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1. Galton-Waston processes
Let {ξk,i} be a family of positive integer-valued i.i.d. random variables.
Given Z0, we can define a Galton-Watson branching process by:

Zk =

Zk−1∑
i=1

ξk,i, k ≥ 1, (1)

where ξk,i = the number of children of i-th particle at generation k − 1.
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Rewrite the formulation (1),

Zk = Zk−1 +

Zk−1∑
i=1

(ξk,i − 1),

Zn = Z0 +

n∑
k=1

Zk−1∑
j=1

(ξk,i − 1). (2)

In GW-process, the lifetime of each particle was one unit of time. A
natural generalization is to allow the lifetimes to be random variables.
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2. Continuous-time Markov branching processes

Let m be a finite measure on N satisfying m(1) = 0 and m(N) = a
(reproduction measure). Given Z0, we can define a Continuous-time
Markov branching process by:

Zt = Z0 +

∫ t

0

∫
N

∫ Zs−

0
(z − 1)N(ds, dz, du), (3)

where N(ds, dz, du) is a Poisson random measure with intensity
dsm(dz)du on (0,∞)× N× (0,∞).
Suppose that µ := a−1

∫
N zm(dz) <∞. Then (b = a(1− µ))

Zt = Z0 − b
∫ t

0
Zsds+

∫ t

0

∫
N

∫ Zs−

0
(z − 1)Ñ(ds, dz, du),

where Ñ(ds, dz, du) = N(ds, dz, du)− dsm(dz)du.

GW-process⇐⇒ Continuous-time branching process⇐⇒ CB-process
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3. CB-processes and CBI-processes

Suppose that σ ≥ 0 and b are constants, and (z ∧ z2)m(dz) is a finite
measure on (0,∞). Let

W (ds, du) = Gaussian white noise with intensity dsdu on R2
+;

M̃(ds, dz, du) = compensated Poisson random measure with
intensity dsm(dz)du on R3

+.

Theorem (Dawson/Li ’12) There is a pathwise unique positive (strong)
solution to

Xt = X0 − b
∫ t

0
Xsds+ σ

∫ t

0

∫ Xs−

0
W (ds, dz)

+

∫ t

0

∫ ∞
0

∫ Xs−

0
zM̃(ds, dz, du).

And (Xt)t≥0 is a continuous-state branching process (CB-process).
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Suppose that (1 ∧ z2)m(dz) is a finite measure on (0,∞). Give a
branching mechanism with the representation

φ(λ) = bλ+
1

2
σ2λ2 +

∫ ∞
0

(e−zλ − 1 + zλ1{z≤1})m(dz), λ ≥ 0.

We assume ∫
0+

1

φ(λ)
dλ =∞.

Then the CB-process with branching mechanism φ is conservative. Given
X0, we consider the stochastic equation

Xt = X0 + σ

∫ t

0

∫ Xs−

0
W (ds, dz) +

∫ t

0

∫ 1

0

∫ Xs−

0
zM̃(ds, dz, du)

−b
∫ t

0
Xsds+

∫ t

0

∫ ∞
1

∫ Xs−

0
zM(ds, dz, du). (4)

Theorem 1

There is a unique positive strong solution to (4) and the solution
(Xt)t≥0 is a CB-process with branching mechanism φ.
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Consider an immigration mechanism ψ given by

ψ(λ) = hλ+

∫ ∞
0

(1− e−λz)n(dz), λ ≥ 0,

where h ≥ 0 is a constant and (1 ∧ z)n(dz) is a finite measure on R+.
Let N(ds, dz) be a Poisson random measure on (0,∞)2 with intensity
dsn(dz). Given Y0, we consider the stochastic equation

Yt = Y0 + σ

∫ t

0

∫ Ys−

0
W (ds, du) +

∫ t

0

∫ 1

0

∫ Ys−

0
zM̃(ds, dz, du)

+

∫ t

0
(h− bYs)ds+

∫ t

0

∫ ∞
1

∫ Ys−

0
zM(ds, dz, du)

+

∫ t

0

∫ ∞
0

zN(ds, dz). (5)

Theorem 2

There is a unique positive strong solution to (5) and the solution
(Yt)t≥0 is a CBI-process with branching mechanism φ and
immigration mechanism ψ.
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4. f−moments for classical branching processes

Suppose that f is a positive continuous function on [0,∞) satisfying the
following:

Condition A. There exist constants c ≥ 0 and K > 0 such that
(A1) f is convex on [c,∞);
(A2) f(xy) ≤ Kf(x)f(y) for all x, y ∈ [c,∞);
(A3) f is bounded in [0, c).

