The extinction probability of a continuous state branching process with population dependent branching rate

Xiaowen Zhou

Concordia University and Changsha University of Science and Technology

Joint work with Xu Yang

Workshop on Markov Processes and related Fields Jiangsu Normal University, June 13-17, 2016

イロン イヨン イヨン イヨン

Outline of the Talk

1 Introduction

- Continuous state branching process
- Continuous state branching process with nonlinear branching
- Survive or die out?

2 The extinction probability of nonlinear branching process

- The results
- Outlines of the proofs

▲□ ▶ ▲ 国 ▶ ▲ 国 ▶

Introduction The extinction probability of nonlinear branching process Continuous state branching process Continuous state branching process with nonlinear branching Survive or die out?

・ロト ・回ト ・ヨト ・ヨト

Continuous state branching process

- A continuous state branching process arises as a scaling limit of Galton-Watson processes.
- It is a nonnegative Markov process X satisfying the branching property, i.e. for any λ, x, y > 0

$$\mathbb{E}_{\mathsf{x}+\mathsf{y}}e^{-\theta\mathsf{X}_t} = \mathbb{E}_{\mathsf{x}}e^{-\theta\mathsf{X}_t}\mathbb{E}_{\mathsf{y}}e^{-\theta\mathsf{X}_t}$$

Continuous state branching process Continuous state branching process with nonlinear branching Survive or die out?

・ロト ・回ト ・ヨト ・ヨト

• Its Laplace transform is determined by

$$\mathbb{E}_{x}e^{-\theta X_{t}}=e^{-xu_{t}(\theta)}$$

where function $u_t(\theta)$ satisfies the differential equation

$$\frac{\partial u_t(\theta)}{\partial t} + \psi(u_t(\theta)) = 0$$

with $u_0(heta) = heta$ and

$$\psi(\lambda) = -q - a\lambda + \frac{1}{2}\sigma^2\lambda^2 + \int_0^\infty (e^{-\lambda x} - 1 + \lambda x)\pi(\mathrm{d}x)$$

for $q, \sigma \ge 0, a \in \mathbb{R}$ and for σ -finite measure π on $(0, \infty)$ satisfying $\int_0^\infty (z \wedge z^2) \pi(\mathrm{d}z) < \infty$. X is critical if q = a = 0. Continuous state branching process Continuous state branching process with nonlinear branching Survive or die out?

イロト イヨト イヨト イヨト

Continuous state branching process as solution of SDE

• By Dawson and Li (2006, 2012), a critical continuous state branching process solves the following SDE.

$$X_t = \sigma \int_0^t \sqrt{X_{s-}} \mathrm{d}B_s + \int_0^t \int_0^\infty \int_0^{X_{s-}} x \tilde{N}(\mathrm{d}s, \mathrm{d}x, \mathrm{d}u),$$

where $\tilde{N}(ds, dx, du)$ is a compensated Poisson random measure on $[0, \infty) \times (0, \infty) \times [0, \infty)$ with compensator $ds\pi(dx)du$ with $\int_0^\infty x \wedge x^2\pi(dx) < \infty$ and *B* is an independent Brownian motion.

・ロン ・回 と ・ ヨ と ・ ヨ と

Branching process with population dependent branching rate

- We want to consider a more sophisticated branching process whose branching rate depends on the population size.
- For simplicity we only consider the critical branching process.
- For Feller branching processes, an example of such a process is a solution to the following sde

$$\mathrm{d}X_t = \sqrt{\gamma(X_t)X_t}\mathrm{d}B_t,$$

where γ is a nonnegative function on $[0,\infty)$.

- To introduce the population dependent branching rate, we can use a representation of Dawson and Li.
- An critical continuous state branching process with population dependent branching rate is the solution to the following sde.

 $X_{t} = \sigma \int_{0}^{t} \sqrt{\gamma_{1}(X_{s-})} \mathrm{d}B_{s} + \int_{0}^{t} \int_{0}^{\infty} \int_{0}^{\gamma_{2}(X_{s-})} x \tilde{N}(\mathrm{d}s, \mathrm{d}x, \mathrm{d}u),$ (1)

where γ_1, γ_2 are nonnegative functions.

