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Motivation: T1 =?

Simple example: {Xn}n≥0 is a (1, 1)-homogeneous and nearest
Random walk with X0 = 0;

P (Xn+1 = x+ 1|Xn = x) = 1− P (Xn+1 = x− 1|Xn = x) = p;

T0 = 0, for n ∈ N , Tn := inf{k > Tn−1, Xk > XTn−1}

P (T1 = 2n+ 1) = Cn
2n+1p

n+1(1− p)n, n ≥ 0.

How about the non-homogeneous and non-nearest Random walk
?



T1 =?

Wenming
Hong

Contents

Motivation:
T1 =?

Branching
struc-
ture:
RWRE
on Z

Example:
calcu-
late
ET1
and
validate
the
Wald
equality

Applications
(I): in-
variant
density
and
LLN

Application
(II),
Scaling
limits:
the
local
time of
Sinai’s
walk

Application
(III):
(L, 1)
reflect-
ing
random
walk on
the half
line

References

Motivation: T1 =?

Simple example: {Xn}n≥0 is a (1, 1)-homogeneous and nearest
Random walk with X0 = 0;

P (Xn+1 = x+ 1|Xn = x) = 1− P (Xn+1 = x− 1|Xn = x) = p;

T0 = 0, for n ∈ N , Tn := inf{k > Tn−1, Xk > XTn−1}

P (T1 = 2n+ 1) = Cn
2n+1p

n+1(1− p)n, n ≥ 0.

How about the non-homogeneous and non-nearest Random walk
?



T1 =?

Wenming
Hong

Contents

Motivation:
T1 =?

Branching
struc-
ture:
RWRE
on Z

Example:
calcu-
late
ET1
and
validate
the
Wald
equality

Applications
(I): in-
variant
density
and
LLN

Application
(II),
Scaling
limits:
the
local
time of
Sinai’s
walk

Application
(III):
(L, 1)
reflect-
ing
random
walk on
the half
line

References

Motivation: T1 =?

Simple example: {Xn}n≥0 is a (1, 1)-homogeneous and nearest
Random walk with X0 = 0;

P (Xn+1 = x+ 1|Xn = x) = 1− P (Xn+1 = x− 1|Xn = x) = p;

T0 = 0, for n ∈ N , Tn := inf{k > Tn−1, Xk > XTn−1}

P (T1 = 2n+ 1) = Cn
2n+1p

n+1(1− p)n, n ≥ 0.

How about the non-homogeneous and non-nearest Random walk
?



T1 =?

Wenming
Hong

Contents

Motivation:
T1 =?

Branching
struc-
ture:
RWRE
on Z

Example:
calcu-
late
ET1
and
validate
the
Wald
equality

Applications
(I): in-
variant
density
and
LLN

Application
(II),
Scaling
limits:
the
local
time of
Sinai’s
walk

Application
(III):
(L, 1)
reflect-
ing
random
walk on
the half
line

References

Motivation: T1 =?

Simple example: {Xn}n≥0 is a (1, 1)-homogeneous and nearest
Random walk with X0 = 0;

P (Xn+1 = x+ 1|Xn = x) = 1− P (Xn+1 = x− 1|Xn = x) = p;

T0 = 0, for n ∈ N , Tn := inf{k > Tn−1, Xk > XTn−1}

P (T1 = 2n+ 1) = Cn
2n+1p

n+1(1− p)n, n ≥ 0.

How about the non-homogeneous and non-nearest Random walk
?



T1 =?

Wenming
Hong

Contents

Motivation:
T1 =?

Branching
struc-
ture:
RWRE
on Z

Example:
calcu-
late
ET1
and
validate
the
Wald
equality

Applications
(I): in-
variant
density
and
LLN

Application
(II),
Scaling
limits:
the
local
time of
Sinai’s
walk

Application
(III):
(L, 1)
reflect-
ing
random
walk on
the half
line

References

Motivation: T1 =?

Simple example: {Xn}n≥0 is a (1, 1)-homogeneous and nearest
Random walk with X0 = 0;

P (Xn+1 = x+ 1|Xn = x) = 1− P (Xn+1 = x− 1|Xn = x) = p;

T0 = 0, for n ∈ N , Tn := inf{k > Tn−1, Xk > XTn−1}

P (T1 = 2n+ 1) = Cn
2n+1p

n+1(1− p)n, n ≥ 0.

How about the non-homogeneous and non-nearest Random walk
?



T1 =?

Wenming
Hong

Contents

Motivation:
T1 =?

Branching
struc-
ture:
RWRE
on Z

Example:
calcu-
late
ET1
and
validate
the
Wald
equality

Applications
(I): in-
variant
density
and
LLN

Application
(II),
Scaling
limits:
the
local
time of
Sinai’s
walk

Application
(III):
(L, 1)
reflect-
ing
random
walk on
the half
line

References

Model: (L,R)-RWRE
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Motivation: T1 =?

why to calculate T1 =?

Random walk in random environment (RWRE):

LLN: limn→∞
Xn
n

= 1
ET1

invariant density: for the environment viewed from the particles

stable law;

Basic properties for the state-dependent RW:

{Xn}n≥0 is recurrent ⇐⇒ E0N(0) =∞

{Xn}n≥0 is positive recurrent ⇐⇒ E0T0 <∞.

