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Motivation
▸ Current sovereign bond markets in the Euro zone:
◇ persistency of low interest rates
◇ significant fluctuations at local extent.

Figure: 10-years interest rates of Euro area countries.



Modelling approaches

▸ Large fluctuations in financial data motivate the introduction
of jumps in the interest rate dynamics: Eberlein & Raible
(1999), Filipović, Tappe & Teichmann (2010)...

▸ Hawkes process to model the “self-exciting” and the
“clustering” feature: Aït-Sahalia & Jacod (2009), Errais,
Giesecke & Goldberg (2010), Dassios & Zhao (2011),
Rambaldi, Pennesi & Lillo (2014), and Jaisson & Rosenbaum
(2015)...

▸ Difficulty: jump presence v.s. trend of low interest rate



Plan of our work

▸ Objective: a simple model of interest rate for these seemingly
puzzling phenomena in a unified and parsimonious framework.

▸ Jump model as natural extension of the Cox-Ingersoll-Ross
(CIR) model, using the α-stable branching processes

▸ CIR model is the particular case with continuous path
▸ Integral representation to highlight the branching property

▸ CBI process approach based on Dawson and Li (2006, 2012),
Li and Ma (2015)

▸ link with affine models: exponential affine structure for bond
price, Duffie, Filipović & Schachermayer (2001)

▸ limit of Hawkes processes: clustering and self-exciting
properties

▸ MLE estimator properties studied by Barczy, Ben Alaya,
Kebaier and Pap (2016)

▸ The so-called α-CIR model provides nice properties in terms of
trajectory behaviors and bond pricing



The α-CIR model setup

We consider α-CIR(a,b, σ, σZ , α) model for the short interest rate

rt = r0 + ∫
t

0
a (b − rs)ds + σ∫

t

0

√
rsdBs + σZ ∫

t

0
r1/α
s− dZs (1)

▸ B = (Bt , t ≥ 0) a Browinan motion
▸ Z = (Zt , t ≥ 0) a spectrally positive α-stable compensate Lévy
process with parameter α ∈ (1,2] with

E [e−qZt ] = exp{− tqα

cos(πα/2)
} , q ≥ 0.

▸ B and Z are independent
Zt follows the α-stable distribution Sα(t1/α,1,0) with scale
parameter t1/α, skewness parameter 1 and zero drift.



A natural extension of the CIR model

▸ Existence of the unique strong solution by Fu and Li (2010).
▸ When σZ = 0, we recover the CIR model.
▸ When α = 2, it also reduces to a CIR model but with volatility
parameter (σ2 + 2σ2

Z)1/2.
▸ The difference of Z from a Brownian motion is controlled by
the tail index α:
◇ α = 2: Z is a Brownian motion scaled by

√
2;

◇ α < 2: Z is a pure jump process with heavy tails. More as α
close to 1, more likely Zt takes values far from median;
◇ comparison with Poisson process: Z has an infinite number
of (small) jumps over any time interval, allowing it to capture
the extreme activity.



Simulation of processes Z and r with different α
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Several advantages from the financial point of view

▸ By combining heavy-tailed jump distribution with infinite
activity, the model describes in a unified way both the large
fluctuations in recent sovereign crisis and the usual small
oscillations.

▸ The interest rate can be split into different components in a
branching process framework by Dawson and Li (2012), which
can eventually be interpreted as spreads.

▸ By the link with the CBI processes, the bond prices are given
in an explicit way by using the joint Laplace transform of the
affine model in Filipović (2001)

▸ The most interesting feature is that the bond prices decrease
w.r.t. α, which inversely related to the tail fatness. This allows
to interpret the low interest rate phenomenon from the
viewpoint of bond pricing.



Similar properties with CIR model

Boundary condition:
The point 0 is an inaccessible boundary if and only if 2ab ≥ σ2. In
particular, a pure jump α-CIR process with ab > 0 never reaches 0
since σ = 0.

Branching property (Dawson and Li 2012):
r can be decomposed as r = r (1) + r (2) where for i = 1,2, r (i) is an
α-CIR(a,b(i), σ, σZ , α) process such that r0 = r (1)0 + r (2)0 and
b = b(1) + b(2).



