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DEFINITION OF t-CSBP.

A CSBP (X, Py) is a non-negative valued strong Markov process with probabilities
(Py,x > 0) such that for any x,yy > 0, Pyyy = Py x Py.

In particular
Ex(e 0%ty = =0 x 0.t >0,

where 1;(0) uniquely solves the evolution equation
t
1 (0) + / G(us(0))ds =0,  t>0.
0
Here, we assume that the so-called branching mechanism ¢ takes the form

P(0) = —ab + BO* + / (e™% — 14 6x)II(dx), 0 >0,
(0,00)

where a € R, 8 > 0 and IT is a measure concentrated on (0, co) which satisfies
J0,00) X A *2)TI(dx) < oo.
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PROPERTIES.

We assume that the process is conservative, i.e.

1
/0+ e % =

It is easily verified that
Ee[X] = xe= %' OP x>0

We say that the CSBP is supercritical, critical or subcritical accordingly as
—1/(0+) = «is strictly positive, equal to zero or strictly negative.

For a supercritical 1)-CSBP the probability of extinction is
Po(limX; = 0) =e M7,
oo
where \* is the unique root on (0, o) of the equation ¢ (0) = 0.
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PROLIFIC SKELETON 1.

The supercritical 4)-CSBP is equal in law to the total mass process obtained by the
following construction.

» Initiate Po(A*x) independent Galton-Watson processes with branching generator

7 (2pkrk—r> = Seca-n), rep,

k>0

where g = ¢/ (X\*), pp = p1 = 0and fork > 2

_ # Vi *\k i —\*r
P N ) {B(A ey + () /<o,oo> © H(dr)}‘

> Along the edges immigrate CSBPs at rate
e *
28dQ* + / ye N VII(dy)dP;,
0

where P}, x > 0is the law of the CSBP with branching mechanism
Y*(A) = (A + A*) and Q* is the associated excursion measure.
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PROLIFIC SKELETON

II.

> Given that an individual dies and branches into k > 2 offspring, an independent
1*-CSBP is immigrated with initial mass r with probability

ni(dr) =
Pr

-
AT (A7)

{B(A*)ztso(dr)l{k—z} +

* kﬁ —\*r
(A7) e II(dr)

} |

» Finally an independent +/*-CSBP is issued at time zero with initial mass x.

ti

ne

Al
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BRANCHING MECHANISM.

)\*

7/ 26



Introduction
:

Supercritical CSBP
BRANCHING MECHANISM.

Subcritical CSBP

7/26
DAy



Introduction
:

Supercritical CSBP
BRANCHING MECHANISM.

Subcritical CSBP

YA+ AY)

7/26
DAy



Introduction Supercritical CSBP Subcritical CSBP

BRANCHING MECHANISM.

)\*

7/ 26



Introduction Supercritical CSBP Subcritical CSBP

BRANCHING MECHANISM.

7/ 26



Introduction
:

Supercritical CSBP
BRANCHING MECHANISM.

Subcritical CSBP

7/26
DAy



Introduction
:

Supercritical CSBP
BRANCHING MECHANISM.

Subcritical CSBP

A1 =7)

A-skeleton

1-CSBP

7/26
DAy



Introduction Supercritical CSBP Subcritical CSBP

A-SKELETON 1.

Let A > A\*.
Define the Esscher transformed branching mechanism ¢, : Ry — Ry for # > —Xand
A= A" by ¢ (0) = ¥(6 + A) — (N).

The supercritical 4-CSBP is equal in law to the total mass process obtained by the
following construction.

> Initiate Po(Ax) independent Galton-Watson processes with branching generator

k>0

g (ZW —r) = WOa-n),  rep,

where g = ¥'(N), po = Y (A) /AP’ (A), p1 = 0and fork > 2

= s (P + ) e e
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A-SKELETON II.

» Along the edges immigrate CSBPs at rate
) < )
28dQ"™N + ye” VYII(dy)dP,™,
0

where IP’,((A), x > 0 is the law of the CSBP with branching mechanism 4 and QW)
is the associated excursion measure.

» Given that an individual dies and branches into k € Ny \ {1} offspring, an
independent 1), -CSBP is immigrated with initial mass r with probability

i (dr) = o /\W {¢ )1 gk—0} 0o (dr) + BA*1 g2y S0 (dr)

r k
+1{k22} ( k') e”H(dr)} s

» Finally an independent v/, -CSBP is issued at time zero with initial mass x.
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SDE.

