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Motivation and Introduction

We focus on quantifying the noise effects through asymptotic
analysis.
We consider epidemic and ecological models subject to noise
perturbations.
By analyzing the dynamics near the boundary and ergodicity of
the dynamics on the boundary, we find sufficient and almost
necessary conditions for extinction and permanence of the
populations.
We study the ergodicity of the models, establish the convergence,
and estimate the rates of convergence.
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A Stochastic SIR Model



Ronald Ross, winner of Nobel Prize in Medicine

Figure 1: Sir Ronald Ross, May 13, 1857-Sept. 16, 1932: a British medical
doctor who received the Nobel Prize for Physiology or Medicine in 1902 for his
work on the transmission of malaria, becoming the first British Nobel laureate,
and the first born outside of Europe. (“mathematical models of malaria
epidemiology”) [Giovanni Grassi’s work was more directly relevant to human
health (correctly identified the mosquito species as Anopheles claviger and
established the complete life cycle of the first human malarial parasite).]



Introduction to SIR models

Since epidemic models were first introduced by Kermack and
McKendrick (1927) building on the research of Ross, the study on
mathematical models has flourished. Much attention has been
devoted to analyzing, predicting the spread, and designing
controls of infectious diseases in host populations.
One of the classic epidemic models is the SIR
(Susceptible-Infected-Removed) model that is suitable for
modeling some diseases with permanent immunity such as
rubella, whooping cough, measles, smallpox, etc.
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Introduction to SIR models

In the SIR model, a homogeneous host population is subdivided into
three epidemiologically distinct types of individuals:

(S): The susceptible class, the class of those individuals who are
capable of contracting the disease and becoming infected,
(I): the infected class, the class of those individuals who are
capable of transmitting the disease to others,
(R): the removed class, the class of infected individuals who have
recovered, and are permanently immune, or are isolated.
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Deterministic SIR Model

The spread of infection can be formulated by the following
deterministic system of differential equations:

dS(t) =
(
α−βS(t)I(t)−µS(t))dt

dI(t) =
(
βS(t)I(t)− (µ + ρ + γ)I(t))dt

dR(t) = (γI(t)−µR(t))dt ,
(2.1)

where
α is the per capita birth rate of the population,
β is the effective per capita contact rate
µ is the per capita disease-free death rate and
ρ is the excess per capita death rate of infected class,
γ is per capita recovery rate of the infected individuals.



Deterministic Model: Threshold λd

For the above deterministic model (2.1),

if λd =
βα

µ
− (µ + ρ + γ)≤ 0, then the population tends to the

disease-free equilibrium (
α

µ
,0,0);

if λd > 0, the population approaches an endemic equilibrium.

Thus, using the critical threshold value λd , the asymptotic behavior of
the system has been completely classified.



Stochastic Nondegenerate Model

It is well recognized that random effect is often not avoidable and
a population is always subject to random disturbances. Thus, it is
important to investigate stochastic epidemic models.
A typical stochastic SIR model is

dS(t) =
(
α−βS(t)I(t)−µS(t))dt + σ1S(t)dB1(t)

dI(t) =
(
βS(t)I(t)− (µ + ρ + γ)I(t))dt + σ2I(t)dB2(t)

dR(t) = (γI(t)−µR(t))dt + σ3R(t)dB3(t),
(2.2)

where B1(t), B2(t), and B3(t) are mutually independent Brownian
motions, σ1, σ2, and σ3 are the intensities of the white noises.



Stochastic Degenerate Model

Moreover, in reality, the classes (S), (I), and (R) are usually
subject to the same random factors such as temperature,
humidity, pollution and other extrinsic influences. As a result, it is
more plausible to assume that the random noises perturbing the
three classes are from the same source.

If we assume that the Brownian motions B1(t), B2(t), and B3(t)
are the same, we obtain the following model

dS(t) =
(
α−βS(t)I(t)−µS(t))dt + σ1S(t)dB(t)

dI(t) =
(
βS(t)I(t)− (µ + ρ + γ)I(t))dt + σ2I(t)dB(t)

dR(t) = (γI(t)−µR(t))dt + σ3R(t)dB(t),
(2.3)

One of the important questions is whether or not the disease will
survive permanently. Our main goal is to provide a classification
for survival (permanence) and extinction of the disease.
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We shall derive a sufficient and almost necessary condition for
permanence (as well as ergodicity) and extinction of the disease
for the stochastic SIR model by using a value λ , which is similar to
λd in the deterministic model.

Because the dynamics of the recovered class has no effect on the
disease transmission dynamics, we only consider the following
system:{

dS(t) = [α−βS(t)I(t)−µS(t)]dt + σ1S(t)dB(t),
dI(t) = [βS(t)I(t)− (µ + ρ + γ)I(t)]dt + σ2I(t)dB(t).

