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Branching random walk

e |t starts with an initial particle located at the origin.

e At time 1, the particle dies, producing some new particles, po-
sitioned according to ©.

e At time 2, these particles die, each giving birth to new particles
positioned (with respect to the birth place) according to ©.

e The process goes on with the same mechanism. We assume

the particles produce new particles independently.

For each vertex x on the branching tree, We denote the position
by V(z). The family of random variables (V(x)) is referred as a
branching random walk (Biggins (2010)).



Throughout the paper, we assume (Biggins and Kyprianou
(2005)):

E(Z 1) > 1, (supercritical)
|z|=1

E( Z e V@) =1, B Z V(z)e V@) =0, (boundary case)
lz|=1 lz|=1

(1)

where |z| denotes the generation of z. Every branching random
walk satisfying certain integrability assumptions can be reduced to
this case by some renormalization, if © is not bounded from below.
(see Jaffuel (2012)).



Additive martingale

Wy, = Z eV(®  (additive martingale)
|z|=n

e V(z) = 0: (W,) degenerates to a supercritical GW process
(Zy). ¢, Zy — W with P(W = 0) < 1 (Seneta (1968),Heyde
(1970), Kesten and Stigum (1966)).

o V(x) # 0: (W,) converges almost surely to W. Under (1),
W =0, a.s. (Biggins (1977), Lyon (1997)).

It is natural to ask
At which rate W,, goes to 07



Related work:
e Galton-Watson processes: Seneta (1968), Heyde (1970).
e Branching random walk:

e General case: Biggins and Kyprianou (1996, 1997).

e Boundary case: Liu (2000), Biggins and Kyprianou (2005), Hu
and Shi (2009), Aidekon and Shi (2014) (under weaker integra-
bility assumption than Hu and Shi (2009)).

(finite 140 order moment for 3, _, 1 and exponential moment
condition for V(x) = certain 2-order moment condition)



Derivative martingale

D,, = Z V(z)e V@) (derivative martingale)
|z|=n
Related work: Barral (2000), Biggins (1991,1992) for non-
boundary cases, Kyprianou (1998), Biggins and Kyprianou (2004)

for the boundary case. Chen (2015) gave the necessary and sufficient

condition for the non-trival limit of (D,,).



Related results on derivative martingale

Suppose that

E| ) V@)e ™| <oo(e E(ST) < ) (2)
lz|=1

Theorem A (Biggins and Kyprianou (2004))
Assume (1) and (2) hold. Then there exists a nonnegative

random variable D, such that

D, = Dy, P—a.s.



Theorem B (Chen (2015))
Assume (1) and (2) hold. Then P(Dy > 0) > 0 if and only if

the following condition holds:
E[X log2 X + X log, X] < oo, (3)

where log, y := max{0,logy}, logi y = (log y)? for any y > 0,
and

X = Z e_V(x), X = Z V(x)-l-e_v(m)v (4)

|z|=1 |lz|=1

with V(z)4+ := max{V(x),0}.



When Dy is nontrivial, P(Dy > 0) equals to the non-
extinction probability of the branching tree. Define

P*(-) := P(- |non extinction)

Obviously W,, — 0, P*—a.s.
Theorem C (Aidekon and Shi (2014))
Assume (1), (2) and (3) hold. Under P*, we have

9 1/2
lim nl/QWn = (—) Dy in probability,

n—00 7'['0'2

where Do, > 0 is the random variable in Theorem A, and

o? == E( Z V(a;)Qe*V(m)) < 00.

|z|=1



In this paper, instead of

ZV2 ) < o0, E[XlongX—l—Xlog+ X] < o0,
|z[=1

we shall study W,, under (1) and (« € (1,2)):

(7’) E ( Z I{V(m)gfy}ei‘/(x)) = O(yia% Yy — +0o0, (5)

|z|=1

(ZZ> E ( Z I{V(J:)Zy}e_V(m)) ~ ny—oc’ Yy — 400, (6)
|z|=1

(iii) E(X(log, X)* + X (log, X)*7) < c. (7)

Under (5) and (6), the step of the one-dimensional random walk
(Sp) associated with (V' (x)) belongs to the domain of attraction of

a stable law.



