Some Properties of NSFDEs

Chenggui Yuan

Swansea University

Outline

- Existence and Uniqueness
- Numerical Solutions
- Large Deviations
- Y. Ji, Q. Song, C. Yuan, Neutral stochastic differential delay equations with locally monotone coefficients, arXiv 2016
- J. Bao, Y. Ji, C. Yuan, Convergence of EM scheme for neutral stochastic differential delay equations, arXiv 2016
- J. Bao, C. Yuan, Large deviations for neutral functional SDEs with jumps, Stochastics 87 (2015) 48-70.

Existence and Uniqueness

Let $\mathscr{C}=C\left([-\tau, 0] ; \mathbb{R}^{n}\right)$ which is equipped with the uniform norm $\|\zeta\|_{\infty}:=$ $\sup _{-\tau \leq \theta \leq 0}|\zeta(\theta)|$ for $\zeta \in \mathscr{C}$. Let $D: \mathscr{C} \rightarrow \mathbb{R}^{n}$, and

$$
f: \mathscr{C} \times[0, T] \rightarrow \mathbb{R}^{n}, \quad g: \mathscr{C} \times[0, T] \rightarrow \mathbb{R}^{n \times m}
$$

all Borel measurable. Consider the n-dimensional NSFDE

$$
\begin{equation*}
\mathrm{d}\left[X(t)-D\left(X_{t}\right)\right]=f\left(X_{t}, t\right) \mathrm{d} t+g\left(X_{t}, t\right) \mathrm{d} W(t) \quad \text { on } 0 \leq t \leq T \tag{1}
\end{equation*}
$$

with initial data $X_{0}=\xi=\{\xi(\theta):-\tau \leq \theta \leq 0\} \in L_{\mathscr{F}_{0}}^{2}\left([-\tau, 0]: \mathbb{R}^{n}\right)$, is an \mathscr{F}_{0}-measurable \mathscr{C}-valued random variable such that $\mathbb{E}\|\xi\|^{2}<\infty$.

We have the following existence and uniqueness theorem.

Theorem

(Mao's book, Theorem 6.2.5) For any $T>0$ and any integer $n \geq 1$, that there exist positive constants $K_{T, n}$ and K such that
(i) for all $t \in[0, T]$ and $\varphi, \phi \in \mathscr{C}$ with $\|\varphi\| \vee\|\phi\| \leq n$,

$$
\begin{equation*}
|f(\varphi, t)-f(\phi, t)|^{2} \vee|g(\varphi, t)-g(\phi, t)|^{2} \leq K_{n, T}\|\varphi-\phi\|^{2} ; \tag{2}
\end{equation*}
$$

(ii) for all $(\varphi, t) \in \mathbb{R}^{n} \times[0, T]$

$$
\begin{equation*}
|f(\varphi, t)|^{2} \vee|g(\phi, t)|^{2} \leq K\left(1+\|\varphi\|^{2}\right) . \tag{3}
\end{equation*}
$$

Assume also there exists $\kappa \in(0,1)$ such that for all $\varphi, \phi \in \mathscr{C}$

$$
\begin{equation*}
|D(\varphi)-D(\phi)| \leq \kappa\|\varphi-\phi\| . \tag{4}
\end{equation*}
$$

Then there exists a unique solution $X(t)$ to equation (1).

A special class of NSFDEs is neutral stochastic differential delay equations, that is
$\mathrm{d}[X(t)-G(X(t-\tau))]=b(X(t), X(t-\delta(t)), t) \mathrm{d} t+\sigma(X(t), X(t-\delta(t)), t) \mathrm{d} W(t)$
on $t \in[0, T]$ with initial data ξ where
$G: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}, b: \mathbb{R}^{n} \times \mathbb{R}^{n} \times[0, T] \rightarrow \mathbb{R}^{n}, \sigma: \mathbb{R}^{n} \times \mathbb{R}^{n} \times \times[0, T] \rightarrow \mathbb{R}^{n} \otimes \mathbb{R}^{m}$.

Theorem

(Mao book Theorem 6.2.5) Assume that there exist positive constants $K_{T, n}$ and K such that
(i) for all $x, y, \bar{x}, \bar{y} \in \mathbb{R}^{n}$ with $|x| \vee|y| \vee|\bar{x}| \vee|\bar{y}| \leq n$ and $t \in[0, T]$

$$
\begin{equation*}
|b(x, y, t)-b(\bar{x}, \bar{y}, t)|^{2} \vee|\sigma(x, y, t)-\sigma(\bar{x}, \bar{y}, t)|^{2} \leq K_{T, n}\left(|x-\bar{x}|^{2}+|y-\bar{y}|^{2}\right) ; \tag{6}
\end{equation*}
$$

(iin) for all $(\varphi, t) \in \mathbb{R}^{n} \times[0, T]$

$$
\begin{equation*}
|b(x, y, t)|^{2} \vee|\sigma(x, y, t)|^{2} \leq K\left(1+|x|^{2}+|y|^{2}\right) . \tag{7}
\end{equation*}
$$

Assume also there exists $\kappa \in(0,1)$ such that for all $x, y \in \mathbb{R}^{n}$

$$
\begin{equation*}
|G(x)-G(y)| \leq \kappa|x-y| . \tag{8}
\end{equation*}
$$

Then there exists a unique solution $X(t)$ to equation (5) with initial data ξ.