Lamperti Problem: stationary distribution πi = 1
EiTi

.
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Motivation: T1 =?

How to calculate T1 accurately and explicitly ?

Tools: Intrinsic branching structure within the walk Xn.

L = R = 1, nearest (1, 1)-RWRE, (Kesten et al, 1975).

(1, R)-RWRE ( H & Zhang, L., 2010; IDAQP).

(L, 1)-RWRE ( H & Wang H.M., 2013; IDAQP ).

(2, 2)-RWRE ( H & Wang H.M., 2014; Th.Prob.Appl.)

RWRE on the strip ( H & Zhang. M.J., 2016) .
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Branching Structure: (1,1)-RWRE (Kesten et al, 1975)

(1,1)-RWRE:

(1) ρi = ωi(−1)
ωi(1)

.

(2) E(log ρ0) ≤ 0, then P o-a.s., lim supn→∞Xn =∞.

(3) T1 := inf[k ≥ 0 : Xk = 1] <∞ P o-a.s..

(4) Ui := #{k < T1 : Xk−1 = i,Xk = i− 1}.
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Branching Structure: (1,1)-RWRE (Kesten et al, 1975)

N

Z

0

1

-1

i
1i −

1i +

1T

#{ ( 1)}iU i i= → −

Figure: Branching structure of (1, 1)-RWRE

T1 = 1 + 2
∑
i≤0

Ui.
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Branching Structure: (1,1)-RWRE

Theorem (Kesten et al, 1975)

Assume Xn →∞,
(a) U1 = 1, U1, U0, U−1, ... is under P oω an inhomogeneous branching
process with offspring distribution, for i ≤ 0,

P oω(Ui−1 = k|Ui = 1) = ωi(−1)kωi(1), k = 0, 1, 2, .... (1)

(b)

T1 = 1 + 2
∑
i≤0

Ui.

Kesten, H., Kozlov, M. V., Spitzer, F. (1975). Composotio Math.;
Dwass (1975), Proc.AMS.
Harris (1952),Tans.AMS



T1 =?

Wenming
Hong

Contents

Motivation:
T1 =?

Branching
struc-
ture:
RWRE
on Z

Example:
calcu-
late
ET1
and
validate
the
Wald
equality

Applications
(I): in-
variant
density
and
LLN

Application
(II),
Scaling
limits:
the
local
time of
Sinai’s
walk

Application
(III):
(L, 1)
reflect-
ing
random
walk on
the half
line

References

Branching Structure: (L,1)-RWRE

(L-1) RWRE Xn:

P oω(Xn+1 = x+ l
∣∣Xn = x) = ωx(l)

ω· = (ωx(−L), · · · , ωx(−1), ωx(1))x∈Z ∼ P.

Remark Key (1987) have pointed out the relationship between the
(L, 1)-RWRE and the multi-type branching process, but the branching
structure have not been figured out.
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Branching Structure: (L-1) RWRE

How to calculate T1?

Ui,l = #{0 < k < T1 : Xk−1 > i,Xk = i− l + 1}, 1 ≤ l ≤ L
Ui := (Ui,1, Ui,2, · · · , Ui,L)

T1 = 1 +

0∑
i=−∞

|Ui|+
0∑

i=−∞
Ui,1 = 1 +

0∑
i=−∞

Ui(2, 1, ..., 1)T .
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Branching Structure: (L,1)-RWRE (H & Wang, 2013)

Theorem (H & Wang,2013)

Suppose that lim sup
n→∞

Xn =∞., one has that

(a)

T1 = 1 +

0∑
i=−∞

|Ui|+
0∑

i=−∞
Ui,1 = 1 +

0∑
i=−∞

Ui(2, 1, ..., 1)T ; (2)

(b) U1 = e1, U1, U0, U−1, ... is an inhomogeneous multitype branching
process with offspring distribution, for i ≤ 0,

Pω(Ui−1 = (u1, ..., uL)
∣∣Ui = e1)

=
(u1 + · · ·+ uL)!

u1! · · ·uL!
ωi(−1)u1 · · ·ωi(−L)uLωi(1), (3)

and for 2 ≤ l ≤ L,

Pω(Ui−1 = (u1, ..., 1+ul−1, ..., uL)
∣∣Ui = el)

=
(u1 + · · ·+ uL)!

u1! · · ·uL!
ωi(−1)u1 · · ·ωi(−L)uLωi(1), (4)
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Branching Structure: (L,1)-RWRE (H &
Wang,2013)

Theorem (H & Wang,2013, cont.)

(c) For fixed environment ω, the mean offspring matrix of the multitype
branching process {Ui}i≤0 is

Mi =


bi(1) · · · bi(L− 1) bi(L)

1 + bi(1) · · · bi(L− 1) bi(L)
...

. . .
...

...
bi(1) · · · 1 + bi(L− 1) bi(L)

 , (5)

where bi(l) = ωi(−l)
ωi(1)

, 1 ≤ l ≤ L.
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Branching Structure: (1,2)-RWRE

N

Z

2i−
1i−
i

-1

1

2

0
1T

three possible ways to go above zero

three possible ways to go above 1i−

Figure: Branching structure of the (1, 2)-RWRE
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Branching Structure: (1,2)-RWRE ( Types)

i
1i−
2i−

type-A type-B type-C

Figure: types
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Branching Structure: (1,2)-RWRE ( Types)

A(i) :=#{downward steps of type A at i}= the numbers of steps
from i to i− 1 before time T1 with crossing-back from i− 1 to i.

