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Outline of my talk

(diffusion-type) Cox-Ingersoll-Ross (CIR) process

a jump-type CIR process driven by a Wiener process and a
subordinator, a special case: basic affine jump diffusion
(BAJD)

existence of a pathwise unique strong solution

a classification: subcritical, critical and supercritical cases
based on the asymptotic behavior of the expectation

explicit joint Laplace transform of the process and its
integrated process

derivation of MLE of the growth rate (a drift parameter) of
the model based on continuous time observations

consistency and asymptotic behavior of MLE as sample
size tends to infinity according to the cases subcritical,
critical and supercritical
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Diffusion-type CIR process, I
Cox-Ingersoll-Ross (CIR) process (Feller (1951) and Cox,
Ingersoll and Ross (1985)):

dYt = (a− bYt ) dt + σ
√

Yt dWt , t > 0,

where Y0 is a non-negative initial value, a > 0, b ∈ R, σ > 0,
and (Wt )t>0 is a standard Wiener process, independent of Y0.

Diffusion-type = sample paths are continuous almost surely.

Y is also called a square root process or a Feller process.

The existence of a pathwise unique non-negative strong
solution can be found in Ikeda and Watanabe (1981).
The key points are that |

√
x −√y | 6

√
|x − y |, x , y > 0,

and
∫ ε

0
1

(
√

x)2 dx =∞, ∀ ε > 0.
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Diffusion-type CIR process, II

We note that
if a > σ2

2 , then P(Yt > 0 for all t > 0) = 1.

if 0 < a < σ2

2 , then Y hits 0 with probability p ∈ (0,1)
in case of b < 0, and with probability 1 in case of b > 0
(and zero is reflecting due to a > 0).

In financial mathematics, CIR process is used to describe the
evolution of interest rates.

This process is well-studied, e.g., explicit characteristic
function, density function and several results on estimation of
(a,b), see later on.
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A jump-type CIR process

dYt = (a− bYt ) dt + σ
√

Yt dWt + dJt , t > 0,

where Y0 is an a.s. non-negative initial value, a > 0, b ∈ R,
σ > 0, (Wt )t>0 is a standard Wiener process, and (Jt )t>0 is a
subordinator (an increasing Lévy process) with zero drift and
with Lévy measure m concentrating on (0,∞) such that∫ ∞

0
z m(dz) ∈ [0,∞), (A1)

that is,

E(euJt ) = exp
{

t
∫ ∞

0
(euz − 1) m(dz)

}
for t > 0 and u ∈ C with Re(u) 6 0.

We suppose that Y0, (Wt )t>0 and (Jt )t>0 are independent.

It will turn out that b can be interpreted as a growth rate.
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A special case: Basic Affine Jump-Diffusion (BAJD)

It was introduced by Duffie and Gârleanu (2001):

only in the subcritical case with parametrization a = κθ
and b = κ, where κ > 0 (subcritical) and θ > 0, i.e., the
drift takes the form κ(θ − Yt ),
the Lévy measure m takes form

m(dz) = cλe−λz
1(0,∞)(z) dz

with some constants c > 0 and λ > 0.

Then J is a compound Poisson process,
its first jump time ∼ Exp(c) and its jump size ∼ Exp(λ).
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Aim

To study the asymptotic properties of the MLE of b ∈ R under
the conditions:

a > 0, σ > 0 and the Lévy measure m are known,
based on continuous time observations (Yt )t∈[0,T ] with
T ∈ (0,∞),
known non-random initial value y0 > 0: P(Y0 = y0) = 1,
sample size tends to ∞, i.e., T →∞.

It will turn out that for the calculation of the MLE of b, one
does not need to know σ and m.

At the moment, we can not handle the MLE of a supposing
that b is known or the joint MLE of (a,b).
Reason: limit behavior of

∫ t
0

1
Ys

ds as t →∞, is not known to us.
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Some history on parameter estimation of (a,b)
Overbeck and Rydén (1997) studied conditional least squares
estimator (LSE) of (a,b) for diffusion-type CIR process based
on discrete and continuous time observations as well.

Overbeck (1998) studied MLE of (a,b) for diffusion-type CIR
process based on continuous time observations.

Mai (2012) studied MLE of b supposing that a is known for
our jump-type CIR process, but only in the subcritical case
(b > 0) and under ergodicity assumption. Own contribution.