The process (X, Px), x > 0, can be represented as the unique strong solution to the
stochastic differential equation (SDE)

t t Xs_ t oo Xs—
Xt =x+ a/ Xs—ds + \/2,8/ / W(ds, du) +/ / / rN(ds, dr, dv),
0 0 Jo 0o Jo Jo

)

forx > 0, > 0, where

» W(ds,du) is a white noise process on (0, c0)? based on the Lebesgue measure
ds ® du,

» N(ds,dr,dv) is a Poisson point process on (0, 00)® with intensity ds @ TI(dr) ® dv,
and N(ds, dr, dv) the compensated measure of N(ds, dr, dv).
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THINNING OF THE SDE I.

We can introduce an additional mark to atoms of N, resulting in an ‘extended’ Poisson
random measure, A/ (ds, dr, dv, dk) on (0, 00)® x Ny with intensity

e H(d).

ds ® I(dr) ® dv ® (Ak’)

Define three random measures by

NO(ds, dr,dv) = N (ds,dr,dv, {k = 0}),
N(ds,dr,dv) = N(ds,dr,dv, {k = 1})

and
N?(ds, dr, dv) = N (ds,dr,dv, {k > 2}).

We have that N, N and N? are independent Poisson point processes on (0, c0)3 with
respective intensities ds ® e " V'TI(dr) ® dv, ds ® (Ar)e M TI(dr) ® dv and
ds @ 302, (Ar)keMTI(dr) /k! @ dv.
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THINNING OF THE SDE II.

¢ s t poo pXel
Xt:x+a/ Xs,ds+\/2,8/ / W(ds,du)—i—/ / / rNO(ds, dr, dv)
0 0 Jo 0oJo Jo
t poo pXs_ t poo pXs_
+/ / / N (ds, dr, du)—l—/ / / rN%(ds, dr, dv)
0oJo Jo
/ / Xs, Le*)"rﬂ(dr)ds
=x—3'(A /Xsds—k\/ // W(ds, du) +// /S_rNodsdrdz/)
+ / / / " IN(ds, dr, dv) + 28\ / X,_ds
0o Jo Jo 0
t poo pXs—
+/ / / er(ds7 dr,dv),
0o Jo Jo

(In the last equality we have used that — f(O,oo) (1—e ™ M)rII(dr) = —a+28A—1'(N)).
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THINNING OF THE SDE II.

Xy

—x— /(A /Xsds+f// W(ds, du) +// /S_ 0(ds, dr, dv)
+ /0 /0 /0 " AN(ds, dr, dv) + 28\ /0 Xs_ds
+/0t/000 /OXS_ er(ds,dr,dV),

(In the last equality we have used that — f(O,oo) (1—e ™ M)rII(dr) = —a+28X—1'(N)).
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Theorem
Suppose that + corresponds to a supercritical branching mechanism (i.e. o > 0) and X > \*.
Consider the coupled system of SDEs

(2)=(2) v [ (& Jarva [ [ (§)masan
L (2 s
+/0r/0°°/1257 ( 0 )Nl(ds,dr,dj)
T (s

bz
+2/3/0(0 )ds, t>0, )

with Ag > 0 given and fixed. Under the assumption that Z is an independent random
variable which is Poisson distributed with intensity Ao the system (2) has a unique strong
solution such that:

(i) Fort >0, Zt|.7-'tA is Poisson distributed with intensity Ay, where
]-'tA =0(As:s<t);

(ii) Conditional on (]—'tA,t > 0), the process (A, t > 0) is a weak solution to
(D).
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(DRIVING SOURCES OF RANDOMNESS 1.)

LetNg = {0} UNand #(d¢) = EieNo 6;(de), ¢ > 0.
Then in the previous theorem
» N is a Poisson random measure on (0, 00)? with intensity measure

ds ® e MTI(dr) ® dv, i is the associated compensated version of N?,

» N!(ds, dr,dj) is a Poisson point process on (0, 00)? x N with intensity
ds ® re=MTI(dr) ® #(dj),

» N2(ds, dr, dk, dj) is a Poisson point process on (0, 00)? x Ny x N with intensity
¢’ (N)ds ® ni(dr) @ pei(dk) @ t(dj), and

» W(ds,du) is the white noise process on (0, 00)? based on the Lebesgue measure
ds ® du.
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SUBCRITICAL CSBP.
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RAY-KNIGHT REPRESENTATION.

Assume that Grey’s condition is satisfied, ie.

> 1
/ Wdu<oo.