B(i) : =#{downward steps of type B at i}=the numbers of steps
from i to i− 1 before time T1 with crossing-back from i− 2 to i .

C(i) : =#{downward steps of type C at i}= the numbers of steps
from i to i − 1 before time T1 with crossing-back from i − 1 to
i+ 1.

Set for i ≤ 0,
U(i) = [A(i), B(i), C(i)],

T1 = 1+
∑
i≤0

(
2A(i)+2B(i)+C(i)

)
= 1+

∑
i≤0

〈
(2, 2, 1), U(i)

〉
.
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Branching Structure: (1,2)-RWRE

Theorem (H & Zhang,2010)

Assume Xn → ∞, P-a.s.. Then for P -a.s. ω,
(
U(i) =

[A(i), B(i), C(i)]
)
i≤0

is an inhomogeneous multitype branching process

with immigration

U(1) = [1, 0, 0], with probability
p1(0)

1− α(0)− β(0)
,

U(1) = [0, 1, 0], with probability
γ(0)

1− α(0)− β(0)
,

U(1) = [0, 0, 1], with probability
p2(0)

1− α(0)− β(0)
.
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Branching Structure: (1,2)-RWRE

Theorem (Cont.)

The offspring distribution is given by

Pω

(
U(i) = [a, b, 0]

∣∣∣ U(i+ 1) = [1, 0, 0]
)

= [1− α(i)− β(i)]Ca
a+bα(i)aβ(i)b,

Pω

(
U(i) = [a, b, 1]

∣∣∣ U(i+ 1) = [0, 1, 0]
)

= [1− α(i)− β(i)]Ca
a+bα(i)aβ(i)b,

Pω

(
U(i) = [a, b, 0]

∣∣∣ U(i+ 1) = [0, 0, 1]
)

= [1− α(i)− β(i)]Ca
a+bα(i)aβ(i)b,
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(1,2)-RWRE Branching Structure: Probabilities

for j = 1, 2 , exit probabilities

P i−1ω [(−∞, i− 1), i− 1 + j]

:= P i−1ω {reach [i,+∞) for the first time at the point i− 1 + j}.

γ(i) = q(i) · P i−1ω [(−∞, i− 1), i+ 1].

α(i) = q(i) · P i−1ω [(−∞, i− 1), i] · p1(i− 1)

p1(i− 1) + γ(i− 1)
,

β(i) = q(i) · P i−1ω [(−∞, i− 1), i] · γ(i− 1)

p1(i− 1) + γ(i− 1)
.
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Example: calculate ET1

Example: We consider a (2-1) random walk. Fix an nonrandom
ω0 = (q1, q2, p) with p+ q1 + q2 = 1, and ω := (..., ω0, ω0, ω0, ...) ∈
Ω. Let {Xn}n≥0 be a (2-1) random walk with initial value X0 = 0
and transition probabilities

Pω(Xn+1 = j|Xn = i) =

 p if j = i+ 1,
q1 if j = i− 1,
q2 if j = i− 2.

Now, all Mi equal to (
a b

1 + a b

)
with a = q1

p and b = q2
p .
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Example: calculate ET1

We get two different eigenvalues of M ,

λ1 =
a+ b+

√
(a+ b)2 + 4b

2
and λ2 =

a+ b−
√

(a+ b)2 + 4b

2
.

Eω(T1) = 1 +
∑
i<0

Eω(Ui(2, 1)T ) = 1 +

∞∑
i=1

e1M0 · · ·M−i+1(2, 1)T

= 1 +

∞∑
n=1

e1M
n(2, 1)T

= 1 +
1

λ1 − λ2

∞∑
n=1

(2λn+1
1 − 2λn+1

2 + λ2λ
n+1
1 − λ1λn+1

2 )

= · · ·

=
1

p− q1 − 2q2
,

Validate the Wald’s equality: EXT1
= EX1 × ET1
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Application (I)–invariant density and LLN

(1) For n ≥ 0 define ω(n) = θXnω.

(2) Then {ω(n)} is a Markov chain with transition kernel

P (ω, dω′) = ω0(1)δθω=ω′ +

L∑
l=1

ω0(−l)δθ−lω=ω′ .

(3) Define π(ω) := 1
ω0(1)

(
1 +

∑∞
i=1 e1M i · · ·M1e

T
1

)
.

(4) Let π̃(ω) = π(ω)
E(π(ω)) .

Theorem (H & Wang,2013)

Suppose that E(π(ω)) <∞. Then we have that
(i) γL < 0;
(ii) π̃(ω)P(dω) is invariant under the kernel P (ω, dω′), that is∫

1Bπ̃(ω)P(dω) =
x

1ω′∈BP (ω, dω′)π̃(ω)P(dω); (6)

(iii) and P-a.s., limn→∞
Xn

n = 1
E(π(ω)) .
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Application (II), Scaling limits: the local time of
Sinai’s walk

Sinai’s walk ⇒ Brox diffusion (Seignourel ( PTRF, 2000)

Random environments:
{ωi}i∈Z are i.i.d.