Ben Alaya and Kebaier (2012-13) completed the results of
Overbeck (1998) giving explicit forms of the joint Laplace
transforms of the building blocks of the MLE in question as well.

Li and Ma (2013) investigated (weighted) conditional LSE of
(a,b) of a so-called stable CIR model based on discrete time
observations in the subcritical case.
Huang, Ma and Zhu (2011): (weighted) conditional LSE for drift
parameters of general CBI processes under 2nd order moment
assumptions on the branching and immigration mechanisms. 8



Existence and uniqueness of a strong solution

Recall that

dYt = (a− bYt ) dt + σ
√

Yt dWt + dJt , t > 0.

Proposition. Let η0 be a random variable independent of
(Wt )t>0 and (Jt )t>0 satisfying P(η0 > 0) = 1 and E(η0) <∞.
Then for all a > 0, b ∈ R, σ > 0 and Lévy measure m on
(0,∞) satisfying (A1),

there is a pathwise unique strong solution (Yt )t>0 such
that P(Y0 = η0) = 1 and P(Yt > 0 for all t > 0) = 1.
(It is a consequence of Dawson and Li (2006).)

if P(η0 > 0) = 1 or a > 0, then P
(∫ t

0 Ys ds > 0
)

= 1, t > 0.
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Remark
(i) Y is a CBI process having a branching mechanism

R(u) =
σ2

2
u2 − bu, u ∈ C with Re(u) 6 0,

and an immigration mechanism

F (u) = au +

∫ ∞
0

(euz − 1) m(dz), u ∈ C with Re(u) 6 0.

The jump part has effects only on the immigration mechanism.

(ii) The infinitesimal generator of Y takes the form

(Af )(y) = (a− by)f ′(y) +
σ2

2
yf ′′(y) +

∫ ∞
0

(f (y + z)− f (y)) m(dz),

where y > 0, f ∈ C2
c (R+,R), and f ′ and f ′′ denote the first

and second order derivatives of f , where

(Af )(y) := lim
t↓0

E(f (Yt ) | Y0 = y)− f (y)

t
, y > 0

for suitable functions f : R+ → R.
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Asymptotic behavior of expectation
Proposition. Let a > 0, b ∈ R, σ > 0, and let m be a Lévy
measure on (0,∞) satisfying (A1). Let (Yt )t>0 be the unique
strong solution satisfying P(Y0 > 0) = 1 and E(Y0) <∞.
Then

E(Yt ) =

{
e−btE(Y0) +

(
a +

∫∞
0 z m(dz)

)1−e−bt

b if b 6= 0,

E(Y0) +
(
a +

∫∞
0 z m(dz)

)
t if b = 0,

t > 0.

Consequently, if b > 0, then

lim
t→∞

E(Yt ) =

(
a +

∫ ∞
0

z m(dz)

)
1
b
,

if b = 0, then

lim
t→∞

t−1E(Yt ) = a +

∫ ∞
0

z m(dz),

if b < 0, then

lim
t→∞

ebtE(Yt ) = E(Y0)−
(

a +

∫ ∞
0

z m(dz)

)
1
b
.
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Classification of jump-type CIR processes

Based on the asymptotic behavior of E(Yt ) as t →∞, we
introduce a classification of jump-type CIR processes.

Definition. Let a > 0, b ∈ R, σ > 0, and let m be a Lévy
measure on (0,∞) satisfying (A1). Let (Yt )t>0 be the unique
non-negative strong solution satisfying P(Y0 > 0) = 1 and
E(Y0) <∞. We call (Yt )t>0

subcritical if b > 0,
critical if b = 0,
supercritical if b < 0.
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Stationarity and ergodicity in the subcritical case, I
Theorem. Let a > 0, b > 0, σ > 0, and let m be a Lévy
measure on (0,∞) satisfying (A1). Let (Yt )t>0 be the unique
strong solution satisfying P(Y0 > 0) = 1 and E(Y0) <∞.

(i) Then (Yt )t>0 converges in law to its unique stationary
distribution π having Laplace transform∫ ∞

0
euy π(dy) = exp

{∫ 0

u

av +
∫∞

0 (evz − 1) m(dz)
σ2

2 v2 − bv
dv
}
, u 6 0.