۲

• Such a process is also called a nonlinear branching process.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

If X is a weak solution to (1) with α -stable random measure \tilde{N} , then on an enlarged probability space, X is a weak solution to

$$X_t = \sigma \int_0^t \sqrt{\gamma_1(X_{s-})} \mathrm{d}B_s + \int_0^t \gamma_2(X_{s-})^{1/\alpha} \int_0^\infty x \tilde{N}(\mathrm{d}s, \mathrm{d}x).$$
(2)

By Li and Mytnik (2012), give that $\gamma_1(x) = x^{r_1}$ and $\gamma_2(x) = x^{r_2}$ for small $x \ge 0$ and $\gamma_i(x)$, i = 1, 2 satisfy regularity conditions for other x > 0, equation (2) has a pathwise unique nonnegative strong solution for $r_1 \ge 1$ and $r_2 \ge \alpha - 1$.

・ロト ・回ト ・ヨト ・ヨト

・ロン ・回と ・ヨン ・ヨン

- It is well known that a critical continuous state branching process dies out within a finite time; i.e. with probability one, X_t = 0 for t large enough.
- The branching causes the population to die out.
- For a nonlinear branching process whose branching rate goes to 0 as the population size goes to 0, a natural question is whether the process still dies out within a finite time.

소리가 소문가 소문가 소문가

A nonlinear branching process that survives forever

- We consider a nonlinear Feller branching process with branching rate γ(x) = x^r for r ≥ 0.
- The corresponding sde is

$$\mathrm{d}X_t = \sqrt{X_t^r X_t} \mathrm{d}B_t = X_t^{(r+1)/2} \mathrm{d}B_t. \tag{3}$$

- It is well known that for r = 0, $X_t = 0$ for t large enough.
- On the other hand, sde (3) is solvable if r = 1.

$$X_t = X_0 e^{B_t - \frac{1}{2}t}.$$

Clearly, $X_t
ightarrow 0$ as $t
ightarrow \infty$, but $X_t > 0$ for all t.

• What happens for 0 < r < 1?

The results Outlines of the proofs

The main results

Recall that

$$X_t = \sigma \int_0^t \sqrt{\gamma_1(X_{s-})} \mathrm{d}B_s + \int_0^t \int_0^\infty \int_0^{\gamma_2(X_{s-})} x \tilde{N}(\mathrm{d}s, \mathrm{d}x, \mathrm{d}u).$$
(4)

We assume that the above sde allows a unique weak solution. Let

$$\tau_a^- = \inf\{t : X_t = 0\}.$$

◆□ > ◆□ > ◆臣 > ◆臣 > ○

3

We first find a mild condition under which the process goes to 0.

Theorem

Given any solution X of SDE (4), if there exists $\delta > 0$ such that

$$\inf_{y \ge x} \gamma_1(y) > 0 \quad \text{for all } x \in (0, \delta) \text{ when } \sigma > 0 \tag{5}$$

or

$$\inf_{y \ge x} \gamma_2(y) > 0 \text{ for all } x \in (0, \delta) \text{ when } \pi \neq 0, \tag{6}$$

then $\tau_a^- < \infty$ \mathbb{P}^x -a.s. for all x, a with x > a > 0. Further, \mathbb{P}^x -a.s. $X_t \to 0$ as $t \to \infty$.

Given $X_t \to 0$, we need further conditions on $\gamma_1(x)$ and $\gamma_1(x)$ for small x to distinguish between survival and extinction.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

The next theorem says if at least one of $\gamma_1(x)$ and $\gamma_2(x)$ do not decrease too fast near 0, then the process dies out with probability one.

Theorem

Let X be the unique weak solution to sde (4). Suppose there exist $\delta > 0$, $0 < \alpha < 2$, $r_1 < 2$, $r_2 < \alpha$ and $b_i > 0$, i = 1, 2, 3 such that either

$$\inf_{x\in(0,\delta)}\gamma_1(x)x^{-r_1}\geq b_1 \ \ \text{for} \ \ \sigma>0,$$

or

$$\inf_{x \in (0,\delta)} x^{\alpha-2} \int_0^x y^2 \pi(\mathrm{d}y) \ge b_3 \text{ and } \inf_{x \in (0,\delta)} \gamma_2(x) x^{-r_2} \ge b_2 \text{ for } \pi \neq 0,$$

then $\mathbb{P}_x\{\tau_0^- < \infty\} = 1$ for all $x > 0.$

・ 同 ト ・ ヨ ト ・ ヨ ト

The next result says that if both $\gamma_1(x)$ and $\gamma_1(x)$ decreases fast enough, then the process survives with probability one.