P (ν < ω0 < 1− ν) = 1, for ν ∈ (0, 1/2)

E(log 1−ω0

ω0
) = 0

0 < σ2 := E(log 1−ω0

ω0
)2 <∞

(7)

define a sequences of environments ω(m) := {ω(m)
i }i∈Z,

ω
(m)
i :=

(
1 +

(
1− ωi
ωi

) 1√
m

)−1
, (8)

{S(m)
n }n≥0 is a Random Walk associated with the Random Envi-

ronment ω(m) := {ω(m)
i }i∈Z, i.e.,

P(S
(m)
n+1 = i+1|S(m)

n = i, ω) = 1−P(S
(m)
n+1 = i−1|S(m)

n = i, ω) = ω
(m)
i .
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Introduction: Brox diffusion

Brox’s diffusion process with Brownian potential (Brox, AP, 1986)

Roughly speaking, it is the solution of the equation{
dXt = dB(t)− 1

2W
′(Xt)dt,

X0 = 0.
(9)

{B(t)}t≥0 is BM with B(0) = 0 and is independent to the medium
Brownian motion {W (x)}x∈R ;

{W (x)}x∈R, and{
W (x) = σW1(x); x ≥ 0,

W (x) = σW2(−x); x ≤ 0.
(10)

where {W1(x);x ≥ 0} and {W2(x);x ≥ 0} are independent BM
with W1(0) = W2(0) = 0.
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Introduction: Brox diffusion

Brox’s diffusion process with Brownian potential

X as a Feller-diffusion process on R with generator

1

2
eW (x) d

dx

(
e−W (x) d

dx

)
.

Actually, for each realization of the potential {W (x)}, the process
X can be represented as

X(t) = A−1(B(T−1(t))), t ≥ 0 (11)

A is the scale function and T is the time-change function defined
by

A(y) =

∫ y

0

eW (z)dz, y ∈ R (12)

T (t) =

∫ t

0

exp{−2W (A−1(B(s)))}ds, t ≥ 0 (13)
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Sinai’s walk ⇒ Brox diffusion

Sinai’s walk ⇒ Brox diffusion (Seignourel ( PTRF [16], 2000)

Theorem A (Seignourel, [16], 2000) Under condition (7), as m→∞{
1

m
S
(m)
[m2t], t ≥ 0

}
−→ {Xt, t ≥ 0} (14)

in distribution in D[0,∞), where {Xt, t ≥ 0} is the Brox’s diffusion
process with σ · Brownian motion.

Question: Local time of Sinai’s walk ⇒ Local time of Brox diffusion ?
(by proper scaling )
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Scaling limits: the local time of Sinai’s walk

For fixed m ≥ 1, define the local time of |S(m)| at position j before
the first n steps as following,

L(m)(j;n) = #{0 ≤ r ≤ n : |S(m)
r | = j} for j, n ≥ 0, (15)

define the nth excursion time{
τ
(m)
0 = 0,

τ
(m)
k = inf{n > τ

(m)
k−1; |S(m)

n | = 0}.
(16)

For ∀m ∈ Z+, x ≥ 0, define L(m)(x)

L(m)(x) =

{
L(m)([mx],τ(m)

m )
m , for mx ≥ 1,

2, for 0 ≤ mx < 1.
(17)
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Scaling limits: the local time of Sinai’s walk

For fixed m ≥ 1, define the local time of |S(m)| at position j before
the first n steps as following,

L(m)(j;n) = #{0 ≤ r ≤ n : |S(m)
r | = j} for j, n ≥ 0, (15)

define the nth excursion time{
τ
(m)
0 = 0,

τ
(m)
k = inf{n > τ

(m)
k−1; |S(m)

n | = 0}.
(16)

For ∀m ∈ Z+, x ≥ 0, define L(m)(x)

L(m)(x) =

{
L(m)([mx],τ(m)

m )
m , for mx ≥ 1,

2, for 0 ≤ mx < 1.
(17)
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Scaling limits: the local time of Sinai’s walk

Theorem (H, Yang, Zhou, 2015)

Under condition (7), as m→∞,

{L(m)(x), x ≥ 0} ⇒ {L∗X(x, T (
∼
T )), , x ≥ 0} (18)

in distribution in D[0,∞).

L∗X(x, t) = LX(x, t) + LX(−x, t); t ≥ 0, x ≥ 0.

LX(x, t) is the local time of the Brox’s diffusion {Xt, t ≥ 0},

∼
T := inf{t ≥ 0; l(0, t) > 1},

l(x, t) is the local time of {B(t)}t≥0.
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Application (II): (L, 1)− reflecting random walk on
the half line

Let {Xn}n≥0 be the (L, 1)-RW, i.e., a Markov chain on Z+ with X0 = 0
and the transition probabilities (for simplicity, we consider L = 2), the
transition matrix is given by

P =


0 1 0 0 . . .

q1(1) + q2(1) 0 p(1) 0 . . .
q2(2) q1(2) 0 p(2) . . .

0 q2(3) q1(3) 0 . . .
...

...
...

...
. . .

 ,

where q1(i) + q2(i) + p1(i) = 1, and q1(i), q2(i), p1(i) > 0.
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Facts

{Xn}n≥0 is irreducible;

{Xn}n≥0 is recurrent

⇐⇒ E0N(0) =∞, where N(y) :=
∑∞
n=1 1(Xn=y).