Moreover, π has a finite expectation given by∫ ∞
0

y π(dy) =

(
a +

∫ ∞
0

z m(dz)

)
1
b

(= lim
t→∞

E(Yt )).

In the special case m = 0 (diffusion-type CIR process),∫ ∞
0

euy π(dy) =

(
1− σ2

2b
u
)− 2a

σ2

, u 6 0,

i.e., π has Gamma distribution with parameters 2a
σ2 and 2b

σ2 .
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Stationarity and ergodicity in the subcritical case, II
(ii) If, in addition, a > 0 and the extra moment condition∫ 1

0
z log

(
1
z

)
m(dz) <∞

holds, then the process (Yt )t>0 is exponentially ergodic,
namely, there exist constants β ∈ (0,1) and C > 0 such
that

‖PYt |Y0=y0
− π‖TV 6 C(y0 + 1)βt , t , y0 > 0,

where ‖µ‖TV denotes the total-variation norm of a signed
measure µ on R+ defined by ‖µ‖TV := supA∈B(R+) |µ(A)|,
and PYt |Y0=y0

is the conditional distribution of Yt given
Y0 = y0.

Moreover, for all Borel measurable functions f : R+ → R
with

∫∞
0 |f (y)|π(dy) <∞, we have

1
T

∫ T

0
f (Ys) ds a.s.−→

∫ ∞
0

f (y)π(dy) as T →∞.
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References for stationarity and ergodicity in the
subcritical case

For the existence of a unique stationary distribution,
see Pinsky (1972), Keller-Ressel and Steiner (2008), Li (2011)
and Keller-Ressel and Mijatović (2012).

For the exponential ergodicity,
see Jin, Rüdiger and Trabelsi (2016).
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Interpretation of b as a growth rate

In the subcritical case (b > 0):

E(Yt ) =

∫ ∞
0

y π(dy) + e−bt
(

E(Y0)−
∫ ∞

0
y π(dy)

)
, t > 0,

and so limt→∞ E(Yt ) =
∫∞

0 y π(dy), and b can be interpreted
as the rate at which E(Yt ) tends to

∫∞
0 y π(dy) as t →∞.

In the critical and supercriticial cases b also determines the
speed at which E(Yt ) converges to ∞ as t →∞.

So, in all cases b can be interpreted as the growth rate.

b is also called a speed of adjustment in the subcritical case.
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On the parameter σ

We do not estimate the parameter σ, since it is a measurable
function (statistic) of (Yt )t∈[0,T ] for any T > 0, following from

1
1
n
∑bnTc

i=1 Y i−1
n

[ bnTc∑
i=1

(
Y i

n
− Y i−1

n

)2 −
∑

u∈[0,T ]

(∆Yu)2

]
P−→ 〈Y cont〉T∫ T

0 Yu du
= σ2

as n→∞, where
∆Yu := Yu − Yu−, u > 0, and ∆Y0 := 0,
Y cont

t = σ
∫ t

0

√
Yu dWu, t > 0, denotes the continuous

martingale part of Y ,
the convergence holds almost surely as well along a
suitable subsequence.

From now on, we suppose P(Y0 = y0) = 1, where y0 > 0 is
known (deterministic initial value).
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Joint Laplace transform of Yt and
∫ t

0 Ys ds
Theorem. Let a > 0, b ∈ R, σ > 0, and let m be a Lévy
measure on (0,∞) satisfying (A1). Let (Yt )t>0 be the unique
strong solution satisfying P(Y0 = y0) = 1 with some y0 > 0.
Then for all u, v 6 0,

E
[
exp

{
uYt + v

∫ t

0
Ys ds

}]
= exp

{
ψu,v (t)y0 +

∫ t

0

(
aψu,v (s) +

∫ ∞
0

(
ezψu,v (s) − 1

)
m(dz)

)
ds
}

for t > 0, where ψu,v : [0,∞)→ (−∞,0] takes the form

ψu,v (t) =


uγv cosh( γv t

2 )+(−ub+2v) sinh( γv t
2 )

γv cosh( γv t
2 )+(−σ2u+b) sinh( γv t

2 )
if v < 0 or b 6= 0,

u
1−σ2u

2 t
if v = 0 and b = 0,

where γv :=
√

b2 − 2σ2v .