Theorem (Ji, Song, Y.) Assume G, b and σ satisfy the following assumptions for all $T, R \in[0, \infty)$:
(C0) For every $R>0, T>0$

$$
\begin{equation*}
\int_{0}^{T} \sup _{|x| \leq R,|y| \leq R}\left\{|b(x, y, t)|+\|\sigma(x, y, t)\|^{2}\right\} d t<\infty \tag{9}
\end{equation*}
$$

(C1) The functions $b(x, y, t), \sigma(x, y, t)$ are continuous in both x and y for all $t \in$ $[0, T]$.
(C2) There exist two $\mathbb{R}_{+}-$valued functions $K_{1}(t), \widetilde{K}_{1}(t)$ and a positive constant $C_{1}(\tau)$ such that for all $t \in[0, T], K_{1}(t) \leq C_{1}(\tau) K_{1}(t-\tau), K_{1}(t) \geq \widetilde{K}_{1}(t)$ and

$$
\begin{equation*}
2\langle x-G(y), b(x, y, t)\rangle+\|\sigma(x, y, t)\|^{2} \leq K_{1}(t)\left(1+|x|^{2}\right)+\widetilde{K}_{1}(t-\tau)\left(1+|y|^{2}\right), \tag{10}
\end{equation*}
$$

for $\forall x, y \in \mathbb{R}^{n}, t \in[0, T]$.

Theorem

(C3) There exist two $\mathbb{R}_{+}-$valued functions $K_{R}(t), \widetilde{K}_{R}(t)$ and a positive constant $C_{R}(\tau)$ such that for all $t \in[0, T], K_{R}(t) \leq C_{R}(\tau) K_{R}(t-\tau), K_{R}(t) \geq \widetilde{K}_{R}(t)$ and

$$
\begin{align*}
& 2\langle x-G(y)-\bar{x}+G(\bar{y}), b(x, y, t)-b(\bar{x}, \bar{y}, t)\rangle+\|\sigma(x, y, t)-\sigma(\bar{x}, \bar{y}, t)\|^{2} \\
& \leq K_{R}(t)|x-\bar{x}|^{2}+\widetilde{K}_{R}(t-\tau)|y-\bar{y}|^{2} \tag{11}
\end{align*}
$$

for all $|x| \vee|y| \vee|\bar{x}| \vee|\bar{y}| \leq R, t \in[0, T]$.
(C4) Assume $G(0)=0$ and that there is a constant $\kappa \in(0,1)$ such that

$$
|G(x)-G(y)| \leq \kappa|x-y|
$$

holds for all $x, y \in \mathbb{R}^{n}$.

Theorem

Moreover, we assume $C_{1}(\tau) \vee C_{R}(\tau) \leq \frac{1}{\kappa}$ and $K_{1}(t), \widetilde{K}_{1}(t), K_{R}(t), \widetilde{K}_{R}(t) \in$ $\mathcal{L}^{1}\left([-\tau, T] ; \mathbb{R}_{+}\right)$. Then there exists a unique process $\{X(t)\}_{t \in[0, T]}$ that satisfies equation (5) with the initial data ξ. Moreover, the mean square of the solution is finite.

Numerical Solutions

We assume that there exist constants $L>0$ and $q \geq 1$ such that, for $x, y, \bar{x}, \bar{y} \in \mathbb{R}^{n}$,
(A1) $|G(y)-G(\bar{y})| \leq L\left(1+|y|^{q}+|\bar{y}|^{q}\right)|y-\bar{y}|$;
(A2) $|b(x, y)-b(\bar{x}, \bar{y})|+\|\sigma(x, y)-\sigma(\bar{x}, \bar{y})\| \leq L|x-\bar{x}|+L\left(1+|y|^{q}+\right.$
$\left.|\bar{y}|^{q}\right)|y-\bar{y}|$, where $\|\cdot\|$ stands for the Hilbert-Schmidt norm;
(A3) $|\xi(t)-\xi(s)| \leq L|t-s|$ for any $s, t \in[-\tau, 0]$.

Remark: There are some examples such that (A1) and (A2) hold. For instance, if $G(y)=y^{2}, b(x, y)=\sigma(x, y)=a x+y^{3}$ for any $x, y \in \mathbb{R}$ and some $a \in \mathbb{R}$, Then both (A1) and (A2) hold by taking $V(y, \bar{y})=$ $1+\frac{3}{2} y^{2}+\frac{3}{2} \bar{y}^{2}$ for arbitrary $y, \bar{y} \in \mathbb{R}$. We can show that Eq.(5) has a unique solution $\{X(t)\}$ under (A1) and (A2).

We now introduce the EM scheme associated with (5). Without loss of generality, we assume that $h=T / M=\tau / m \in(0,1)$ for some integers $M, m>1$. For every integer $k=-m, \cdots, 0$, set $Y_{h}^{(k)}:=\xi(k h)$, and for each integer $k=1, \cdots, M-1$, we define

$$
\begin{align*}
Y_{h}^{(k+1)}-G\left(Y_{h}^{(k+1-m)}\right) & =Y_{h}^{(k)}-G\left(Y_{h}^{(k-m)}\right)+b\left(Y_{h}^{(k)}, Y_{h}^{(k-m)}\right) h \tag{12}\\
& +\sigma\left(Y_{h}^{(k)}, Y_{h}^{(k-m)}\right) \Delta W_{h}^{(k)}
\end{align*}
$$

where $\Delta W_{h}^{(k)}:=W((k+1) h)-W(k h)$.