⇐⇒
∑∞
j=0 Pijyj = yi, i > 0, have no bounded nonconstant solu-

tion.

{Xn}n≥0 is positive recurrent

⇐⇒ E0T0 <∞, and stationary distribution π(i) = 1
EiTi

.

(hence for any i, EiTi <∞, where Ti := inf{n > 0, Xn = i}. )
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Review: Facts for (1, 1) RW (birth-death chain)

For (1, 1) RW: q(i) + p(i) = 1, and q(i), p(i) > 0; i > 0.

Notations:

µ0 = 1, µi =
p(0)p(1) . . . p(i− 1)

q(1)q(2) . . . q(i)
, i > 0;

µ :=
∞∑
i=0

µi.

{Xn}n≥0 is recurrence ⇐⇒
∑∞
i=0

1
µip(i)

=∞.

{Xn}n≥0 is positive recurrence ⇐⇒ µ <∞ and stationary distri-
bution πi = µi/µ.



T1 =?

Wenming
Hong

Contents

Motivation:
T1 =?

Branching
struc-
ture:
RWRE
on Z

Example:
calcu-
late
ET1
and
validate
the
Wald
equality

Applications
(I): in-
variant
density
and
LLN

Application
(II),
Scaling
limits:
the
local
time of
Sinai’s
walk

Application
(III):
(L, 1)
reflect-
ing
random
walk on
the half
line

References

Review: Facts for (1, 1) RW (birth-death chain)

For (1, 1) RW: q(i) + p(i) = 1, and q(i), p(i) > 0; i > 0.

Notations:

µ0 = 1, µi =
p(0)p(1) . . . p(i− 1)

q(1)q(2) . . . q(i)
, i > 0;

µ :=

∞∑
i=0

µi.

{Xn}n≥0 is recurrence ⇐⇒
∑∞
i=0

1
µip(i)

=∞.

{Xn}n≥0 is positive recurrence ⇐⇒ µ <∞ and stationary distri-
bution πi = µi/µ.



T1 =?

Wenming
Hong

Contents

Motivation:
T1 =?

Branching
struc-
ture:
RWRE
on Z

Example:
calcu-
late
ET1
and
validate
the
Wald
equality

Applications
(I): in-
variant
density
and
LLN

Application
(II),
Scaling
limits:
the
local
time of
Sinai’s
walk

Application
(III):
(L, 1)
reflect-
ing
random
walk on
the half
line

References

Review: Facts for (1, 1) RW (birth-death chain)

For (1, 1) RW: q(i) + p(i) = 1, and q(i), p(i) > 0; i > 0.

Notations:

µ0 = 1, µi =
p(0)p(1) . . . p(i− 1)

q(1)q(2) . . . q(i)
, i > 0;

µ :=

∞∑
i=0

µi.

{Xn}n≥0 is recurrence ⇐⇒
∑∞
i=0

1
µip(i)

=∞.

{Xn}n≥0 is positive recurrence ⇐⇒ µ <∞ and stationary distri-
bution πi = µi/µ.



T1 =?

Wenming
Hong

Contents

Motivation:
T1 =?

Branching
struc-
ture:
RWRE
on Z

Example:
calcu-
late
ET1
and
validate
the
Wald
equality

Applications
(I): in-
variant
density
and
LLN

Application
(II),
Scaling
limits:
the
local
time of
Sinai’s
walk

Application
(III):
(L, 1)
reflect-
ing
random
walk on
the half
line

References

Review: Facts for (1, 1) RW (birth-death chain)

For (1, 1) RW: q(i) + p(i) = 1, and q(i), p(i) > 0; i > 0.

Notations:

µ0 = 1, µi =
p(0)p(1) . . . p(i− 1)

q(1)q(2) . . . q(i)
, i > 0;

µ :=

∞∑
i=0

µi.

{Xn}n≥0 is recurrence ⇐⇒
∑∞
i=0

1
µip(i)

=∞.

{Xn}n≥0 is positive recurrence ⇐⇒ µ <∞ and stationary distri-
bution πi = µi/µ.



T1 =?

Wenming
Hong

Contents

Motivation:
T1 =?

Branching
struc-
ture:
RWRE
on Z

Example:
calcu-
late
ET1
and
validate
the
Wald
equality

Applications
(I): in-
variant
density
and
LLN

Application
(II),
Scaling
limits:
the
local
time of
Sinai’s
walk

Application
(III):
(L, 1)
reflect-
ing
random
walk on
the half
line

References

Review: Facts for (1, 1) RW (birth-death chain)

For (1, 1) RW: q(i) + p(i) = 1, and q(i), p(i) > 0; i > 0.

Notations:

µ0 = 1, µi =
p(0)p(1) . . . p(i− 1)

q(1)q(2) . . . q(i)
, i > 0;

µ :=

∞∑
i=0

µi.

{Xn}n≥0 is recurrence ⇐⇒
∑∞
i=0

1
µip(i)

=∞.

{Xn}n≥0 is positive recurrence ⇐⇒ µ <∞ and stationary distri-
bution πi = µi/µ.



T1 =?

Wenming
Hong

Contents

Motivation:
T1 =?

