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X. CHEN Institut Camille Jordan, Université Lyon 1, E-mail: xchen@math.univ-lyon1.fr
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Abstract: Given a super-critical branching random walk on R started from the origin, let Zn(·) be the counting
measure which counts the number of individuals at the n-th generation located in a given set. Under some mild

conditions, it is known in [1] that for any interval A ⊂ R, Zn(
√
nA)

Zn(R) converges a.s. to ν(A), where ν is the standard

Gaussian measure. In this work, we investigate the convergence rates of

P
(
Zn(
√
nA)

Zn(R)
− ν(A) > ∆

)
,

for ∆ ∈ (0, 1− ν(A)), in Schröder case.
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