Integral representation

Integral form by using the random fields

rt = r0 + ∫
t

0
a (b − rs)ds + σ∫

t

0
∫

rs

0
W (ds,du)

+ σZ ∫
t

0
∫

rs−

0
∫
R+
ζÑ(ds,du,dζ),

(2)

▸ W (ds,du): white noise on R2
+ with intensity dsdu,

▸ Ñ(ds,du,dζ): compensated Poisson random measure on R3
+

with intensity dsduµ(dζ),
▸ µ(dζ) is a Lévy measure satisfying ∫

∞
0 (ζ ∧ ζ2)µ(dζ) < ∞.

Besides, W and N are independent of each other.
▸ It follows from of Dawson and Li (2012) that this equation has
a unique strong solution.

Random fields for interest rate modelling: Kennedy (1994),
Albeverio, Lytvynov & Mahnig (2004).



Equivalence of two representations

We choose the Lévy measure to be

µ(dζ) = −
1{ζ>0}dζ

cos(πα/2)Γ(−α)ζ1+α , 1 < α < 2, (3)

Then the root representation (1) and the integral representation (2)
are equivalent in the following sense by Li (2011):

▸ The solutions of the two equations have the same probability
law.

▸ On an extended probability space, they are equal almost surely.



Link to Hawkes process
▸ When σ = 0 and µ(dζ) = δ1(dz), then r is given by

rt = r0 + abt − ∫
t

0
(a + σZ)rsds + σZ ∫

t

0
∫

rs−

0
N(ds,du) (4)

which is the intensity of Hawkes process ∫
t

0 ∫
rs−

0 N(ds,du), N
being the Poisson random measure with intensity dsdu.

▸ Consider a sequence {r (n)t , t ≥ 0} defined by (4) with
parameters (a/n,nb, σZ). Then

r (n)nt /n LÐ→ Yt in D(R+),

where D(R+) is the Skorokhod space of càdlàg processes and

Yt = ∫
t

0
a(b −Ys)ds + σZ ∫

t

0
∫

Ys

0
W (ds,du).

▸ Jaisson and Rosenbaum (2015): nearly unstable Hawkes
process converges, after suitable scaling, to a CIR process.



Locally equivalent Lévy-Ornstein-Uhlenbeck process

▸ Consider the α-CIR process with initial value r0 and introduce

λt = r0 + ∫
t

0
a (b − λs)ds + σ∫

t

0
∫

rs

0
W (ds,du)

+ σZ ∫
t

0
∫

r0

0
∫
R+
ζÑ(ds,du,dζ)

(5)

where the processes W and Ñ are the same as in (1).
▸ the above LOU process can be written as

λt = r0 + ∫
t

0
a (b − λs)ds + σ∫

t

0

√
λsdBs + σZ

α
√

r0Zt

▸ The implicit negative drift leads to a linear decay for λt while
an exponential decay for rt : when σZ increases, the decreasing
drift plays a more important role in α-CIR than in LOU.



Comparison between α-CIR and LOU (continued)
▸ Separating small and large jumps in LOU, we get

λt = r0 + ∫
t

0
a(b − σZ r0Θ(α, y)

a
− λs)ds + σ∫

t

0
∫

r0

0
W (ds,du)

+ σZ ∫
t

0
∫

r0

0
∫

y

0
ζÑ(ds,du,dζ) + σZ ∫

t

0
∫

r0

0
∫
∞

y
ζN(ds,du,dζ)

where
Θ(α, y) = 2

π
αΓ(α − 1)sin(πα/2)

yα−1 .

▸ In a similar way, the α-CIR process can be written as

rt = r0 + ∫
t

0
ã(α, y)(b̃(α, y) − rs)ds + σ∫

t

0
∫

rs

0
W (ds,du)

+ σZ ∫
t

0
∫

rs−

0
∫

y

0
ζÑ(ds,du,dζ) + σZ ∫

t

0
∫

rs−

0
∫
∞

y
ζN(ds,du,dζ)

where

ã(α, y) = a + σZ Θ(α, y), b̃(α, y) = ab
a + σZ Θ(α, y)



Continuous state branching process with immigration (CBI)
CBI (Kawazu & Watanabe 1971) of branching mechanism Ψ(⋅) and
immigration rate Φ(⋅): Markov process X with state space R+
verifying