Note that this Laplace transform is an exponentially affine
function of the initial value (y0,0).
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Remark.
(i) We have

∫ t
0 ψu,v (s) ds takes the form

b
σ2 t − 2

σ2 log
(

cosh
(
γv t
2

)
+ −σ

2u+b
γv

sinh
(
γv t
2

))
if v < 0 or b 6= 0,

− 2
σ2 log

(
1− σ2u

2 t
)

if v = 0 and b = 0.

(ii) For affine process, Keller-Ressel (2008), and for CBI
processes, Jiao, Ma and Scotti (2016+), derived the joint
Laplace transform of the process and its integrated process
containing the (not necessarily explicit) solution of a Riccati
type DE.

(iii) Our proof is based on the fact that (Yt ,
∫ t

0 Ys ds), t > 0, is
a 2-dimensional CBI process yielding that

E
[

exp
{

uYt + v
∫ t

0
Ys ds

}]
= exp

{
ψu,v (t)y0+

∫ t

0

(
aψu,v (s)+

∫ ∞
0

(
ezψu,v (s)−1

)
m(dz)

)
ds
}

for t > 0, u, v 6 0, where ψu,v : [0,∞)→ (−∞,0] is the
unique locally bounded solution to the Riccati DE

ψ′u,v (t) =
σ2

2
ψu,v (t)2 − bψu,v (t) + v , t > 0, ψu,v (0) = u.

19



Corollary.

(i) With v = 0, we have the Laplace transform E
(
euYt

)
.

For all u 6 0, the function ψu,0 : [0,∞)→ (−∞,0] is

ψu,0(t) =


2ube−bt

σ2u(e−bt−1)+2b if b 6= 0,
u

1−σ2u
2 t

if b = 0, t > 0.

(ii) With u = 0, we have the Laplace trans. E[exp{v
∫ t

0 Ys ds}].
For all v 6 0, the function ψ0,v : [0,∞)→ (−∞,0] is

ψ0,v (t) =


2v sinh( γv t

2 )
γv cosh( γv t

2 )+b sinh( γv t
2 )

if v < 0 or b 6= 0,

0 if v = 0 and b = 0,
t > 0.
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Existence and uniqueness of MLE, I
Recall that

dYt = (a− bYt ) dt + σ
√

Yt dWt + dJt , t > 0,

with known a > 0, σ > 0, Lévy measure m satisfying (A1)
and deterministic initial value Y0 = y0 > 0.

We consider b ∈ R as an unkown parameter.

Let Pb denote the probability measure induced by (Yt )t>0 on
the measurable space (D(R+,R),D(R+,R)) endowed with the
natural filtration (Dt (R+,R))t∈R+ , where
D(R+,R) is the space of R-valued càdlàg functions on R+,
Dt (R+,R) is roughly speaking the σ-algebra generated by the
past up to time t .

For all T > 0, let Pb,T := Pb|DT (R+,R).
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Existence and uniqueness of MLE, II

Proposition. Let b, b̃ ∈ R. Then, for all T > 0, the probability
measures Pb,T and Pb̃,T are absolutely continuous with
respect to each other, and, under P,

log
(

dPb,T

dPb̃,T
(Ỹ )

)
= −b − b̃

σ2 (ỸT − y0 − aT − JT )− b2 − b̃2

2σ2

∫ T

0
Ỹs ds,

where Ỹ is the process corresponding to the parameter b̃.

A proof is based on a careful application of results of Jacod
and Mémin (1976) and Jacod and Shiryaev (2003), which
provide a formula for the loglikelihood function in question in
terms of the semimartingale characteristics and the continuous
martingale part of Y . Further, in our case, one can use the
explicit form of the continuous martingale part in question:
σ
∫ t

0

√
Ys dWs, t > 0.
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Existence and uniqueness of MLE, III

By an MLE b̂T of b based on the observations (Yt )t∈[0,T ],
we mean

b̂T := arg max
b∈R

(
−b − b̃

σ2 (YT − y0 − aT − JT )− b2 − b̃2

2σ2

∫ T

0
Ys ds

)
,

which will turn out to be not dependent on b̃ (i.e., the fixed
reference measure Pb̃,T does not play a role).