(2.4)

Using standard arguments, it can be easily shown that for any
positive initial value (u,v) ∈ R2,◦

+ , there exists a unique global
solution (Su,v (t), Iu,v (t)), t ≥ 0 that remains in R2,◦

+ w.p.1.
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To obtain further properties of the solution, we first consider the
equation on the boundary (setting I(t) = 0 in the first eq.),

dŜ(t) = (α−µŜ(t))dt + σ1Ŝ(t)dB(t). (2.5)

Let Ŝu(t) be the solution to (2.5) with initial value u. The process
Ŝu(t) has a unique invariant probability measure (inverse Gamma
distribution) with density

f ∗(x) =
ba

Γ(a)
x−(a+1)e

−b
x ,x > 0 (2.6)

where c1 = µ +
σ2

1
2 ,a = 2c1

σ2
1
,b = 2α

σ2
1

and Γ(·) is the Gamma function.

By the strong law of large numbers

lim
t→∞

1
t

∫ t

0
Ŝu(s)ds =

∫
∞

0
xf ∗(x)dx :=

α

µ
a.s. (2.7)
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Ŝu(t) has a unique invariant probability measure (inverse Gamma
distribution) with density

f ∗(x) =
ba

Γ(a)
x−(a+1)e

−b
x ,x > 0 (2.6)

where c1 = µ +
σ2

1
2 ,a = 2c1

σ2
1
,b = 2α

σ2
1

and Γ(·) is the Gamma function.

By the strong law of large numbers

lim
t→∞

1
t

∫ t

0
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dŜ(t) = (α−µŜ(t))dt + σ1Ŝ(t)dB(t). (2.5)

Let Ŝu(t) be the solution to (2.5) with initial value u. The process
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Ŝu(s)ds =

∫
∞

0
xf ∗(x)dx :=

α

µ
a.s. (2.7)



Growth Rate or Lyapunov Exponent λ

To proceed, we claim the threshold is follows:

λ :=
αβ

µ
−
(
µ + ρ + γ +

σ2
2

2
)
. (2.8)

Where is such a λ coming from? Intuition?

Lyapunov exponenet

To determine whether or not I(t) converges to 0, we consider the
Lyapunov exponent of I(t) when I(t) is small for a sufficiently long
time. Hence, we look at the following equation derived from Itô’s
formula:
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ln I(T )

T
=

ln I(0)

T
+

σ2

T
B(T ) +

1
T

∫ T

0

(
βS(t)− (µ + ρ + γ +

σ2
2

2
)
)
dt .

When T is large, the first and the second terms on the right-hand
side of the above equation are small. Intuitively, if I(t) is small for
t ∈ [0,T ], S(t) is close to Ŝ(t). Using the ergodic mean of Ŝ(t),

1
T

∫ T

0

(
βS(t)− (µ + ρ + γ +

σ2
2

2
)
)
dt

≈ 1
T
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σ2
2

2
)
)
dt

≈ αβ

µ
− (µ + ρ + γ +

σ2
2

2
) = λ .

Thus,
ln I(T )

T
is close to λ .

As a result, if λ < 0, I(t) is likely to decay exponentially.
if λ > 0, I(t) cannot be small for a long time, that is the disease will
survive permanently.
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Extinction

Theorem 2.1

If λ < 0, then for any initial value (S(0), I(0)) = (u,v) ∈ R2,◦
+ we have

lim
t→∞

ln Iu,v (t)
t

= λ a.s. and the distribution of Su,v (t) converges weakly

to the unique invariant probability measure µ∗ with the density f ∗. As a
result, the disease will go to extinction in the sense that

P
{

lim
t→∞

Iu,v (t) = 0
}

= 1 for any initial value(u,v) ∈ R2,◦
+

This theorem is obtained mainly by comparing S(t) and Ŝ(t).



Example 1

Consider (2.4) with parameters α = 5, β = 5, µ = 4, ρ = 1, γ = 1,
σ1 = 2, and σ2 =−1.
It can be shown that λ =−1.75 < 0
Our Theorem indicates Iu,v (t)→ 0 a.s. as t → ∞. This claim is
supported by Figures 2. That is, the population will eventually
have no disease. The distribution of Su,v (t) convergence to f ∗(x)
as t → ∞. The graphs of f ∗(x) and empirical density of Su,v (t) at
t = 50 are illustrated by Figure 3.



Figure 2: Trajectories of Su,v (t), Iu,v (t) in Example 1.
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Figure 3: The graph of the stationary density f ∗ (in blue) and the graph of the
empirical density of S(t) (in red) in Example 1.



When λ > 0, we shall show that (S(t), I(t)) has an invariant
probability measure π∗ in R2,◦

+ .

How do we find it?
Because the diffusion is degenerate, we need to verify certain
condition holds.

I Hörmander’s condition is a property of vector fields (in differential
geometry) that we need here.

I In the following development, we will use some idea from geometric
control theory...
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Las Hörmander

Figure 4: Lars Valter Hörmander, Jan. 24, 1931-Nov. 25, 2012: A Swedish
mathematician who has been called “the foremost contributor to the modern
theory of linear partial differential equations”. He was awarded the Fields
Medal in 1962, the Wolf Prize in 1988, and the Leroy P. Steel Prize in 2006.