Ex [e−pXt ] = exp [−xv(t,p) − ∫
t

0
Φ(v(s,p))ds] ,

where v ∶ R+ ×R+ → R satisfies

∂v(t,p)
∂t

= −Ψ(v(t,p)), v(0,p) = p

and Ψ and Φ are functions on R+ given by

Ψ(q) = βq + 1
2
σ2q2 + ∫

∞

0
(e−qu − 1 + qu)π(du),

Φ(q) = γq + ∫
∞

0
(1 − e−qu)ν(du),

with σ, γ ≥ 0, β ∈ R and π, ν being two Lévy measures such that
∫
∞

0 (u ∧ u2)π(du) < ∞ and ∫
∞

0 (1 ∧ u)ν(du) < ∞.



Link with the CBI processes
Let r be an α-CIR (a,b, σ, σZ , α) process. Then r is a CBI with

branching mechanism: Ψ(q) = aq + σ2

2 q2 − σα
Z

cos(πα/2)q
α (6)

immigration rate: Φ(q) = abq. (7)

Consequences:
▸ Let r (α) be α-CIR(a,b, σ, σZ , α) process, α ∈ (1,2]. Then

r (α)
LÐ→ r (2) in D(R+) as α → 2.

▸ Laplace transform (cf. Filipović (2001)):

E[e−ξrt−p ∫ t
0 rsds] = exp ( − r0v(t, ξ,p) − ∫

t

0
Φ(v(s, ξ,p))ds),

with ∂tv(t, ξ,p) = −Ψ(v(t, ξ,p)) + p, v(0, ξ,p) = ξ.
▸ As t → +∞, rt has a limite distribution r∞ (cf. Keller-Ressel
and Steiner (2008)), given by

E[e−pr∞] = exp{−∫
p

0

Φ(q)
Ψ(q)

dq} , p ≥ 0.



Equivalent martingale measure for bond pricing
▸ Let r be an α-CIR(a,b, σ, σZ , α) processes under the initial
probability P.

▸ Fix η ∈ R and θ ∈ R+, and define

Ut ∶= η∫
t

0
∫

rs

0
W (ds,du)+∫

t

0
∫

rs−

0
∫

∞

0
(e−θζ−1)Ñ(ds,du,dζ).

▸ Change of probability: dQ
dP = E(U), with E(U) the Doléans-

Dade exponential of U (Kallsen & Muhle-Karbe, 2010).
▸ r is an α-CIR(a′,b′, σ, σZ , α) type process under Q with

a′ = a − ση − ασZ

cos(πα/2)
θα−1, b′ = ab/a′,

and a modified Lévy measure

µ′(dζ) = −
e−θζ1{ζ>0}

cos(πα/2)Γ(−α)ζ1+α dζ.

r remains to be a CBI process under Q.



Application to bond pricing

For simplicity, we assume that the short rate r is given by an
α-CIR(a,b, σ, σZ , µ,α) model under Q.

▸ Zero-coupon bond price:

B(t,T ) = EQ[ exp ( − ∫
T

t
rsds) ∣Ft] = exp ( − rtv(T − t) − ab∫

T−t

0
v(s)ds)

where v(⋅) is given by

∂v(t)
∂t

= 1 −Ψ(v(t)), v(0) = 0,

with Ψ(q) = aq + σ2

2 q2 − σα
Z

cos(πα/2)q
α.

▸ We have

v(t) = f −1(t) where f (t) = ∫
t

0

dx
1 −Ψ(x)

(8)



Proposition
The function v(⋅) is increasing with respect to α ∈ (1,2]. In
particular, the bond price B(0,T ) is decreasing with respect to α.

▸ Empirical studies underline that CIR model systematically
overestimates short interest rates, e.g. Brown and Dybvig
(1986) and Gibbons and Ramaswamy (1993)

▸ The above proposition shows that the α-CIR model is suitable
to describe the phenomenon of low interest rate trend with
jumps.

▸ The explanation is based on the self-exciting property: a
smaller α is related to a deeper (negative) compensation and
hence a stronger mean-reversion. Then as the interest rate
becomes low, the self-exciting property will imply a decreasing
frequency of jumps and enforce the tendency of low interest
rate.