Let
> (&,t > 0) be a spectrally positive Lévy process with Laplace exponent ),
> (é,(t) ,0 <r<t), where é,(t) = & — €(t—p—, the time reversed process at time ¢,
> éﬁ” ‘=sup,, és(t).

The process (H;, t > 0) is called the height process if H; is the local time at level 0, at
time t of 5() — £,

Denote by L{ the local time up to time t of H at level 2 > 0, and let

Ty :=inf{t > 0: & = —x}.

Then the generalised Ray-Knight theorem for the 1)-CSBP process states that
(L%, ,a > 0) has a cadag modification for which

(Lt >0) £ (X,Py),

that is, the two processes are equal in law.
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GENEALOGY OF SUBCRITICAL CSBP.

Excursions of H away from 0 form a PPP, denote by n its intensity, and let € be a
canonical excursion under n.
Let ¢ = inf{s > 0, ¢s = 0}, and define

_ o 2
de(s,t) = & + & wér)gsvta, (s,1) € [0, ¢]"

Then we can define the equivalence relation ~¢, such that (s ~ t) is and only if
de(s,t) =0, and Tec = [0, ¢]\ ~e.
The compact metric space (7¢, de) is called a Lévy random tree.

height
4

17/ 26



Introduction Supercritical CSBP Subcritical CSBP

T-SKELETON.

Fix T > 0.

Define (ZI,0 <t < T) as the process that counts the number of excursions above level
t that hit level T.

Then ZT is a time-dependent continuous-time Galton-Watson process which at time #
branching at rate

= uT—t(OOW(”Tu—TtE‘jzi)_ Ylur-i() ¢ 0,1,

and its offspring distribution (pz_’, k > 0) is given by pg = plT_t =0,

F’Zit: % {/BMT t(OO)l{k 2}+/ M uT’(OO)xH(dx)}.

ur—_(c0)q

T N\ I\V/\'\ I\/\ 0\ I\I\

Y A VPR Y
AR WAV W
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Then ZT is a time-dependent continuous-time Galton-Watson process which at time ¢
branching at rate
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and its offspring distribution (p,z*t, k > 0) is given by pg = plet =0,

T—t 1 2 > (qut(oo)x)k —ur_¢(oc0
P = W X {BuTt(oo)l{kZZ} +/0 Te T—t( )XH(dx) )

. a7 l\/\ Ny
NAVAR }l\/ L1, [

AR AN
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and its offspring distribution (p,z*t, k > 0) is given by pg = plet =0,

up_t(c0)gT—t k!

. aal /\/\ p Do
T A

L I
[OvAVER= 21T

oo k
A= g X{Bu%xoo)l{k:zﬁ S e‘“““"”‘ﬂ(dx)}'
0

-y

18/ 26



Introduction Supercritical CSBP Subcritical CSBP

T-SKELETON.

Fix T > 0.
Define (Z],0 < t < T) as the process that counts the number of excursions above level
t that hit level T.
Then ZT is a time-dependent continuous-time Galton-Watson process which at time ¢
branching at rate
g = ur—t(00)4’ (ur—¢(00)) — 1/’(”T7t(00))’ te(0,T),
ur—¢(c0)

and its offspring distribution (p,z*t, k > 0) is given by pg = plet =0,

T—t 1 2 > (qut(oo)x)k —ur_¢(oc0
P = W X {5”Tt(00)1{k:2} +/0 Te T—t( )XH(dx) )

N L

A——
Wl e =TI
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IMMIGRATION.

As
P[Xr = 0|7] = e~ Xi1m—(>9),

the law of X conditioned to die out by time T can be obtained by the following change

of measure . « (o)

dp — AUt —t(00
= = ei’ t Z 07 x> 0.
dP, 7 e—xur(co)

We get that (X, PL) is a time-dependent CSBP with Laplace transform
Effe™) =@, 0<t<T x0>0,

where
VI(0) = ur(0 + ur_4(00)) — ur(c).

Note that
lim ur_¢(c0) =00, and lim ur_¢(oc0) = 0.
ST T—ro0
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Theorem
Suppose that 1) corresponds to a (sub)critical branching mechanism (i.e. o < 0) which satisfies
Grey’s condition. Fix a time horizon T > 0 and consider the coupled system of SDEs

(5)= () [ovcon (i Yorvm [ [ (3w
L L)
LS (s
N

t ZT_
+2,3/0(0 )ds, 0<t<T. ©)

with A} > 0 given and fixed. Under the assumption that ZL is an independent random
variable which is Poisson distributed with intensity ur(oo) Al the system (3) has a unique
strong solution such that:
(i) ForT >t >0, ZtT|]-'tAT is Poisson distributed with intensity uT,t(oo)AtT,
where FA' = o(AT 5 < t);
(ii) Conditional on (FA |0 < t < T), the process (AT,0 <t < T)isaweak 20/ 26
solution to (1).
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(DRIVING FORCES OF RANDOMNESS II.)