Theorem

Suppose that there exist constants $\delta > 0, 0 < \alpha < 2, r_2 > \alpha$, and $b_i > 0, i = 1, 2, 3$ such that

$$\sup_{x\in(0,\delta)}\gamma_1(x)x^{-2}\leq b_1 \ \text{if} \ \sigma>0$$

and

$$\sup_{x \in (0,\delta)} x^{\alpha-2} \int_0^x y^2 \pi(\mathrm{d} y) \le b_3, \quad \sup_{x \in (0,\delta)} \gamma_2(x) x^{-r_2} \le b_2 \quad \text{if } \pi \ne 0,$$

then $\mathbb{P}_x\{\tau_0^- = \infty\} = 1$ for all $x > 0$.

To handle the critical case of $r_2 = \alpha$ for $\alpha \in (1, 2)$, we adopt a different approach under additional assumption on π .

Theorem

Suppose there are constants $C, \delta > 0$ and $\alpha \in (1, 2)$ so that $\pi(dz)$ is absolutely continuous with respect to Lebesgue measure when restricted to interval $(0, \delta)$ and

$$\pi(\mathrm{d} z) \leq C z^{-1-lpha} \mathrm{d} z, \ z \in (0, \delta).$$

Further,

$$\sup_{x\in(0,\delta)}\gamma_1(x)x^{-2}<\infty,\quad \sup_{x\in(0,\delta)}\gamma_2(x)x^{-\alpha}<\infty.$$

Then $\mathbb{P}\{\tau_0^- = \infty\} = 1$.

イロト イポト イヨト イヨト

Remark

For $\pi = 0$ and $\gamma_1(x) = x^{r_1}$, then combining the above Theorems, for any x > 0 we have $\mathbb{P}_x\{\tau_0^- < \infty\} = 1$ for $0 \le r_1 < 2$ and $\mathbb{P}_x\{\tau_0^- < \infty\} = 0$ but $X_t \rightarrow 0$ \mathbb{P}_x -a.s. for $r_1 \ge 2$.

Remark

If $\sigma = 0$ and $\gamma_2(x) = x^{r_2}, \pi(dx) = x^{1+\alpha}dx$ with $1 < \alpha < 2$ in sde (4), combining the Theorems we have for any x > 0, $\mathbb{P}_x\{\tau_0^- < \infty\} = 1$ for $0 \le r_2 < \alpha$ and $\mathbb{P}_x\{\tau_0^- < \infty\} = 0$ but $X_t \to 0$ \mathbb{P}_x -a.s. for $r_2 \ge \alpha$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 - のへで

Let

$$\tau_a^- := \inf\{t : X_t = a\}$$

and

$$\tau_b^+ := \inf\{t : X_t > b\}$$

with the convention $\inf \emptyset = \infty$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Proof of survival:

Method 1 For $0 < x < \delta$, we can apply Ito's formula to have

$$e^{-\lambda X_{t \wedge \tau_{\delta}^{+} \wedge \tau_{0}^{-}}}$$

$$= e^{-\lambda x} + \frac{\sigma^{2}}{2} \int_{0}^{t \wedge \tau_{\delta}^{+} \wedge \tau_{0}^{-}} \lambda^{2} e^{-\lambda X_{s}} \gamma_{1}(X_{s}) \mathrm{d}s$$

$$+ \int_{0}^{t \wedge \tau_{\delta}^{+} \wedge \tau_{0}^{-}} e^{-\lambda X_{s-}} \gamma_{2}(X_{s-}) \mathrm{d}s \int_{0}^{\delta - X_{s-}} \left[e^{-\lambda z} - 1 + \lambda z \right] \pi(\mathrm{d}z) + \mathrm{mart.}$$