(The many-to-one formula)

E[ ) g(V(z1),....V(zn)] =E[e™g(S1,...,5n)],

|z[=n

where (S,,) is a random walk, and S; belongs to the domain of
attraction of a stable law with characteristic function (spectrally

positive). see Biggins and Kyprianou (1997), Lyons (1997), Lyons
et al (1995).

Ga,—1(t) :==exp { — c[t|*(1 - z’; tan %)}, c>0.
(5) and (6)

& P(S1>y)~Cy*, P(S1<-y)=o0(y ), y— +o0



Main results — derivative martingale

Theorem 1 Assume (1), (5), (6). Then there exists a nonneg-

ative random variable D, such that
D, = Dy, P—a.s.

Moreover, if condition (7) holds, then P*(Dy, > 0) = 1.



Main results — additive martingale

Theorem 2 Assume (1), (5), (6) and (7). We have, under P*

lim naW, i

o = mDoo, n probablllty.

where Do, > 0 is given in Theorem 1, and 6 is a positive constant.
Theorem 3 Assume (1), (5), (6) and (7). We have

I i
lim, oo noW,, = 00 P* —a.s. (8)



Sketch of proofs — estimates for (S),)

In the proofs, we depend heavily on the probability estimations
for (.S,,). For example,

Z P.(S; <z, 8, >0) <c(14x)* (14+min(z, 2));
1>0

and some properties for (.S;,) conditioned to stay in [—x, 00):
R(x)

E(f(%)k&z—ﬂ) = W</O°° f(t)pa(t)dt + on(l)).

uniformly in = € [0,d,] with d, = o(n'/®). And E(M,) =
1"(1—7) (M (_)pa)



Sketch of proofs — truncating argument

It originated from Harris (1999), was formalized for BBM by
Kyprianou (2004), and later be used for BRW by Biggins and Kypri-
anou (2004) and then Aidekon and Shi (2014).

Define V() := miny¢(z ) V(y). We use the renewal function
R(u) of (S,) to introduce the truncated processes (8 > 0):

W= e yeg, (~ Wa)
|z|=n

Dﬁ = Z R(V(IIZ) + ﬂ)efv(z)l{z(x)zfﬂ}. (N QDn)
|z|=n

Note that lim, oo # =6 € (0,00) for S; € D(a, —1).



Sketch of proofs — change of probabilities

dP?
dP
]_‘

n

D
R(B)’

(change of probabilities)

We consider the random walk (V(z)) under P?. Now (V (x), |z| =
1) are distributed as another point process © under P?. And there
is a “spine” in the branching tree. For each generation n, there
is a wl which takes the branching P, see Biggins and Kyprianou
(2004).

Kanhane and Peyrieye (1976), Lyons et al (1995)



(1) Proof of Theorem 1:

prove Dﬁ — Dgo (truncated martingale convergence)
prove Dy, — Dxo.

prove P(DfO >0) > 0. ((Dg) is uniformly integrable)
prove P*(Do, > 0) = 1. (Dfo < ¢Ds, as.)



(2) Proof of Theorem 2: We first have

Eﬁc?/g) - F(1—11/a)ni’
8
EB<(ZZ})2> - (r(1—1ja))2ni‘

Therefore lim,, oo ne (Vg—g) =I(1- é), in probability

n

Finally, we manage to change the setting from P? to P.



(3) Proof of Theorem 3:

P {Elx: |z| € [n,an],V(x) € [1 logn,llogn+C]} > ¢p.
a «

1
himnﬁoo“g'li:% V(x) — alogn) = —o00, P*—a.s.

(For av =2, miny,—, V() ~ 3 logn, Hu and Shi (2009)).
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