For any $t \in[k h,(k+1) h)$, set $\bar{Y}(t):=Y_{h}^{(k)}$. Define the continuous-time EM approximation solution $Y(t)$ as below: For any $\theta \in[-\tau, 0], Y(\theta)=\xi(\theta)$, and

$$
\begin{align*}
Y(t)= & G(\bar{Y}(t-\tau))+\xi(0)-G(\xi(-\tau))+\int_{0}^{t} b(\bar{Y}(s), \bar{Y}(s-\tau)) \mathrm{d} s \\
& +\int_{0}^{t} \sigma(\bar{Y}(s), \bar{Y}(s-\tau)) \mathrm{d} W(s), \quad t \in[0, T] . \tag{13}
\end{align*}
$$

The first main result in this paper is stated as below.
Theorem

Under the assumptions (A1)-(A3), one has

$$
\begin{equation*}
\mathbb{E}\left(\sup _{0 \leq t \leq T}|X(t)-Y(t)|^{p}\right) \lesssim h^{p / 2}, \quad p \geq 2 \tag{14}
\end{equation*}
$$

We have the following lemma.

Lemma

Under (A1) and (A2), for any $p \geq 2$ there exists a constant $C_{T}>0$ such that

$$
\begin{equation*}
\mathbb{E}\left(\sup _{0 \leq t \leq T}|X(t)|^{p}\right) \vee \mathbb{E}\left(\sup _{0 \leq t \leq T}|Y(t)|^{p}\right) \leq C_{T} \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbb{E}\left(\sup _{0 \leq t \leq T}|\Gamma(t)|^{p}\right) \lesssim h^{p / 2}, \tag{16}
\end{equation*}
$$

where $\Gamma(t):=Y(t)-\bar{Y}(t)$.

Proof of Theorem . We follow the Yamada-Watanabe approach to complete the proof of Theorem. For fixed $\kappa>1$ and arbitrary $\varepsilon \in(0,1)$, there exists a continuous non-negative function $\varphi_{\kappa \varepsilon}(\cdot)$ with the support $[\varepsilon / \kappa, \varepsilon]$ such that

$$
\int_{\varepsilon / \kappa}^{\varepsilon} \varphi_{\kappa \varepsilon}(x) \mathrm{d} x=1 \quad \text { and } \quad \varphi_{\kappa \varepsilon}(x) \leq \frac{2}{x \ln \kappa}, \quad x>0 .
$$

Set

$$
\phi_{\kappa \varepsilon}(x):=\int_{0}^{x} \int_{0}^{y} \varphi_{\kappa \varepsilon}(z) \mathrm{d} z \mathrm{~d} y, \quad x>0 .
$$

Let

$$
\begin{equation*}
V_{\kappa \varepsilon}(x)=\phi_{\kappa \varepsilon}(|x|), \quad x \in \mathbb{R}^{n} . \tag{17}
\end{equation*}
$$

By a straightforward calculation, it holds

$$
\left(\nabla V_{\kappa \varepsilon}\right)(x)=\phi_{\kappa \varepsilon}^{\prime}(|x|)|x|^{-1} x, \quad x \in \mathbb{R}^{n}
$$

and
$\left(\nabla^{2} V_{\kappa \varepsilon}\right)(x)=\phi_{\kappa \varepsilon}^{\prime}(|x|)\left(|x|^{2} \mathbf{I}-x \otimes x\right)|x|^{-3}+|x|^{-2} \phi_{\kappa \varepsilon}^{\prime \prime}(|x|) x \otimes x, \quad x \in \mathbb{R}^{n}$,
where ∇ and ∇^{2} stand for the gradient and Hessian operators, respectively, $x \otimes x=x x^{*}$ with x^{*} being the transpose of $x \in \mathbb{R}^{n}$. Moreover, we have

$$
\begin{equation*}
\left|\left(\nabla V_{\kappa \varepsilon}\right)(x)\right| \leq 1 \quad \text { and } \quad\left\|\left(\nabla^{2} V_{\kappa \varepsilon}\right)(x)\right\| \leq 2 n\left(1+\frac{1}{\ln \kappa}\right) \frac{1}{|x|} \mathbf{1}_{[\varepsilon / \kappa, \varepsilon]}(|x|) \tag{18}
\end{equation*}
$$

For notation simplicity, set

$$
\begin{equation*}
Z(t):=X(t)-Y(t) \quad \text { and } \quad \Lambda(t):=Z(t)-G(X(t-\tau))+G(\bar{Y}(t-\tau)) \tag{19}
\end{equation*}
$$

In the sequel, let $t \in[0, T]$ be arbitrary and fix $p \geq 2$. Due to $\Lambda(0)=\mathbf{0} \in \mathbb{R}^{n}$ and $V_{\kappa \varepsilon}(\mathbf{0})=0$, an application of Itô's formula gives

$$
V_{\kappa \varepsilon}(\Lambda(t))=\int_{0}^{t}\left\langle\left(\nabla V_{\kappa \varepsilon}\right)(\Lambda(s)), \Gamma_{1}(s)\right\rangle \mathrm{d} s
$$

$$
+\frac{1}{2} \int_{0}^{t} \operatorname{trace}\left\{\left(\Gamma_{2}(s)\right)^{*}\left(\nabla^{2} V_{\kappa \varepsilon}\right)(\Lambda(s)) \Gamma_{2}(s)\right\} \mathrm{d} s+\int_{0}^{t}\left\langle\nabla\left(V_{\kappa \varepsilon}\right)(\Lambda(s)), \Gamma_{2}(s) \mathrm{d} W\right.
$$

$$
=: I_{1}(t)+I_{2}(t)+I_{3}(t),
$$

where

$$
\begin{equation*}
\Gamma_{1}(t):=b(X(t), X(t-\tau))-b(\bar{Y}(t), \bar{Y}(t-\tau)) \tag{20}
\end{equation*}
$$

and

$$
\Gamma_{2}(t):=\sigma(X(t), X(t-\tau))-\sigma(\bar{Y}(t), \bar{Y}(t-\tau)) .
$$