In the previous theorem

» N is a Poisson random measure on [0, 0o)® with intensity
ds @ e 41— ()" I1(dr) ® du.

» Nk is a Poisson process on [0, 00)? x Ng with intensity
ds @ re=T— ()" T1(dr) @ £(dj),
» N2(ds, dr, dk, dj) is a Poisson process on [0, 00)? x Ng x N with intensity

{ ur—s(00)¢" (ur—5(00)) — P (ur—s(c0))

ur_s(c0)

} ds @ 0T~ (dr) @ p~*H(dk) ® #(d)),

where, for k > 2,

Bis%_(00)1x=)80(dr) + (ur—s(o0)r)* e 7= ()" T1(dr) /K!

Tfsd —
e () PT= (1—s(00)t (17— (00)) — P(ur—s(00)))

) el

» W(ds,du) is the white noise process on (0, 00)? based on the Lebesgue measure
ds ® du.
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CONDITIONING ON SURVIVAL.

The law of (A],0 < t < T) conditional on (}'AfT N {Zg >1},0 <t < T)is that of the
law of the ¥-CSBP, X, conditioned to survive until time T.
» This law is can be obtained by the following change of measure for t > 0,x > 0

dPT 1 — e~ Xeur—¢(o0)
dp, - T 1 — e—xur(oo)

» We have fork > 1

(uT(oo)x)k e—uT(oo)x
KL 1 eur(o)x’

Pl[Zy =kZo > 1] =
> If nt denotes the conditional probability n(-| sup,~ e > T), then the first branch

time 7 of the individual corresponding to the excursion e is given by

_ W(ur(c0)) ur—i(co)
nr(yr > t) = ur(co)  (ur—(00))’

fort € [0, 7).
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CONDITIONING ON SURVIVAL.

The law of (AT,0 < t < T) conditional on (.7-'AtT N{Zl >1},0 <t < T) s that of the
law of the ¥-CSBP, X, conditioned to survive until time T.

Take T — oo.

» This law is can be obtained by the following change of measure for t > 0,x > 0

d@;{ 1 e~ Xiur_¢(00) . o Xe
dPy | 1—e—xur(eo) ¢
Tt

» We have fork > 1

(ur(so)) _e~trioon

T _ —
P.[Zy =k|Zy > 1] = k! PR

— 0, unless k = 1.

» If nt denotes the conditional probability n(-| sup,., es > T), then the first branch
time 47 of the individual corresponding to the excursion e is given by

P(ur(o0)) ur—t(co)
ur(00)  P(ur—s(c0))

nr(yr > t) = —1

fort € [0, 7).
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EMERGENCE OF THE SPINE.

time

Note that the convergence is in a weak sense.
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SPINE.

Theorem

Suppose that ) is a critical or subcritical branching mechanism such that Grey’s condition
holds. Suppose, moreover, that (AL, ZI'),0 < t < T) is a weak solution to (3) and that Z[ is
an independent random variable which is Poisson distributed with intensity up(co)Al. Then,
conditional on the event Zg > 0, in the sense of weak convergence with respect to the
Skorokhod topology on D([0, o00), R?), for all t > 0,

(AIzh,0<s <t — (X1, 1),0<s <),

where X is a weak solution to

t t > S t %) Xs—
Xy =x+ a/ Xs—ds + \/Zﬁ/ / W(ds, du) +/ / / rN(ds, dr, du)
0 0 Jo 0o Jo Jo

t s}
+ / / rN*(ds, dr) + 20t, t>0.
0 Jo
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(DRIVING SOURCES OF RANDOMNESS III.)

In the previous theorem

» W(ds,du) is a white noise process on (0, c0)? based on the Lebesgue measure
ds ® du,

» N(ds, dr,dv) is a Poisson point process on (0, c0)® with intensity ds ® I1(dr) ® dv,
and N(ds, dr, dv) is the compensated measure of N(ds, dr, dv),

» N* is a Poisson random measure on [0, 00) X (0, o) with intensity measure
ds @ rII(dr).
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