Branching
struc-
ture:
RWRE
on Z

Example:
calcu-
late
ET1
and
validate
the
Wald
equality

Applications
(I): in-
variant
density
and
LLN

Application
(II),
Scaling
limits:
the
local
time of
Sinai’s
walk

Application
(III):
(L, 1)
reflect-
ing
random
walk on
the half
line

References

(2, 1)−RW

Aims:

For (2, 1) RW, to give the formula explicitly for

recurrence ⇐⇒ E0N(0) =?

positive recurrence⇐⇒ E0T0 =?

stationary distribution⇐⇒ EiTi =?

Tools: Intrinsic branching structure within the (L, 1)− RW.
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Tools: Intrinsic branching structure within the (L, 1)− RW.
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For (2, 1) RW: recurrence

Notations(1):

e1 = (1, 0)′, e2 = (0, 1)′, u = e1 + e2, v = e1 − e2;

M(1) =

(
q1(1)+q2(1)

p(1) 0
1
p(1) 0

)
, M(i) =

(
q1(i)
p(i)

q2(i)
p(i)

1 + q1(i)
p(i)

q2(i)
p(i)

)
, i > 1,

ρ :=
∑∞
i=1

∑i
k=1 e1M(k)M(k − 1) . . .M(1)u,
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(2, 1) RW: recurrence

Theorem ( H, Zhou, Zhao, 2014 )

{Xn}n≥0 is recurrence ⇐⇒ ρ =∞.

proof By the “branching structure”, we have

E0N(0) = ρ.
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(2, 1) RW: positive recurrence

Notations(2):

M̃(i) :=

(
q1(i)+q2(i)

p(i)
q2(i)
p(i)

1 0

)
, i ≥ 1.

Consider integers n ≥ i > 1, define the exit probabilities

P i[(n, i), i− 1] = P i{Xn leaving (n, i) at the point i− 1},
P i[(n, i), i− 2] = P i{Xn leaving (n, i) at the point i− 2},

Then [ H and Zhang, 2010],

P i[(n, i), i− 1] =
〈e1, [M̃(i) + · · ·+ M̃(n) · · · M̃(i)]v〉

1 + 〈e1, [M̃(i) + · · ·+ M̃(n) · · · M̃(i)]e1〉
,

P i[(n, i), i− 2] =
〈e1, [M̃(i) + · · ·+ M̃(n) · · · M̃(i)]e2〉

1 + 〈e1, [M̃(i) + · · ·+ M̃(n) · · · M̃(i)]e1〉
,(19)
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(2, 1) RW: positive recurrence

Notations(2):

If ρ =∞, let

γ(i) = p(i) · P i+1[(+∞, i+ 1), i− 1],

α(i) = p(i) · P i+1[(+∞, i+ 1), i] · q1(i+ 1)

q1(i+ 1) + γ(i+ 1)
,

β(i) = p(i) · P i+1[(+∞, i+ 1), i] · γ(i+ 1)

q1(i+ 1) + γ(i+ 1)
, (20)

for k > 0, define

N(k) =


α(k)

1−α(k)−β(k)
β(k)

1−α(k)−β(k) 0
α(k)

1−α(k)−β(k)
β(k)

1−α(k)−β(k) 1
α(k)

1−α(k)−β(k)
β(k)

1−α(k)−β(k) 0

 .
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N(k) =


α(k)

1−α(k)−β(k)
β(k)

1−α(k)−β(k) 0
α(k)

1−α(k)−β(k)
β(k)

1−α(k)−β(k) 1
α(k)

1−α(k)−β(k)
β(k)

1−α(k)−β(k) 0

 .
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(2, 1) RW: positive recurrence

Let τ0 = 0, τi = inf{n > 0 : Xn < i}, i ≥ 1.

Then for i > 0, by the “branching structure” we have

Eiτi = 1 +
〈

(2, 2, 1),
1

1− α(i)− β(i)

(
q1(i), γ(i), q2(i)

)
·
∞∑
k=1

N(1) · · ·N(k)
〉
. (21)

Theorem ( H,Zhou, Zhao 2014 )

{Xn}n≥0 is positive recurrence ⇐⇒ E1τ1 <∞.

proof Because E0T0 = 1 + E1τ1.



T1 =?

Wenming
Hong

Contents

Motivation:
T1 =?

Branching
struc-
ture:
RWRE
on Z

Example:
calcu-
late
ET1
and
validate
the
Wald
equality

Applications
(I): in-
variant
density
and
LLN

Application
(II),
Scaling
limits:
the
local
time of
Sinai’s
walk

Application
(III):
(L, 1)
reflect-
ing
random
walk on
the half
line

References

(2, 1) RW: positive recurrence

Let τ0 = 0, τi = inf{n > 0 : Xn < i}, i ≥ 1.

Then for i > 0, by the “branching structure” we have

Eiτi = 1 +
〈

(2, 2, 1),
1

1− α(i)− β(i)

(
q1(i), γ(i), q2(i)

)
·
∞∑
k=1

N(1) · · ·N(k)
〉
. (21)

Theorem ( H,Zhou, Zhao 2014 )

{Xn}n≥0 is positive recurrence ⇐⇒ E1τ1 <∞.

proof Because E0T0 = 1 + E1τ1.



T1 =?

Wenming
Hong

Contents

Motivation:
T1 =?