Set

$$
\begin{equation*}
V(x, y):=1+|x|^{q}+|y|^{q}, x, y \in \mathbb{R}^{n} \tag{21}
\end{equation*}
$$

According to (15), for any $q \geq 2$ there exists a constant $C_{T}>0$ such that

$$
\begin{equation*}
\mathbb{E}\left(\sup _{0 \leq t \leq T} V(X(t-\tau), \bar{Y}(t-\tau))^{q}\right) \leq C_{T} \tag{22}
\end{equation*}
$$

Noting that

$$
\begin{equation*}
X(t)-\bar{Y}(t)=\Lambda(t)+\Gamma(t)+G(X(t-\tau))-G(\bar{Y}(t-\tau)) \tag{23}
\end{equation*}
$$

and using Hölder's inequality and B-D-G's inequality, we get from (18) and (A1)(A2) that

$$
\begin{align*}
\Theta(t): & =\mathbb{E}\left(\sup _{0 \leq s \leq t}\left|I_{1}(s)\right|^{p}\right)+\mathbb{E}\left(\sup _{0 \leq s \leq t}\left|I_{3}(s)\right|^{p}\right) \\
& \lesssim \int_{0}^{t}\left\{\mathbb{E}\left|\Gamma_{1}(s)\right|^{p}+\mathbb{E} \mid \Gamma_{2}(s) \|^{p}\right\} \mathrm{d} s \\
& \lesssim \int_{0}^{t} \mathbb{E}\left\{|\Lambda(s)|^{p}+|\Gamma(s)|^{p}\right\} \mathrm{d} s++\int_{-\tau}^{t-\tau} \mathbb{E}\left(V(X(s), \bar{Y}(s))^{p}|X(s)-\bar{Y}(s)|^{p}\right) \mathrm{d} s \tag{24}
\end{align*}
$$

In the light of (18)-(23), we derive from (A1) that

$$
\begin{aligned}
& \mathbb{E}\left(\sup _{0 \leq s \leq t}\left|I_{2}(s)\right|^{p}\right) \\
& \lesssim \\
& \lesssim \mathbb{E} \int_{0}^{t}\left\|\left(\nabla^{2} V_{\kappa \varepsilon}\right)(\Lambda(s))\right\|^{p}\left\|\Gamma_{2}(s)\right\|^{2 p} \mathrm{~d} s \\
& \lesssim \mathbb{E} \int_{0}^{t} \frac{1}{|\Lambda(s)|^{p}}\left\{|X(s)-\bar{Y}(s)|^{2 p}+V(X(s-\tau), \bar{Y}(s-\tau))^{2 p}\right. \\
& \left.\quad \times\left(|X(s-\tau)-\bar{Y}(s-\tau)|^{2 p}\right)\right\} \mathbf{I}_{[\varepsilon / \kappa, \varepsilon]}(|\Lambda(s)|) \mathrm{d} s \\
& \lesssim \mathbb{E} \int_{0}^{t} \frac{1}{|\Lambda(s)|^{p}}\left\{|\Lambda(s)|^{2 p}+|\Gamma(s)|^{2 p}+|G(X(s-\tau))-G(\bar{Y}(s-\tau))|^{2 p}\right. \\
& \left.\quad+V(X(s-\tau), \bar{Y}(s-\tau))^{2 p}\left(|X(s-\tau)-\bar{Y}(s-\tau)|^{2 p}\right)\right\} \mathbf{I}_{[\varepsilon / \kappa, \varepsilon]}(|\Lambda(s)|) \mathrm{d} s \\
& \lesssim \\
& \\
& \quad \mathbb{E} \int_{0}^{t}\left\{|\Lambda(s)|^{p}+\varepsilon^{-p}|\Gamma(s)|^{2 p}\right. \\
& \left.\quad+\varepsilon^{-p} V^{2 p}(X(s-\tau), \bar{Y}(s-\tau))\left(|X(s-\tau)-\bar{Y}(s-\tau)|^{2 p}\right)\right\} \mathrm{d} s \\
& \lesssim \int_{0}^{t}\left\{\varepsilon^{-p} h^{p}+\mathbb{E}|\Lambda(s)|^{p}+\varepsilon^{-p}\left(\mathbb{E}\left(|Z(s-\tau)|^{4 p}\right)\right)^{1 / 2}\right\} \mathrm{d} s,
\end{aligned}
$$

Thus, we can have

$$
\begin{align*}
& \mathbb{E}\left(\sup _{0 \leq s \leq t}|\Lambda(s)|^{p}\right) \lesssim \varepsilon^{p}+h^{p / 2}+\varepsilon^{-p} h^{p} \\
& \quad+\int_{0}^{(t-\tau) \vee 0}\left\{\left(\mathbb{E}\left(|Z(s)|^{2 p}\right)\right)^{1 / 2}+\varepsilon^{-p}\left(\mathbb{E}\left(|Z(s)|^{4 p}\right)\right)^{1 / 2}\right\} \mathrm{d} s \tag{26}\\
& \leq h^{p / 2}+\int_{0}^{(t-\tau) \vee 0}\left\{\left(\mathbb{E}\left(|Z(s)|^{2 p}\right)\right)^{1 / 2}+\varepsilon^{-p}\left(\mathbb{E}\left(|Z(s)|^{4 p}\right)\right)^{1 / 2}\right\} \mathrm{d} s
\end{align*}
$$