We can find the global maximum point above explicitly, since an
explicit formula is available for the loglikelihood function and it is
a quadratic expression of b.
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Existence and uniqueness of MLE, IV
Proposition. Let a > 0, b ∈ R, σ > 0, y0 > 0, and let m be
a Lévy measure on (0,∞) satisfying (A1). If a > 0 or y0 > 0,
then for each T > 0, there exists a unique MLE b̂T of b a.s.
having the form

b̂T = −YT − y0 − aT − JT∫ T
0 Ys ds

,

provided that
∫ T

0 Ys ds > 0 (which holds a.s.).

Remark. (i) For t ∈ [0,T ], Jt is a measurable function of
(Yu)u∈[0,T ]:

Jt =
∑

s∈[0,t]

∆Js =
∑

s∈[0,t]

∆Ys, t > 0.

(ii) For the calculation of the MLE above, one does not need to
know σ and m.
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Difference of the MLE and the true parameter

Using our SDE, we have

b̂T − b = −
YT − y0 − aT − JT + b

∫ T
0 Ys ds∫ T

0 Ys ds

= −σ
∫ T

0

√
Ys dWs∫ T

0 Ys ds
= −σ2 Y cont

t
〈Y cont〉t

,

provided that
∫ T

0 Ys ds > 0 (which holds a.s.).

Mathematical task: using the explicit form of b̂T and b̂T − b,
let us describe the asymptotics of b̂T as T →∞.
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Asymptotics of MLE: subcritical case (b > 0)
Theorem. Let a > 0, b > 0, σ > 0, m be a Lévy measure on
(0,∞) satisfying (A1), and P(Y0 = y0) = 1 with some y0 > 0.
Then the MLE b̂T of b is asymptotically normal, i.e.,

√
T (b̂T − b)

L−→ N

(
0,

σ2b
a +

∫∞
0 z m(dz)

)
as T →∞.

Especially, b̂T is weakly consistent, i.e., b̂T
P−→ b as T →∞.

With a random scaling,

1
σ

(∫ T

0
Ys ds

)1/2

(b̂T − b)
L−→ N (0,1) as T →∞.

Under the additional moment condition
∫ 1

0 z log
(1

z

)
m(dz) <∞,

b̂T is strongly consistent, i.e., b̂T
a.s.−→ b as T →∞.
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A proof is based on
the decomposition

√
T (b̂T − b) = −σ

1√
T

∫ T
0

√
Ys dWs

1
T

∫ T
0 Ys ds

, T > 0.

by the explicit form of the Laplace transform of
∫ T

0 Ys ds,

1
T

∫ T

0
Ys ds P−→ 1

b

(
a+

∫ ∞
0

z m(dz)

)
=

∫ ∞
0

y π(dy) as T →∞,

a limit theorem for continuous local martingales due to van
Zanten (2000), presented below.

under the moment assumption
∫ 1

0 z log
(1

z

)
m(dz) <∞,

we have 1
T

∫ t
0 Ys ds a.s.−→

∫∞
0 y π(dy) as T →∞, yielding∫ T

0 Ys ds a.s.−→∞ as T →∞, and then one can use a
SLLN for continuous local martingales.
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A limit theorem for continuous local martingales

Theorem (van Zanten (2000)). Let
(
Ω,F , (Ft )t>0,P

)
be a

filtered probability space satisfying the usual conditions. Let
(M t )t>0 be a d-dimensional square-integrable continuous local
martingale w.r.t the filtration (Ft )t>0 such that P(M0 = 0) = 1.
Suppose that there exists a function Q : R+ → Rd×d such that

Q(t) is an invertible (non-random) matrix for all t > 0,
limt→∞ ‖Q(t)‖ = 0,

Q(t)〈M〉t Q(t)> P−→ ηη> as t →∞, where η is a d × d
(possibly) random matrix.

Then
Q(t)M t

L−→ ηZ as t →∞,

where Z is a d-dimensional standard normally distributed
random vector independent of η.