Branching
struc-
ture:
RWRE
on Z

Example:
calcu-
late
ET1
and
validate
the
Wald
equality

Applications
(I): in-
variant
density
and
LLN

Application
(II),
Scaling
limits:
the
local
time of
Sinai’s
walk

Application
(III):
(L, 1)
reflect-
ing
random
walk on
the half
line

References

(2, 1) RW: positive recurrence

Let τ0 = 0, τi = inf{n > 0 : Xn < i}, i ≥ 1.

Then for i > 0, by the “branching structure” we have

Eiτi = 1 +
〈

(2, 2, 1),
1

1− α(i)− β(i)

(
q1(i), γ(i), q2(i)

)
·
∞∑
k=1

N(1) · · ·N(k)
〉
. (21)

Theorem ( H,Zhou, Zhao 2014 )

{Xn}n≥0 is positive recurrence ⇐⇒ E1τ1 <∞.

proof Because E0T0 = 1 + E1τ1.



T1 =?

Wenming
Hong

Contents

Motivation:
T1 =?

Branching
struc-
ture:
RWRE
on Z

Example:
calcu-
late
ET1
and
validate
the
Wald
equality

Applications
(I): in-
variant
density
and
LLN

Application
(II),
Scaling
limits:
the
local
time of
Sinai’s
walk

Application
(III):
(L, 1)
reflect-
ing
random
walk on
the half
line

References

(2, 1) RW: positive recurrence

Let τ0 = 0, τi = inf{n > 0 : Xn < i}, i ≥ 1.

Then for i > 0, by the “branching structure” we have

Eiτi = 1 +
〈

(2, 2, 1),
1

1− α(i)− β(i)

(
q1(i), γ(i), q2(i)

)
·
∞∑
k=1

N(1) · · ·N(k)
〉
. (21)

Theorem ( H,Zhou, Zhao 2014 )

{Xn}n≥0 is positive recurrence ⇐⇒ E1τ1 <∞.

proof Because E0T0 = 1 + E1τ1.



T1 =?

Wenming
Hong

Contents

Motivation:
T1 =?

Branching
struc-
ture:
RWRE
on Z

Example:
calcu-
late
ET1
and
validate
the
Wald
equality

Applications
(I): in-
variant
density
and
LLN

Application
(II),
Scaling
limits:
the
local
time of
Sinai’s
walk

Application
(III):
(L, 1)
reflect-
ing
random
walk on
the half
line

References

(2, 1) RW: positive recurrence

Let τ0 = 0, τi = inf{n > 0 : Xn < i}, i ≥ 1.

Then for i > 0, by the “branching structure” we have

Eiτi = 1 +
〈

(2, 2, 1),
1

1− α(i)− β(i)

(
q1(i), γ(i), q2(i)

)
·
∞∑
k=1

N(1) · · ·N(k)
〉
. (21)

Theorem ( H,Zhou, Zhao 2014 )

{Xn}n≥0 is positive recurrence ⇐⇒ E1τ1 <∞.

proof Because E0T0 = 1 + E1τ1.



T1 =?

Wenming
Hong

Contents

Motivation:
T1 =?

Branching
struc-
ture:
RWRE
on Z

Example:
calcu-
late
ET1
and
validate
the
Wald
equality

Applications
(I): in-
variant
density
and
LLN

Application
(II),
Scaling
limits:
the
local
time of
Sinai’s
walk

Application
(III):
(L, 1)
reflect-
ing
random
walk on
the half
line

References

(2, 1) RW: stationary distribution

Define Ti = inf{n > 0 : Xn = i}

Then for i > 0, by the “branching structure” we have

EiTi+1 = 1 +
i∑

j=1

e1MiMi−1 . . .Mi−j+1(2, 1)T , (22)
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(2, 1) RW: stationary distribution

Theorem ( H,Zhou, Zhao 2014 )

If E1τ1 <∞, Then, for i ≥ 0

(a)

EiTi = p(i)Ei+1τi+1 + (q1(i) + q2(i)

+p(i)P i+1[(+∞, i+ 1), i− 1])Ei−1Ti + q2(i)Ei−2Ti−1 + 1;

(b) πi = 1
EiTi

.

where P i+1[(+∞, i+ 1), i− 1], Eiτi, E
iTi+1 has explicit expressions in

(19),(21),(22).



T1 =?

Wenming
Hong

Contents

Motivation:
T1 =?

Branching
struc-
ture:
RWRE
on Z

Example:
calcu-
late
ET1
and
validate
the
Wald
equality

Applications
(I): in-
variant
density
and
LLN

Application
(II),
Scaling
limits:
the
local
time of
Sinai’s
walk

Application
(III):
(L, 1)
reflect-
ing
random
walk on
the half
line

References

(2, 1) RW: stationary distribution

Theorem ( H,Zhou, Zhao 2014 )

If E1τ1 <∞, Then, for i ≥ 0

(a)

EiTi = p(i)Ei+1τi+1 + (q1(i) + q2(i)

+p(i)P i+1[(+∞, i+ 1), i− 1])Ei−1Ti + q2(i)Ei−2Ti−1 + 1;

(b) πi = 1
EiTi

.

where P i+1[(+∞, i+ 1), i− 1], Eiτi, E
iTi+1 has explicit expressions in

(19),(21),(22).