it follows from Hölder's inequality that

$$
\begin{align*}
& \mathbb{E}\left(\sup _{0 \leq t \leq T}|Z(t)|^{p}\right) \lesssim \mathbb{E}\left(\sup _{0 \leq t \leq T}|\Lambda(t)|^{p}\right)+\mathbb{E}\left(\sup _{-\tau \leq t \leq T-\tau}|G(X(t))-G(\bar{Y}(t))|^{p}\right) \\
& \lesssim \mathbb{E}\left(\sup _{0 \leq t \leq T}|\Lambda(t)|^{p}\right)+\mathbb{E}\left(\sup _{-\tau \leq t \leq T-\tau}\left(V(X(t), \bar{Y}(t))^{p}|X(t)-\bar{Y}(t)|^{p}\right)\right) \\
& \lesssim \mathbb{E}\left(\sup _{0 \leq t \leq T}|\Lambda(t)|^{p}\right)+h^{p / 2}+\left(\mathbb{E}\left(\sup _{0 \leq t \leq(T-\tau) \vee 0}|Z(t)|^{2 p}\right)\right)^{1 / 2} \tag{27}
\end{align*}
$$

Substituting (34) into (36) yields that

$$
\begin{align*}
\mathbb{E}\left(\sup _{0 \leq t \leq T}|Z(t)|^{p}\right) & \lesssim h^{p / 2}+\left(\mathbb{E}\left(\sup _{0 \leq t \leq(T-\tau) \vee 0}|Z(t)|^{2 p}\right)\right)^{1 / 2} \\
& +\int_{0}^{(T-\tau) \vee 0}\left\{\left(\mathbb{E}\left(|Z(t)|^{2 p}\right)\right)^{1 / 2}+\varepsilon^{-p}\left(\mathbb{E}\left(|Z(t)|^{4 p}\right)\right)^{1 / 2}\right\} \mathrm{d} t . \tag{28}
\end{align*}
$$

Hence, we have

$$
\mathbb{E}\left(\sup _{0 \leq t \leq \tau}|Z(t)|^{p}\right) \lesssim h^{p / 2},
$$

and

$$
\begin{aligned}
\mathbb{E}\left(\sup _{0 \leq t \leq 2 \tau}|Z(t)|^{p}\right) & \lesssim h^{p / 2}+\left(\mathbb{E}\left(\sup _{0 \leq t \leq \tau}|Z(t)|^{2 p}\right)\right)^{1 / 2} \\
& +\int_{0}^{\tau}\left\{\left(\mathbb{E}\left(|Z(t)|^{2 p}\right)\right)^{1 / 2}+\varepsilon^{-p}\left(\mathbb{E}\left(|Z(t)|^{4 p}\right)\right)^{1 / 2}\right\} \mathrm{d} t \\
& \lesssim h^{p / 2}
\end{aligned}
$$

by taking $\varepsilon=h^{1 / 2}$.

Large deviation principle (LDP)

Consider a neutral FSDE

$$
\begin{equation*}
\mathrm{d}\left\{X(t)-G\left(X_{t}\right)\right\}=b\left(X_{t}\right) \mathrm{d} t+\sigma\left(X_{t}\right) \mathrm{d} W(t), \quad t>0 \tag{29}
\end{equation*}
$$

with the initial data $X_{0}=\xi \in \mathscr{C}$. We assume
(H1) There exists $\kappa \in(0,1)$ such that

$$
|G(\xi)-G(\eta)| \leq \kappa\|\xi-\eta\|_{\infty}, \quad \xi, \eta \in \mathscr{C} .
$$

(H2) The mapping b satisfies a local Lipschitz condition and there exists $\lambda>0$ such that

$$
\begin{aligned}
& \langle(\xi(0)-\eta(0))-(G(\xi)-G(\eta)), b(\xi)-b(\eta)\rangle \vee\|\sigma(\xi)-\sigma(\eta)\|_{H S}^{2} \leq \lambda\|\xi-\eta\|_{\infty}^{2} \\
& \text { and }
\end{aligned}
$$

$$
\langle\xi(0)-G(\xi), b(\xi)\rangle \leq \lambda\left(1+\|\xi\|_{\infty}^{2}\right)
$$

for arbitrary $\xi, \eta \in \mathscr{C}$.

Let \mathbb{S} be a Polish space (i.e., a separable completely metrizable topological space), and $\left\{Y^{\epsilon}\right\}_{\epsilon \in(0,1)}$ a family of \mathbb{S}-valued random variables defined on the probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

Definition

A function $I: \mathbb{S} \mapsto[0, \infty]$ is called a rate function if it is lower semicontinuous. A rate function I is called a good rate function if the level set $\{f \in \mathbb{S}: I(f) \leq a\}$ is compact for each $a<\infty$.

Definition

The sequence $\left\{Y^{\epsilon}\right\}_{\epsilon \in(0,1)}$ is said to satisfy the LDP with rate function I if, for each $A \in \mathscr{B}(\mathbb{S})$ (Borel σ-algebra generated by all open sets in \mathbb{S}),

$$
-\inf _{f \in A^{\circ}} I(f) \leq \liminf _{\epsilon \rightarrow 0} \epsilon \log \mu^{\epsilon}(A) \leq \limsup _{\epsilon \rightarrow 0} \epsilon \log \mu^{\epsilon}(A) \leq-\inf _{f \in \bar{A}} I(f),
$$

where μ^{ϵ} is the law of $\left\{Y^{\epsilon}\right\}_{\epsilon \in(0,1)}$, and the interior A° and closure \bar{A} are taken in \mathbb{S}.