Consider

A(x ,y) =

(
α−c1x −βxy
−c2y + βxy

)
and B(x ,y) =

(
σ1x
σ2y

)
.

If Φ(x ,y) = (Φ1,Φ2)> and Ψ(x ,y) = (Ψ1,Ψ2)> are vector fields on R2

then the Lie bracket [Φ,Ψ] is a vector field given by

[Φ,Ψ]j (x ,y) =
(

Φ1
∂ Ψj

∂x
(x ,y)−Ψ1

∂ Φj

∂x
(x ,y)

)
+
(

Φ2
∂ Ψj

∂y
(x ,y)−Ψ2

∂ Φj

∂y
(x ,y)

)
.

The diffusion satisfies Hörmander’s condition if the set of vectors
B, [A,B], [A, [A,B]], [B, [A,B]], . . . spans R2 at every (x ,y) ∈ R2,◦

+



Permanence: λ > 0

Using Hörmander’s condition, we analyze the corresponding
control system to prove the uniqueness of π∗ and the convergence
of transition probability to this i.p.m in total variation.

The support of π∗ is {(u,v) ∈ R2,◦
+ : ur v ≥ d∗} where r := −σ2

σ1
and

d∗ can be calculated from the model parameters.
If d∗ ≤ 0, the support is the whole space R2,◦

+ .

If d∗ > 0, the support is a subset of R2,◦
+ .
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Estimating convergence rate

To obtain convergence rate for the process (S(t), I(t)), we first
work with its “skeleton”, that is, the Markov chain
(S(nT ), I(nT ))n∈N where T is a sufficiently large number so that
the ergodicity takes effects.
We can obtain that

E ln I(T ) > ln I(0) +
λT
2

if I(0) is sufficiently small

If we could somehow interchange expectation and exponentiation,
we would obtain

E
1

I(T )
<

k
I(0)

,k ∈ (0,1) if I(0) is sufficiently small (2.9)

This would show an exponential rate of convergence.
Unfortunately, we are unable to obtain (2.9).



We are looking for a slower rate: polynomial one.
We use a Lyapunov-type result saying that if there is

EV
(
Su,v (T ), Iu,v (T )

)
≤ V (u,v)−κV γ (u,v) (2.10)

for some γ ∈ (0,1) then

lim
n→∞

n
γ

1−γ ‖P(nT ,(u,v), ·−µ
∗‖TV → 0



With some technical arguments, we are able to show that, for
p ∈ (0,1]

E| ln I(T )|1+p < | ln I(0)|1+p−k | ln I(0)| (2.11)

when I(0) is sufficiently small.

Then we obtain the polynomial convergence rate with degree
1
p

.

Since we can take any p in (0,1], we show that
the convergence rate is bounded above by any polynomial rate.



Main theorem for permanence of the disease

Theorem 2.2

Let λ > 0. There exists an invariant probability measure π∗ such that

lim
t→∞

tq‖P(t ,(u,v), ·)−π
∗(·)‖TV = 0 ∀(u,v) ∈ R2,◦

+ , (2.12)

where ‖ · ‖ is the total variation norm and q is any positive number. The
support of π∗ is {(u,v) ∈R2,◦

+ : ur v ≥ d∗}. Moreover, for any initial value
(u,v) ∈ R2,◦

+ and a π∗-integrable function f we have

P
{

lim
T→∞

1
T

∫ T

0
f
(
Su,v (t), Iu,v (t)

)
dt =

∫
R2,◦
+

f (u′,v ′)π
∗(du′,dv ′)

}
= 1.

(2.13)



Example 2

Consider (2.4) with parameters α = 20, β = 4, µ = 1, ρ = 10,
γ = 1, σ1 = 1, and σ2 =−1.
Direct calculation shows that λ = 67.5 > 0, d∗ = 1.9375. By virtue
of Theorem 2.2, (2.4) has a unique invariant probability measure
π∗ whose support is {(u,v) : u ≥ 1.9375

v }.
Consequently, the strong law of large numbers and the
convergence in total variation norm of the transition probability
hold.



Figure 5: Trajectories of Su,v (t), Iu,v (t)



Figure 6: Phase portrait of (2.4); the boundary s = 1.9375
i of the support of π∗

and the empirical density of (S(t), I(t)), which is approximate to the density of
π∗ in Example 2.



Discussions and Remarks

Our results hold for the nondegenerate case.

The method can be used to obtain similar results for a variety of
epidemic models and ecological ones perturbed by white noise.
The main results can also be obtained if both white noise and
colored noise are included. The colored noise is modeled by a
Markov switching process.
In this setting, some interesting properties are:

I The switching could help to remove the degeneracy, so that the
process has properties similar to the nondegenerate case. For
instance, the support of the invariant measure could be the whole
space

I Moreover, the extinction at each single state may be avoided by the
switching. Nevertheless, the switching could lead to extinction even
if each state is permanent.
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Thank you
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