T1 =?

Wenming
Hong

Contents

Motivation:
T1 =?

Branching
struc-
ture:
RWRE
on Z

Example:
calcu-
late
ET1
and
validate
the
Wald
equality

Applications
(I): in-
variant
density
and
LLN

Application
(II),
Scaling
limits:
the
local
time of
Sinai’s
walk

Application
(III):
(L, 1)
reflect-
ing
random
walk on
the half
line

References

(2, 1) RW: stationary distribution

Theorem ( H,Zhou, Zhao 2014 )

If E1τ1 <∞, Then, for i ≥ 0

(a)

EiTi = p(i)Ei+1τi+1 + (q1(i) + q2(i)

+p(i)P i+1[(+∞, i+ 1), i− 1])Ei−1Ti + q2(i)Ei−2Ti−1 + 1;

(b) πi = 1
EiTi

.

where P i+1[(+∞, i+ 1), i− 1], Eiτi, E
iTi+1 has explicit expressions in

(19),(21),(22).



T1 =?

Wenming
Hong

Contents

Motivation:
T1 =?

Branching
struc-
ture:
RWRE
on Z

Example:
calcu-
late
ET1
and
validate
the
Wald
equality

Applications
(I): in-
variant
density
and
LLN

Application
(II),
Scaling
limits:
the
local
time of
Sinai’s
walk

Application
(III):
(L, 1)
reflect-
ing
random
walk on
the half
line

References

(2, 1) RW: stationary distribution

Theorem ( H,Zhou, Zhao 2014 )

If E1τ1 <∞, Then, for i ≥ 0

(a)

EiTi = p(i)Ei+1τi+1 + (q1(i) + q2(i)

+p(i)P i+1[(+∞, i+ 1), i− 1])Ei−1Ti + q2(i)Ei−2Ti−1 + 1;

(b) πi = 1
EiTi

.

where P i+1[(+∞, i+ 1), i− 1], Eiτi, E
iTi+1 has explicit expressions in

(19),(21),(22).



T1 =?

Wenming
Hong

Contents

Motivation:
T1 =?

Branching
struc-
ture:
RWRE
on Z

Example:
calcu-
late
ET1
and
validate
the
Wald
equality

Applications
(I): in-
variant
density
and
LLN

Application
(II),
Scaling
limits:
the
local
time of
Sinai’s
walk

Application
(III):
(L, 1)
reflect-
ing
random
walk on
the half
line

References

(2, 1) RW: stationary distribution

Theorem ( H,Zhou, Zhao 2014 )

If E1τ1 <∞, Then, for i ≥ 0

(a)

EiTi = p(i)Ei+1τi+1 + (q1(i) + q2(i)

+p(i)P i+1[(+∞, i+ 1), i− 1])Ei−1Ti + q2(i)Ei−2Ti−1 + 1;

(b) πi = 1
EiTi

.

where P i+1[(+∞, i+ 1), i− 1], Eiτi, E
iTi+1 has explicit expressions in

(19),(21),(22).



T1 =?

Wenming
Hong

Contents

Motivation:
T1 =?

Branching
struc-
ture:
RWRE
on Z

Example:
calcu-
late
ET1
and
validate
the
Wald
equality

Applications
(I): in-
variant
density
and
LLN

Application
(II),
Scaling
limits:
the
local
time of
Sinai’s
walk

Application
(III):
(L, 1)
reflect-
ing
random
walk on
the half
line

References

(2, 1) RW: stationary distribution

proof For i > 0

EiTi

= p(i)(Ei+1Ti + 1) + q1(i)(Ei−1Ti + 1) + q2(i)(Ei−2Ti + 1)

= p(i)(Ei+1Ti + 1) + q1(i)(Ei−1Ti + 1) + q2(i)(Ei−2Ti−1 + Ei−1Ti + 1)

= p(i)Ei+1Ti + (q1(i) + q2(i))Ei−1Ti + q2(i)Ei−2Ti−1 + 1, (23)

and E0T0 = E1T0 + 1,

Ei+1Ti

= P i+1[(+∞, i+ 1), i]Ei+1τi+1 + P i+1[(+∞, i+ 1), i− 1](Ei+1τi+1 + Ei−1Ti)

=Ei+1τi+1 + P i+1[(+∞, i+ 1), i− 1]Ei−1Ti.

Then

EiTi = p(i)Ei+1τi+1 + (q1(i) + q2(i)

+p(i)P i+1[(+∞, i+ 1), i− 1])Ei−1Ti + q2(i)Ei−2Ti−1 + 1;
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Tail asymptotic of πi

Let D := {P = (p, q1, q2) :
∑2
i=1 qi + p = 1;

∑2
i=1 iqi > p;∀i, qi >

0, p > 0}

Let λ := ρ(M), the maximum eigenvalue of M(i) =

( q1
p

q2
p

1 + q1
p
q2
p

)
;

Theorem ( H, Zhou, Zhao 2014)

(1)If P ∈ D◦, λ := ρ(M) > 1

(2) If P (i) := (p(i), q1(i), q2(i))→ P , and P ∈ D◦, then the stationary
distribution exist. And

log πi
i
→ − log λ

as i→∞.
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distribution exist. And

log πi
i
→ − log λ

as i→∞.
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