Definition

The sequence $\left\{Y^{\epsilon}\right\}_{\epsilon \in(0,1)}$ is said to satisfy the Laplace principle (LP) on \mathbb{S} with rate function I if, for each bounded continuous mapping $g: \mathbb{S} \mapsto \mathbb{R}$,

$$
\lim _{\epsilon \rightarrow 0} \epsilon \log \mathbb{E}\left(\exp \left[-\frac{g\left(Y^{\epsilon}\right)}{\epsilon}\right]\right)=-\inf _{f \in \mathbb{S}}\{g(f)+I(f)\} .
$$

Define the Cameron-Martin space \mathbb{H} by

$$
\begin{equation*}
\mathbb{H}:=\left\{h:[0, T] \mapsto \mathbb{R}^{m} \mid h(t)=\int_{0}^{t} \dot{h}(s) \mathrm{d} s, t \in[0, T], \text { and } \int_{0}^{T}|\dot{h}(s)|^{2} \mathrm{~d} s<\infty\right\}, \tag{30}
\end{equation*}
$$

where the dot denotes the generalized derivative. Note that $\left(\mathbb{H},\langle\cdot, \cdot\rangle_{\mathbb{H}},\|\cdot\|_{\mathbb{H}}\right)$ is a Hilbert space equipped with the norm $\|f\|_{\mathbb{H}}:=\left(\int_{0}^{T}|\dot{f}(s)|^{2} \mathrm{~d} s\right)^{\frac{1}{2}}, f \in \mathbb{H}$. For each $N>0$, let

$$
\begin{equation*}
S_{N}:=\left\{h \in \mathbb{H}:\|h\|_{\mathbb{H}} \leq N\right\} \tag{31}
\end{equation*}
$$

be the ball in \mathbb{H} with radius N, and
$\mathcal{A}_{N}:=\left\{h:[0, T] \mapsto \mathbb{R}^{m}\right.$, an \mathcal{F}_{t}-predictable process such that $h(\cdot, \omega) \in S_{N}, \mathbb{P}-$ a.s.

For $\mathcal{C}:=C\left([0, T] ; \mathbb{R}^{m}\right)$ and a measurable mapping $\mathcal{G}^{\epsilon}: \mathcal{C} \mapsto \mathbb{S}, \epsilon \in(0,1)$, let

$$
\begin{equation*}
Z^{\epsilon}:=\mathcal{G}^{\epsilon}(\sqrt{\epsilon} W) . \tag{32}
\end{equation*}
$$

Assume that there exists a measurable mapping $Z^{0}: \mathbb{H} \mapsto \mathbb{S}$ such that, for any $N>0$,
(i) If the family $\left\{h^{\epsilon}\right\}_{\epsilon \in(0,1)} \subset \mathcal{A}_{N}$ converge in distribution to an $h \in \mathcal{A}_{N}$, then $\mathcal{G}^{\epsilon}\left(\sqrt{\epsilon} W+h^{\epsilon}\right) \rightarrow Z^{0}(h)$ in distribution in \mathbb{S} as $\epsilon \rightarrow 0$.
(ii) The set $\mathcal{K}_{N}:=\left\{Z^{0}(h): h \in S_{N}\right\}$ is a compact subset of \mathbb{S}.

Lemma (Budhiraja and Dupuis,2000): Let $\left\{Z^{\epsilon}\right\}_{\epsilon \in(0,1)}$ be defined by (32) and assume that $\left\{\mathcal{G}^{\epsilon}\right\}_{\epsilon \in(0,1)}$ satisfy (i) and (ii). Then the family $\left\{Z^{\epsilon}\right\}_{\epsilon \in(0,1)}$ satisfy the LP (hence LDP) on \mathbb{S} with the good rate function defined by

$$
\begin{equation*}
I(f):=\frac{1}{2} \inf _{\left\{h \in \mathbb{H}, f=Z^{0}(h)\right\}}\|h\|_{\mathbb{H}}^{2}, \quad f \in \mathbb{S} . \tag{33}
\end{equation*}
$$

For $\epsilon \in(0,1)$, consider the small perturbation of (29) in the form

$$
\begin{equation*}
\mathrm{d}\left\{X^{\epsilon}(t)-G\left(X_{t}^{\epsilon}\right)\right\}=b\left(X_{t}^{\epsilon}\right) \mathrm{d} t+\sqrt{\epsilon} \sigma\left(X_{t}^{\epsilon}\right) \mathrm{d} W(t), \quad t \in[0, T] \tag{34}
\end{equation*}
$$

with the initial value $X_{0}^{\epsilon}=\xi \in \mathscr{C}$.
By Lemma 10, to establish the LDP for the law of $\left\{X^{\epsilon}(\cdot)\right\}_{\epsilon \in(0,1)}$, it is sufficient to (a) choose the Polish space $\mathbb{S},(\mathrm{b})$ construct measurable mappings $\mathcal{G}^{\epsilon}: \mathcal{C} \mapsto \mathbb{S}$ and $Z^{0}: \mathbb{H} \mapsto \mathbb{S}$ respectively, and then (c) show that (i) and (ii) are satisfied for the measurable mapping \mathcal{G}^{ϵ}. In the sequel, we take $\mathbb{S}=C\left([0, T] ; \mathbb{R}^{n}\right)$, the family of continuous functions $f:[0, T] \mapsto \mathbb{R}^{n}$, which is a Polish space under the uniform topology. On the other hand, by the Yamada-Watanabe theorem there exists a unique measurable functional $\mathcal{G}^{\epsilon}: \mathcal{C} \mapsto \mathbb{S}$ such that

$$
\begin{equation*}
X^{\epsilon}(t)=\mathcal{G}^{\epsilon}(\sqrt{\epsilon} W)(t), \quad t \in[0, T] . \tag{35}
\end{equation*}
$$