Since

$$\int_0^{\delta} \left[e^{-\lambda z} - 1 + \lambda z \right] \pi(\mathrm{d}z) \le C \int_0^{\delta} \left[(\lambda z) \wedge (\lambda z)^2 \right] z^{-1-\alpha} \mathrm{d}z$$
$$= C \lambda^{\alpha} \int_0^{\lambda \delta} \left[z \wedge z^2 \right] z^{-1-\alpha} \mathrm{d}z = C(\alpha) \lambda^{\alpha},$$

The extinction probability of a continuous state branching proc

Then

$$\begin{split} & \mathbb{E}_{x} e^{-\lambda X_{t \wedge \tau_{\delta}^{+} \wedge \tau_{0}^{-}}} \\ &= e^{-\lambda x} + \mathbb{E}_{x} \frac{\sigma^{2}}{2} \int_{0}^{t \wedge \tau_{\delta}^{+} \wedge \tau_{0}^{-}} \lambda^{2} e^{-\lambda X_{s}} \gamma_{1}(X_{s}) \mathrm{d}s \\ &+ \mathbb{E}_{x} \int_{0}^{t \wedge \tau_{\delta}^{+} \wedge \tau_{0}^{-}} e^{-\lambda X_{s-}} \gamma_{2}(X_{s-}) \mathrm{d}s \int_{0}^{\delta - X_{s-}} \left[e^{-\lambda z} - 1 + \lambda z \right] \pi(\mathrm{d}z) \\ &\leq e^{-\lambda x} + \frac{\sigma^{2}}{2} C \mathbb{E}_{x} \int_{0}^{t \wedge \tau_{\delta}^{+} \wedge \tau_{0}^{-}} (\lambda X_{s})^{2} e^{-\lambda X_{s}} \mathrm{d}s \\ &+ C \mathbb{E}_{x} \int_{0}^{t \wedge \tau_{\delta}^{+} \wedge \tau_{0}^{-}} (\lambda X_{s})^{\alpha} e^{-\lambda X_{s}} \mathrm{d}s. \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

The results Outlines of the proofs

Letting $\lambda \rightarrow \infty$, we have

$$\mathbb{P}_{x}\{X_{t\wedge\tau_{\delta}^{+}\wedge\tau_{0}^{-}}=0\}=0.$$

Letting $t \rightarrow \infty$,

$$\mathbb{P}_x\{\tau_0^- < \tau_\delta^+\} = 0.$$

We can show that

$$\lim_{x \to 0+} \mathbb{P}_x\{\tau_{\delta}^+ = \infty\} = 1.$$

Then

$$\lim_{x\to 0+} \mathbb{P}_x\{\tau_0^- < \infty\} = 0.$$

Given any $x_0 > 0$, $\mathbb{P}_{x_0}\{\tau_0^- < \infty\} = 0$.

Method 2:

Alteratively, we can prove the survival using a martingale argument with martingale

$$\begin{aligned} &\frac{1}{X_t} \exp\left\{-\int_0^t \frac{\gamma(X_{s-})}{X_{s-}^2} \mathrm{d}s \\ &-\int_0^t \gamma_2(X_{s-}) X_{s-} \mathrm{d}s \int_0^\infty \left(\frac{1}{X_{s-}+x} - \frac{1}{X_{s-}} + \frac{x}{X_{s-}^2}\right) \pi(\mathrm{d}x)\right\} \end{aligned}$$

together with Borel-Cantelli arguments.

・ロン ・回 と ・ ヨン ・ ヨン

The results Outlines of the proofs

Proof of extinction:

We consider martingale

$$\exp\left\{-\lambda X_{t} - \frac{\lambda^{2}\sigma^{2}}{2}\int_{0}^{t}\gamma(X_{s-})\mathrm{d}s\right.\\\left. - \int_{0}^{t}\gamma_{2}(X_{s-})\mathrm{d}s\int_{0}^{\infty}\left[e^{-\lambda(X_{s-}+y)} - e^{-\lambda X_{s-}} + \lambda y e^{-\lambda X_{s-}}\right]\pi(\mathrm{d}y)\right\}$$

and use Borel-Cantelli arguments.

・ロン ・回 と ・ ヨ と ・ ヨ と

The results Outlines of the proofs

Thank you for your attention!

・ロン ・回 とくほど ・ ほとう

э