▸ In other CIR+jump models e.g. Duffie and Gârleanu (2001),
Keller-Ressel and Steiner (2008), LOU etc., the bond prices
are in general smaller than the CIR ones.



Bond prices
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Bond yield behavior

▸ The zero-coupon yield Y (t, θ) is given by Y (t,0) = rt and

Y (t, θ) = −1
θ
logB(t, t + θ) = rt

v(θ)
θ

+
ab ∫

θ
0 v(s)ds
θ

, θ > 0

▸ The long-term yield, which is the asymptotic level of the yield
curve when θ →∞, is given by

basym = abx0

where x0 is the unique positive solution of Ψ(x) = 1.



Application to path-dependent option

Let r be an α-CIR(a,b, σ, σZ , α) process with initial value r0 > 0.
▸ Put option written on the running minimum of the bond yield
(Lookback option):

P( inf
u∈[0,T ]

Y (u,u+κ),0,T ,K) ∶= E[e−∫
T
0 rsds(K− inf

u∈[0,T ]
Y (u,u+κ))

+
]

where

Y (t, t+κ) = − 1
κ
lnB(t, t+κ) = 1

κ
(rt f −1(κ)+ab∫

κ

0
f −1(s)ds).

▸ Laplace transform with respect to the maturity:

Lθ (0, κ,K ; r0) = ∫
∞

0
e−θTP( inf

u∈[0,T ]
Y (u,u + κ),0,T ,K)dT .



Path-dependent option on bond yield (continued)

We have

Lθ (0, κ,K ; r0) =
f −1(κ)
κ
∫

K

0

Hε(θ, r0)
Hε(θ, y)

M(θ, y)dy ,

where

K ∶ =
κK − ab ∫

κ
0 f −1(s)ds

f −1(κ)
,

Hε(θ, y) = ∫
∞

q1

e−yzdz
Ψ(z) − 1

exp (∫
z

q1+ε

abu + θ
Ψ(u) − 1

du),

with Ψ(q1) = 1 and ε is an arbitrary positive number, and

M(θ, y) = ∫
∞

0
e−θuBy(0,u)du

with By(0,u) being the bond price with initial short rate y .



Jump behavior

▸ The jumps, especially the large jumps capture the significant
changes in the interest rate and may imply the downgrade risk
of credit quality.

▸ Fix y > 0. Consider the jumps of the process r which are larger
than σZy and the associated truncated process r (y) as

r (y)t = r0 + ∫
t

0
ã(α, y)(b̃(α, y) − rs)ds + σ∫

t

0
∫

rs

0
W (ds,du)

+ σZ ∫
t

0
∫

rs−

0
∫

y

0
ζÑ(ds,du,dζ).

▸ It is also a CBI process which coincides with r up to the first
large jump τy ∶= inf{t > 0 ∶ ∆rt > σZy} and has the branching
mechanism given by

Ψ(y) = Ψ + σαZ ∫
∞

y
(1 − e−qζ)µ(dζ).



Laplace transform of the jump counter process

Let Jy
t denote the number of jumps of r with jump size larger than

σZy in [0, t], i.e.
Jy
t ∶= ∑

0≤s≤t
1{∆rs>σZ y}.

Then for any p ≥ 0 and t ≥ 0,

E[e−pJy
t ] = exp (−l(p, y , t)r0 − ab∫

t

0
l(p, y , s)ds)

where l(p, y , t) is the unique solution of the following equation

∂l(p, y , t)
∂t

= σαZ ∫
∞

y
(1 − e−p−l(p,y ,t)ζ)µα(dζ) −Ψ(y)

α (l(p, y , t)),

with initial condition l(p, y ,0) = 0.



Probability law of the first large jump

We have

P(τy > t) = exp ( − l(y , t)r0 − ab∫
t

0
l(y , s)ds)

where l(y , t) is the unique solution of

dl
dt

(y , t) = σαZ ∫
∞

y
µ(dζ) −Ψ(y)(l(y , t)),

with initial condition l(y ,0) = 0.

▸ Equivalent form:

P(τy > t) = E[ exp{ − σαZ(∫
∞

y
µ(dζ))(∫

t

0
r (y)s ds)}].

which is a bond price written on the auxiliary rate r (y)

weighted by the measure µ restricted on (y ,∞).



Probability function P(τy > t) for the first big jump
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Thanks for your attention !