For $h^{\epsilon} \in \mathcal{A}_{N}$, by the Girsanov theorem, we conclude from (34) and (35) that

$$
X^{\epsilon, h^{\epsilon}}(t):=\mathcal{G}^{\epsilon}\left(\sqrt{\epsilon} W+h^{\epsilon}\right)(t), \quad t \in[0, T]
$$

solves the following equation
$\mathrm{d}\left\{X^{\epsilon, h^{\epsilon}}(t)-G\left(X_{t}^{\epsilon, h^{\epsilon}}\right)\right\}=b\left(X_{t}^{\epsilon, h^{\epsilon}}\right) \mathrm{d} t+\sigma\left(X_{t}^{\epsilon, h^{\epsilon}}\right) \dot{h^{\epsilon}}(t) \mathrm{d} t+\sqrt{\epsilon} \sigma\left(X_{t}^{\epsilon, h^{\epsilon}}\right) \mathrm{d} W(t)$,
with initial datum $X_{0}^{\epsilon, h^{\epsilon}}=\xi \in \mathscr{C}$. For $h \in \mathbb{H}$, consider a deterministic equation

$$
\begin{equation*}
\mathrm{d}\left\{X^{h}(t)-G\left(X_{t}^{h}\right)\right\}=\left\{b\left(X_{t}^{h}\right)+\sigma\left(X_{t}^{h}\right) \dot{h}(t)\right\} \mathrm{d} t \tag{37}
\end{equation*}
$$

with initial value $X_{0}^{h}=\xi \in \mathscr{C}$ and define

$$
\begin{equation*}
X^{0}(h):=X^{h} . \tag{38}
\end{equation*}
$$

Lemma

Let (H1) and (H2) hold. For $p \geq 2, h \in S_{N}$ and $h^{\epsilon} \in \mathcal{A}_{N}$,

$$
\sup _{-\tau \leq t \leq T}\left|X^{h}(t)\right|^{p} \vee \mathbb{E}\left(\sup _{-\tau \leq t \leq T}\left|X^{\epsilon, h^{\epsilon}}(t)\right|^{p}\right) \leq C
$$

Lemma

Under (H1) and (H2), $\mathcal{K}_{N}=\left\{X^{0}(h): h \in S_{N}\right\}$ is a compact subset of S.

Lemma

Let (H1) and (H2) hold and assume further that the family $\left\{h^{\epsilon}\right\}_{\epsilon \in(0,1)} \subset$ \mathcal{A}_{N} converge almost surely in \mathbb{H} to $h \in \mathcal{A}_{N}$. Then $X^{\epsilon, h^{\epsilon}} \rightarrow X^{h}$ converges in distribution in \mathbb{S} as $\epsilon \rightarrow 0$.

Theorem

Under (H1) and (H2), X^{ϵ} satisfies the LDP on \mathbb{S} with the good rate function $I(f)$ defined by (33), where $X^{0}(h)$ solves Eq. (16).

LDP for Neutral SDDEs

Consider a neutral SDDE on \mathbb{R}^{n}

$$
\begin{equation*}
\mathrm{d}\{Y(t)-G(Y(t-\tau))\}=b(Y(t), Y(t-\tau)) \mathrm{d} t+\sigma(Y(t), Y(t-\tau)) \mathrm{d} W(t) \tag{39}
\end{equation*}
$$

with the initial data $Y_{0}=\xi$. Assume that there exist $\lambda_{3}, \lambda_{4}>0$ such that
(A1) $|G(x)-G(y)| \leq \lambda_{3} V_{1}(x, y)|x-y|, x, y \in \mathbb{R}^{n}$.
(A2) $\left|b\left(x_{1}, y_{1}\right)-b\left(x_{2}, y_{2}\right)\right| \vee\left\|\sigma\left(x_{1}, y_{1}\right)-\sigma\left(x_{2}, y_{2}\right)\right\|_{H S} \leq \lambda_{4}\left(\left|x_{1}-x_{2}\right|+\right.$ $\left.V_{2}\left(y_{1}, y_{2}\right)\left|y_{1}-y_{2}\right|\right), x_{i}, y_{i} \in \mathbb{R}^{n}, i=1,2$, where $V_{i}: \mathbb{R}^{n} \times \mathbb{R}^{n} \mapsto \mathbb{R}_{+}$ such that

$$
V_{i}(x, y) \leq \lambda_{i}\left(1+|x|^{q_{i}}+|y|^{q_{i}}\right), \quad x, y \in \mathbb{R}^{n}
$$

for some $\lambda_{i}>0$ and $q_{i} \geq 1, i=1,2$.