That is, Q(t)M t has a mixed normal limit distribution as t →∞.
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Asymptotics of MLE: critical case (b = 0)
Theorem. Let a > 0, b = 0, σ > 0, m be a Lévy measure on
(0,∞) satisfying (A1), and P(Y0 = y0) = 1 with some y0 > 0.
Suppose that a > 0 or a = 0, y0 > 0,

∫∞
0 z m(dz) > 0. Then

T (b̂T − b) = T b̂T
L−→

a +
∫∞

0 z m(dz)− Y1∫ 1
0 Ys ds

as T →∞,

where (Yt )t>0 is the critical (diffusion type) CIR process

dYt =

(
a +

∫ ∞
0

z m(dz)

)
dt + σ

√
Yt dWt , t > 0, with Y0 = 0,

where (Wt )t>0 is a standard Wiener process.

As a consequence, b̂T is weakly consistent.

With a random scaling,

1
σ

(∫ T

0
Ys ds

)1/2

(b̂T−b)
L−→

a +
∫∞

0 z m(dz)− Y1

σ
(∫ 1

0 Ys ds
)1/2 as T →∞.
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A proof is based on
the decomposition

T b̂T = −
YT
T −

y0
T − a− JT

T
1

T 2

∫ T
0 Ys ds

, T > 0.

by SLLN for Lévy processes, JT
T

a.s.−→ E(J1) =
∫∞

0 z m(dz)
as T →∞.

(
1
T

YT ,
1

T 2

∫ T

0
Ys ds

)
L−→

(
Y1,

∫ 1

0
Ys ds

)
as T →∞,

where the Laplace transform of the limit law takes the form

E
(
euY1+v

∫ 1
0 Ys ds) =


(

cosh
( γv

2

)
− σ2u

γv
sinh

( γv
2

))− 2
σ2 (a+

∫∞
0 z m(dz))

if u 6 0, v < 0,(
1− σ2u

2

)− 2
σ2 (a+

∫∞
0 z m(dz))

if u 6 0, v = 0,

where γv =
√
−2σ2v , v 6 0.
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Asymptotics of MLE: supercritical case (b < 0)
Theorem. Let a > 0, b < 0, σ > 0, m be a Lévy measure on
(0,∞) satisfying (A1), and P(Y0 = y0) = 1 with some y0 > 0.
Then b̂T is strongly consistent, and asymptotically mixed
normal, namely

e−bT/2(b̂T − b)
L−→ σZ

(
−V

b

)−1/2

as T →∞,

where V is a positive r. v. having Laplace transform

E(euV ) = exp
{

uy0

1 + σ2u
2b

}(
1 +

σ2u
2b

)− 2a
σ2

exp
{∫ ∞

0

(∫ ∞
0

(
exp
{

zueby

1 + σ2u
2b eby

}
− 1
)

m(dz)
)

dy
}

for all u 6 0, and Z is a standard normally distributed r. v.,
independent of V .

With a random scaling, we have

1
σ

(∫ T

0
Ys ds

)1/2

(b̂T − b)
L−→ N (0,1) as T →∞.
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A stochastic representation of V

V L
= Ṽ +

˜̃V,
where

Ṽ and ˜̃V are independent random variables,
ebt Ỹt

a.s.−→ Ṽ as t →∞, where (Ỹt )t>0 is the
(diffusion-type) supercritical CIR process

dỸt = (a−bỸt ) dt+σ
√
Ỹt dW̃t , t > 0, with Ỹ0 = y0,

where (W̃t )t>0 is a standard Wiener process,

ebt ˜̃Y t
a.s.−→ ˜̃V as t →∞, where (

˜̃Y t )t>0 is the jump-type
supercritical CIR process

d ˜̃Y t = −b ˜̃Y t dt+σ
√˜̃Y t d˜̃W t +dJt , t > 0, with ˜̃Y0 = 0,

where (
˜̃W t )t>0 is a standard Wiener process indep. of W̃.

Ṽ L= Z− 1
b
, where dZt =a dt + σ

√
Zt dWt , t > 0 with Z0 =y0.
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A proof is based on
the decomposition

e−bT/2(b̂T − b) = −σ
ebT/2 ∫ T

0

√
Ys dWs

ebT
∫ T

0 Ys ds
, T > 0.

there exists a non-negative random variable V such that

ebT YT
a.s.−→V and ebT

∫ T

0
Yu du a.s.−→−V

b
as T →∞,

following from submartingale convergence theorem applied
to (ebT YT )t>0, and from the integral Toeplitz lemma.
positivity of V following from the absolute continuity of Ṽ
due to Ṽ L= Z− 1

b
.

a limit theorem for continuous local martingales due to van
Zanten (2000).
SLLN for Lévy processes: JT

T
a.s.−→ E(J1) =

∫∞
0 z m(dz) as

T →∞ (used for strong consistency).
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Remarks on the limit theorems

(i) In the subcritical case, the limit distribution of
√

T (b̂T − b),
and in the critical case, the limit distribution of T (b̂T − b),
does not depend on the intial value y0.

