following proposition gives a characterization of the resolvent and plays a important role in the study of continuous-state polynomial branching process.

Proposition

For any $\eta > 0$, $\lambda \geq 0$ and $x \geq 0$ we have

$$\eta U^{\eta} e_{\lambda}(x) - e^{-\lambda x} = \psi(\lambda) \int_{[0,\infty)} y^{\theta} e^{-\lambda y} U^{\eta}(x,dy)$$

and

$$\int_{\lambda}^{\infty} l_x(\eta,z)(z-\lambda)^{\theta-1}dz = \Gamma(\theta)\int_0^{\infty} e^{-\eta t}dt\int_{(0,\infty)} e^{-\lambda y} P_t(x,dy),$$

where $l_x(\eta,z)=\psi(z)^{-1}ig[\eta U^\eta e_z(x)-e^{-zx}ig].$

(日) (同) (三) (三)

Mean extinction and explosion times

Let
$$(X_t^x: t \ge 0)$$
 be the solution to (5) with $X_0^x = x \ge 0$.

Let $au_y^x = \inf\{t \geq 0: X_t^x = y\}$ and $q = \inf\{\lambda > 0: \psi(\lambda) > 0\}.$

Theorem 1

For any $y \leq x \in (0,\infty)$ we have

$$\begin{split} \mathbf{E}(\tau_0^x \mathbf{1}_{\{X_\infty^x=0\}}) &= \frac{1}{\Gamma(\theta)} \int_0^\infty \frac{e^{-qx} - e^{-(\lambda+q)x}}{\psi(\lambda+q)} \lambda^{\theta-1} d\lambda, \\ \mathbf{E}(\tau_\infty^x \mathbf{1}_{\{X_\infty^x=\infty\}}) &= \frac{1}{\Gamma(\theta)} \int_0^\infty \left[\frac{e^{-qx} - e^{-\lambda x}}{\psi(\lambda)} - \frac{e^{-qx} - e^{-(\lambda+q)x}}{\psi(\lambda+q)} \right] \lambda^{\theta-1} d\lambda, \\ \mathbf{E}(\tau_\infty^x \wedge \tau_y^x) &= \frac{e^{-qx}}{\Gamma(\theta)} \int_0^\infty \frac{e^{-(\lambda-q)y} - e^{-(\lambda-q)x}}{\psi(\lambda)} \lambda^{\theta-1} d\lambda. \end{split}$$

Those formulas seem new also for linear branching. Duhalde et al. (2014) gave $E(e^{-\lambda \tau_y^x})$ in linear case.

The proofs of the following theorems are based on the equation for the resolvent.

Theorem 2

For any $x \in (0,\infty)$ we have $\mathbf{P}(au_0^x < \infty) > 0$ if and only if

$$\int^{\infty-} \frac{\lambda^{\theta-1}}{\psi(\lambda)} d\lambda < \infty.$$
(7)

In this case, we have $\mathbf{P}(\tau_0^x < \infty) = \mathbf{P}(\lim_{t \to \infty} X_t^x = 0) = e^{-qx}$.

When $\theta = 1$, (7) is called Grey's condition.

Necessary and sufficient condition for explosion

Theorem 3

For any $x \in (0, \infty)$ we have $P(\tau_{\infty}^x < \infty) = 0$ if and only if one of the following two conditions is satisfied:

- (i) $\psi'(0) \ge 0;$
- (ii) $\psi'(0) < 0$ and

$$\int_{0+} \frac{\lambda^{\theta-1}}{-\psi(\lambda)} d\lambda = \infty.$$
(8)

In the case of $P(\tau_{\infty}^{x} < \infty) > 0$, we have $P(\tau_{\infty}^{x} < \infty) = P(\lim_{t \to \infty} X_{t}^{x} = \infty) = 1 - e^{-qx}$.

When $\theta = 1$, this theorem was given by Kawazu and Watanabe (1971).

Some limits of hitting times

Recall $(X_t^x:t\geq 0)$ is the solution to (5) with $X_0^x=x\geq 0$.

We have comparison property : $x_1 \leq x_2 \Rightarrow X_t^{x_1} \leq X_t^{x_2}.$

Recall
$$au_y^x = \inf\{t \geq 0: X_t^x = y\}$$
 and let $au_y^\infty = \mathop{\uparrow}\lim_{x o\infty} au_y^x$

Proposition

Suppose that $\psi'(0) \ge 0$ (critical or subcritical). Then the following four statements are equivalent:

(i)
$$\mathbf{P}(\tau_y^{\infty} < \infty) > 0$$
 for each $y \in (0,\infty);$

(ii)
$$\operatorname{P}(au_y^\infty < \infty) = 1$$
 for each $y \in (0,\infty);$

(iii)
$$\mathrm{E}(au_y^\infty) < \infty$$
 for each $y \in (0,\infty);$

(iv) we have $(\theta > 1$ is necessary)

$$\int_{0+}rac{\lambda^{ heta-1}}{\psi(\lambda)}d\lambda<\infty.$$

Pei-Sen Li (Beijing Normal University)