For $\epsilon \in(0,1)$, consider the small perturbation of (39)

$$
\begin{equation*}
\mathrm{d}\left\{Y^{\epsilon}(t)-G\left(Y^{\epsilon}(t-\tau)\right)\right\}=b\left(Y^{\epsilon}(t), Y^{\epsilon}(t-\tau)\right) \mathrm{d} t+\sqrt{\epsilon} \sigma\left(Y^{\epsilon}(t), Y^{\epsilon}(t-\tau)\right) \mathrm{d} W(t) \tag{40}
\end{equation*}
$$

By the Yamada-Watanabe theorem there exists a unique measurable functional $\mathcal{G}^{\epsilon}: \mathcal{C} \mapsto \mathbb{S}$ such that

$$
\begin{equation*}
Y^{\epsilon}(t)=\mathcal{G}^{\epsilon}(\sqrt{\epsilon} W)(t), \quad t \in[0, T] . \tag{41}
\end{equation*}
$$

Then, for $h^{\epsilon} \in \mathcal{A}_{N}$, by the Girsanov theorem, (40) and (41),

$$
Y^{\epsilon, h^{\epsilon}}(t):=\mathcal{G}^{\epsilon}\left(\sqrt{\epsilon} W+h^{\epsilon}\right)(t), \quad t \in[0, T]
$$

solves the following equation

$$
\begin{align*}
\mathrm{d}\{ & \left\{Y^{\epsilon, h^{\epsilon}}(t)-G\left(Y^{\epsilon, h^{\epsilon}}(t-\tau)\right)\right\} \\
= & b\left(Y^{\epsilon, h^{\epsilon}}(t), Y^{\epsilon, h^{\epsilon}}(t-\tau)\right) \mathrm{d} t \tag{42}\\
& +\sigma\left(Y^{\epsilon, h^{\epsilon}}(t), Y^{\epsilon, h^{\epsilon}}(t-\tau)\right) \dot{h^{\epsilon}}(t) \mathrm{d} t \\
& +\sqrt{\epsilon} \sigma\left(Y^{\epsilon, h^{\epsilon}}(t), Y^{\epsilon, h^{\epsilon}}(t-\tau)\right) \mathrm{d} W(t)
\end{align*}
$$

For any $h \in \mathbb{H}$, we introduce the skeleton equation associated with (39)

$$
\begin{equation*}
\mathrm{d}\left\{Y^{h}(t)-G\left(Y^{h}(t-\tau)\right)\right\}=\left\{b\left(Y^{h}(t), Y^{h}(t-\tau)\right)+\sigma\left(Y^{h}(t), Y^{h}(t-\tau)\right) \dot{h}(t)\right\} \mathrm{d} t \tag{43}
\end{equation*}
$$

with $Y_{0}^{h}=\xi$. Define

$$
\begin{equation*}
Y^{0}(h):=Y^{h}, \quad h \in \mathbb{H} . \tag{44}
\end{equation*}
$$

Lemma

Let (A1) and (A2) hold. For any $p \geq 2, h \in S_{N}$ and $h^{\epsilon} \in \mathcal{A}_{N}$,

$$
\begin{equation*}
\sup _{-\tau \leq s \leq T}\left|Y^{h}(s)\right|^{p} \vee \mathbb{E}\left(\sup _{-\tau \leq s \leq T}\left|Y^{\epsilon, h^{\epsilon}}(s)\right|^{p}\right) \leq C . \tag{45}
\end{equation*}
$$

Lemma

Under (A1) and (A2), $\mathcal{K}_{N}=\left\{Y^{0}(h): h \in S_{N}\right\}$ is a compact subset of S.

Lemma

Assume that the family $\left\{h^{\epsilon}\right\}_{\epsilon \in(0,1)} \subset \mathcal{A}_{N}$ converge almost surely in \mathbb{H} to $h \in \mathcal{A}_{N}$. Then $Y^{\epsilon, h^{\epsilon}} \rightarrow Y^{h}$ converges in distribution in \mathbb{S}.

Our second main result is:

Theorem

Under (A1) and (A2), $Y^{\epsilon}=\left\{Y^{\epsilon}(t)\right\}_{t \in[0, T]}$, the solution of (40), satisfies the LDP on \mathbb{S} with the good rate function $I(f)$ defined by (33), where $Y^{0}(h)$ solves (43).

- J. Bao, G. Yin and C. Yuan, Two-time-scale stochastic partial differential equations driven by alpha-stable noise: averaging principles, accepted by Bernoulli.
- J. Bao, J. Shao and C. Yuan, Approximation of invariant measures for regime-switching diffusions, Potential Analysis, 44 (2016), 707-727..
- J. Bao, B. Böttcher, X. Mao, C. Yuan, Convergence rate of numerical solutions to SFDEs with jumps, J. Comput. Appl. Math. 236 (2011) 119-131.
- J. Bao, C. Yuan, Large deviations for neutral functional SDEs with jumps, Stochastics 87 (2015) 48-70.
- J. Bao and C.Yuan, Convergence rate of EM scheme for SDDEs, Proc. Amer. Math. Soc., 141 (2013), 3231-3243.
- N.V. Krylov, A simple proof of the existence of a solution of Ito's equation with monotone coefficients. Theory Probab. Appl., 35(1990), 583-587.
- X. Mao, Stochastic differential equations and applications. Second Edition. Horwood Publishing Limited, 2008. Chichester.
- S.-E. A. Mohammed, Stochastic Functional Differential Equations, Longman, Harlow/New York, 1984.
- S.-E. A. Mohammed, T. Zhang, Large deviations for stochastic systems with memory, Discrete Contin. Dyn. Syst. Ser. B, 6 (2006), 881-893.
- V. Maroulas, Uniform Large deviations for infinite dimensional stochastic systems with jumps, arXiv:1002.3290.
- J. Ren, S. Xu, X. Zhang, Large deviations for multivalued stochastic differential equations, J. Theoret. Probab., 23 (2010), 1142-1156.
- M. Röckner, T. Zhang, Stochastic evolution equations of jump type: existence, uniqueness and large deviation principles, Potential Anal., 26 (2007), 255-279.

Thanks A Lot !

