ASYMPTOTIC PROPERTIES OF MAXIMUM LIKELIHOOD ESTIMATOR FOR THE GROWTH RATE FOR A JUMP-TYPE CIR PROCESS

Mátyás BARCZY University of Debrecen, Hungary, E-mail: barczy.matyas@inf.unideb.hu Mohamed Ben Alaya Université Paris 13, France Ahmed Kebaier Université Paris 13, France Gyula Pap University of Szeged, Hungary

KEY WORDS: jump-type Cox-Ingersoll-Ross process, subordinator, maximum likelihood estimator

MATHEMATICAL SUBJECT CLASSIFICATION: 60H10, 91G70, 60F05, 62F12

Abstract: We consider a jump-type Cox–Ingersoll–Ross (CIR) process

$$dY_t = (a - bY_t) dt + \sigma \sqrt{Y_t} dW_t + dJ_t, \qquad t \in [0, \infty).$$

with a deterministic initial value $y_0 \in [0,\infty)$, where $a \in [0,\infty)$, $b \in (-\infty,\infty)$, $\sigma \in (0,\infty)$, $(W_t)_{t \in [0,\infty)}$ is a 1-dimensional standard Wiener process, and $(J_t)_{t \in [0,\infty)}$ is an independent subordinator (an increasing Lévy process) with zero drift and with Lévy measure m concentrating on $(0,\infty)$ such that $\int_0^\infty z m(dz) \in [0,\infty)$, that is,

$$\mathbf{E}\left(\mathbf{e}^{uJ_t}\right) = \exp\left\{t\int_0^\infty (\mathbf{e}^{uz} - 1)\,m(\mathrm{d}z)\right\}, \qquad t \in [0,\infty), \qquad u \in (-\infty,0].$$

We study asymptotic properties of the maximum likelihood estimator (MLE) for the growth rate b of the model based on continuous time observations $(Y_t)_{t\in[0,T]}$ as $T \to \infty$. We distinguish three cases: subcritical, critical and supercritical cases according to b > 0, b = 0 and b < 0. In the subcritical case we prove weak consistency and asymptotic normality, and, under the additional moment assumption $\int_0^1 z \log(\frac{1}{z})m(dz) < \infty$, strong consistency as well. In the supercritical case, we prove strong consistency and mixed normal (but non-normal) asymptotic behavior, while in the critical case, weak consistency and non-standard asymptotic behavior are described. We specialize our results to so-called basic affine jump-diffusions as well. Concerning the asymptotic behavior of the MLE in the supercritical case, we derive a stochastic representation of the limiting mixed normal distribution, where the almost sure limit of an appropriately scaled jump-type supercritical CIR process comes into play. This is a new phenomena, compared to the critical case, where a diffusion-type critical CIR process plays a role.

The full presentation of our results can be found in [1]. A similar analysis on the asymptotic behaviour of the MLE of the growth rate for a so-called α -stable CIR process will be presented by Gyula Pap.

References

 M. Barczy, M. Ben Alaya, A. Kebaier, G. Pap (2016). Asymptotic properties of maximum likelihood estimator for the growth rate for a jump-type CIR process based on continuous time observations. ArXiv 1609.05865, 35 pages.