(9)

Some limits of hitting times

Proposition

Suppose $\psi'(0) \geq 0$. Then for each $y \in [0,\infty)$ we have

$$\mathrm{E}(au_y^\infty) = \lim_{x o\infty} \mathrm{E}(au_y^x) = rac{1}{\Gamma(heta)} \int_0^\infty rac{e^{-\lambda y}}{\psi(\lambda)} \lambda^{ heta-1} d\lambda.$$

Corollary

If $\psi'(0) \ge 0$ and (9) is satisfied, then $\lim_{y\to\infty} E(\tau_y^{\infty}) = 0$. Therefore a.s. $\lim_{y\to\infty} \tau_y^{\infty} = 0$.

In particular, we have:

$$(0,\infty)=\bigcup_{n=1}^\infty[\tau_n^\infty,\infty).$$

We shall use this representation to construct a process $(X_t^{\infty}: t > 0)$.

Image: Image:

<u>Some limits of hitting times</u>

Proposition

Suppose $\psi'(0) \geq 0$ and (9) holds. Then $(X^k_{\tau^{\infty}_n+t})_{t\geq 0} \uparrow (X^{(n)}_t)_{t\geq 0}$ as $k \uparrow \infty$. The limit $(X_t^{(n)})_{t\geq 0}$ is a weak solution to (5) with $X_0^{(n)} = n$.

Observe that
$$X_{t- au_{n+1}}^{(n+1)}=X_{t- au_n^\infty}^{(n)}$$
 for $t\in [au_n^\infty,\infty).$

We can define a process $(X_t^{\infty})_{t>0}$ by letting $X_t^{\infty} = X_{t-\tau_{\infty}^{\infty}}^{(n)}$ for $t \in [\tau_n^{\infty}, \infty)$.

Coming down from ∞

By saying $(X_t)_{t\geq 0}$ is a solution to (5) with initial state ∞ , we mean $\lim_{t\downarrow 0} X_t = \infty$ and (0 < r < t)

$$egin{aligned} X_t &= X_r + \sqrt{2c} \int_r^t \sqrt{X_s^ heta} dB_s + \int_r^t \int_{(0,1]} \int_0^{X_{s-}^ heta} z ilde{M}(ds,dz,du) \ &- b \int_r^t X_s^ heta ds + \int_r^t \int_{(1,\infty)} \int_0^{X_{s-}^ heta} z M(ds,dz,du). \end{aligned}$$

Theorem 4

Suppose that $\psi'(0) \ge 0$ and (9) holds. Then $(X_t^{\infty})_{t\ge 0} := \lim_{x\to\infty} (X_t^x)_{t\ge 0}$ is the pathwise unique solution to (5) with $X_0^{\infty} = \infty$.

Recall Q-matrix of discrete-state polynomial branching process

$$q_{i,j} = \left\{ egin{array}{ll} i^{ heta}b_{j-i+1}, & i+1\leq j<\infty, i\geq 1, \\ -i^{ heta}, & 1\leq i=j<\infty, \\ i^{ heta}b_0, & 0\leq i-1=j<\infty, \\ 0, & ext{otherwise}, \end{array}
ight.$$

where $\{b_i\}_{i\in\mathbb{N}}$ is a probability measure satisfies $b_1=0.$

Proposition

There exists a sequence of discrete-state polynomial branching processes $\xi_n = (\xi_n(t): t \ge 0)$ and a sequence of positive number γ_n , $n = 1, 2, \ldots$ such that $(n^{-1}\xi_n(\gamma_n t): t \ge 0)$ converges to $(X_t: t \ge 0)$ weakly in (D, d_∞) , where d_∞ is the Skorokhod distance.

- The speed of coming down from infinity;
- Immigration structures;
- Quasi-stationary distribution;
- General nonlinear branching;

Some references

- Chen, A.Y. (2002): Ergodicity and stability of generalised Markov branching processes with resurrection. J. Appl. Probab. 39, 786–803.
- Chen, A.Y., Li, J.P. and Ramesh, N.I. (2008): Probabilistic approach in weighted Markov branching processes. *Statist. Probab. Letters.* 78, 771–779.
- Chen, R.R.: An extended class of time-continuous branching processes. J. Appl. Probab. 34 (1997), 14–23.
- Dawson, D.A. and Li, Z.H. (2006): Skew convolution semigroups and affine Markov processes. Ann. Probab. 34, 1103–1142.
- Dawson, D.A. and Li, Z.H. (2012): Stochastic equations, flows and measure-valued processes. *Ann. Probab.* **40**, 813–857.
- - Pakes, A.G. (2007): Extinction and explosion of nonlinear Markov branching processes. J. Austr. Math. Soc. **82**, 403–428.

Pardoux, É. (2016): Probabilistic Models of Population Evolution: Scaling Limits, Genealogies and Interactions. Springer, Heidelberg. Thank you!

э

・ロト ・ 日 ト ・ 目 ト ・