Important examples: f(x) = x|logx| and f(x) = xn.

Theorem (Athreya ’69) Suppose that f satisfies Condition A. Let
{Zt : t ≥ 0} be a continuous-time branching process with Z0 = 1 and
reproduction measure m. Then for any t > 0 we have

Pf(Zt) <∞

if and only if ∑
m(k)f(k) <∞.
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5. f−moments for continuous-state branching processes

For CB-processes and CBI-processes,

Grey (1974) studied the existence of xlogx-moment of CB-processes;

Bingham (1976) studied the existence of xn-moment of CB-processes;

A recursive formula for xn-moments of multi-type CBI-processes was
given by Barczy et al. (2015).

In our paper, we study the general f -moments of CB-processes with or
without immigration.
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Instead of Condition A, we introduce the following more convenient
condition:
Condition B. There exists a constant K > 0 such that

(B1) f(x) is convex and nondecreasing on [0,∞);
(B2) f(xy) ≤ Kf(x)f(y) for all x, y ∈ [0,∞);
(B3) f(x) > 1 for all x ∈ [0,∞).

A probability measure on [0,∞) has finite f−moment if and only if it
has finite fb−moment.

Lina JI (BNU) CB-processes 2017/05/10 10 / 16



Let {Xt(x) : t ≥ 0} be the solution of (4) with X0(x) = x.

Let X
(i)
t (1) = Xt(i)−Xt(i− 1). Then {X(i)

t (1) : t ≥ 0},
i = 1, 2, . . . are i.i.d. CB-processes with X

(i)
0 (1) = 1.

Let bxc denote the largest integer smaller than or equal to x ≥ 0.

By the Markov property we have

Pf(Xt) = P
[
P[f(Xt)|G0]

]
≤ P

[
P
[
f
( bX0c+1∑

i=1

X
(i)
t (1)

)∣∣∣G0

]]
≤ KPf(1 +X0)Pf(Xt(1))

≤
1

2
K2f(2)

[
f(1) + Pf(X0)

]
Pf(Xt(1)).

Proposition 3

Suppose that f satisfies Condition B and Pf(Xt(x)) <∞ for some
x > 0 and t > 0. Let {Xt : t ≥ 0} be a CB-process with branching
mechanism φ and arbitrary initial distribution. Then Pf(Xt) <∞ if
and only if Pf(X0) <∞.
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Lemma 4

Suppose that f satisfies Condition B and
∫∞
1 znm(dz) <∞ for every

n ≥ 1. Then for any x > 0 the function t→ Pf(Xt(x)) is locally
bounded on [0,∞).

Consider the stochastic equation

Zt(x) = x− b
∫ t

0
Zs−(x)ds+ σ

∫ t

0

∫ Zs−(x)

0
W (ds, du)

+

∫ t

0

∫ 1

0

∫ Zs−(x)

0
zM̃(ds, dz, du). (6)

Then {Zt(x) : t ≥ 0} is a CB-process with branching mechanism

φ1(λ) = βλ+
1

2
σ2λ2 +

∫ 1

0
(e−λz − 1 + λz)m(dz), λ ≥ 0.

By Lemma 4, we can get t→ Pf(Zt(x)) is locally bounded.
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Theorem 5

Suppose that f satisfies Condition A. Let {Xt : t ≥ 0} be a
CB-process with P(X0 > 0) > 0. Then for any t > 0 we have

Pf(Xt) <∞

if and only if

Pf(X0) <∞ and
∫∞
1 f(z)m(dz) <∞.
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Recall that a CBI-process is defined by the stochastic equation,

Yt = Y0 + σ

∫ t

0

∫ Ys−

0
W (ds, du) +

∫ t

0

∫ 1

0

∫ Ys−

0
zM̃(ds, dz, du)

+

∫ t

0
(h− bYs)ds+

∫ t

0

∫ ∞
1

∫ Ys−

0
zM(ds, dz, du)

+

∫ t

0

∫ 1

0
zN(ds, dz) +

∫ t

0

∫ ∞
1

zN(ds, dz). (7)

Theorem 6

Suppose that f satisfies Condition A. Let {Yt : t ≥ 0} be a
CBI-process with P(Y0 > 0) > 0. Then for every t > 0 we have

Pf(Yt) <∞

if and only if∫∞
1 f(z)(m+ n)(dz) <∞ and Pf(Y0) <∞.
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Thank you!

Lina JI (BNU) CB-processes 2017/05/10 16 / 16