But, in the supercritical case, the limit law of e−bT/2(b̂T − b)
does depend on the initial value y0.

(ii) Unified theory: there is a common (random) normalization
for the MLE b̂T to have a non-trivial limit in all cases.
Namely, for all b ∈ R,

1
σ

(∫ T

0
Ys ds

)1/2

(b̂T−b) converges in distribution as T →∞,

and the limit distribution is standard normal for the non-critical
cases, while it is non-normal for the critical case.
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Possible future research questions for this model

For the jump-type CIR process

dYt = (a− bYt ) dt + σ
√

Yt dWt + dJt , t > 0,

one could investigate

the MLE of a supposing that b is known based on
continuous time observations. For this, e.g., we should find
the limit behavior of

∫ t
0

1
Ys

ds as t →∞.

the MLE of (a,b) based on continuous time observations,

statistical tests for deciding on the null hypothesis
H0 : b = b0 against H1 : b 6= b0, where b0 ∈ R is given.
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This talk is based on:

BARCZY, M., BEN ALAYA, M., KEBAIER, A., PAP, G.,
Asymptotic properties of maximum likelihood estimator
for the growth rate for a jump-type CIR process based on
continuous time observations. Submitted.
Arxiv: 1609.05865 (2016).

Thank you for your attention!
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CIR process and the jump-type CIR processes considered are
CBI processes.

Heston process is a two-factor affine process.

Affine processes are common generalizations of
CBI processes

and
Ornstein-Uhlenbeck-type (OU-type) processes.
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Two-factor affine processes

Definition. A time-homogeneous Markov process (Zt )t>0 with
state space [0,∞)× R is called a two-factor affine process
if its (conditional) characteristic function takes the form

E(ei〈u,Zt 〉 | Z0 = z) = exp{〈z,G(t ,u)〉+ H(t ,u)}

for z ∈ [0,∞)× R, u ∈ R2 and t > 0, where G(t ,u) ∈ C2

and H(t ,u) ∈ C. (Here 〈α, β〉 := α1β1 + α2β2 for α, β ∈ C2.)

For any t > 0, the (cond.) characteristic function of Zt
depends exponentially affine on the initial value z.

Duffie, Filipović and Schachermayer (2003): there exist
(two-factor) affine processes for so-called admissible set of
parameters.
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Two-factor affine diffusion processes
Dawson and Li (2006) derived a jump-type SDE for (some)
two-factor (not necessarily diffusion-type) affine processes.

We specialize this result to the diffusion case.

Theorem. (Dawson and Li (2006)) Let a > 0, σ1, σ2 > 0,
σ3 > 0, b, α, β, γ ∈ R, % ∈ [−1,1], and let us consider the
SDE:

{
dYt = (a− bYt ) dt + σ1

√
Yt dWt ,

dXt = (α− βYt − γXt ) dt + σ2
√

Yt d(%Wt +
√

1− %2Bt ) + σ3 dQt ,

where t > 0, and (Wt )t>0, (Bt )t>0 and (Qt )t>0 are indepen-
dent stand. Wiener processes. Then it has a pathwise unique
strong solution being a two-factor affine diffusion process.
Conversely, every two-factor affine diffusion process is a strong
solution of such an SDE.
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Diffusion-type Heston model (1993)

Let a > 0, b, α, β ∈ R, σ1 > 0, σ2 > 0, % ∈ (−1,1), and let
us consider the SDE:

{
dYt = (a− bYt ) dt + σ1

√
Yt dWt ,

dXt = (α− βYt ) dt + σ2
√

Yt
(
%dWt +

√
1− %2 dBt

)
,

t > 0,

where (Wt )t>0 and (Bt )t>0 are independent standard Wiener
processes.

Y is a CBI process: Cox–Ingersoll–Ross (CIR) process,
square root process, Feller process.
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