Singular Stochastic differential equations driven by Markov processes

Longjie Xie

Jiangsu Normal University Joint work with Lihu Xu and Xicheng Zhang

July 16, 2016

Longjie Xie (Jiangsu Normal University) Singular SDEs driven by Markov processes

July 16, 2016 1 / 24

3 Main result and its proof

Longjie Xie (Jiangsu Normal University) Singular SDEs driven by Markov processes

Motivation

Generally, a Markov process X in \mathbb{R}^d has the generator of the form

$$\begin{split} \mathcal{A}\varphi(x) &= \frac{1}{2} \sum_{i,j=1}^{d} a_{ij}(x) \frac{\partial^2}{\partial x_i \partial x_j} \varphi(x) + b(x) \cdot \nabla \varphi(x) + c(x)\varphi(x) \\ &+ \int_{\mathbb{R}^d} \left[\varphi(x+z) - \varphi(x) - \mathbf{1}_{\{|z| \leqslant 1\}} z \cdot \nabla \varphi(x) \right] \mu(x, \mathrm{d}z), \end{split}$$

where for each $x \in \mathbb{R}^d$,

- $-a(x) = (a_{i,j}(x))$ is a non-negative real symmetric $d \times d$ -matrix,
- -b(x) is a real vector-valued function,
- $-c(x) \ge 0$,
- the measure $\mu(x, dz)$ satisfies

$$\int_{\mathbb{R}^d} \left(1 \wedge |z|^2\right) \mu(x, \mathrm{d} z) < \infty.$$

Consider the following non-local and non-symmetric operator:

$$\mathscr{L}_{\mu}\varphi(x) := \int_{\mathbb{R}^d} \big[\varphi(x+z) - \varphi(x) - \mathbbm{1}_{\{|z|\leqslant 1\}} z \cdot \nabla \varphi(x) \big] \mu(x, \mathrm{d} z).$$

In particular, when

$$\mu(x, \mathrm{d}z) = a(x) \frac{\mathrm{d}z}{|z|^{d+\alpha}}, \quad \alpha \in (0, 2),$$

we have

$$\mathscr{L}_{\mu} = a(x)\Delta^{\alpha/2}.$$

The operator \mathscr{L}_{μ} was studied mainly by the theory of PDEs. Under certain assumptions, there exists a Markov process X_t with \mathscr{L}_{μ} as its generator. We want to study X_t via Itô's SDE.

The operator \mathscr{L}_{μ} was studied mainly by the theory of PDEs. Under certain assumptions, there exists a Markov process X_t with \mathscr{L}_{μ} as its generator. We want to study X_t via Itô's SDE.

Notice that the usual SDEs driven by Lévy processes does not fit here.

Let *m* the Lebesgue measure, and *N* be a Poisson random measure on $\mathbb{R}^d \times [0, \infty) \times [0, \infty)$ with mean measure $\nu \times m \times m$, where ν is a Lévy measure. Set for $A \in \mathscr{B}(\mathbb{R}^d \times [0, \infty) \times [0, \infty))$,

$$\tilde{N}(A) := N(A) - \nu \times m \times m(A).$$

Consider the following SDE:

$$\begin{split} X_t &= x + \int_0^t \int_0^\infty \int_{|z| \leq 1} \mathbf{1}_{[0,\sigma(X_{s-},z)]}(r) z \tilde{N}(\mathrm{d}z \times \mathrm{d}r \times \mathrm{d}s) \\ &+ \int_0^t \int_0^\infty \int_{|z| > 1} \mathbf{1}_{[0,\sigma(X_{s-},z)]}(r) z N(\mathrm{d}z \times \mathrm{d}r \times \mathrm{d}s) + \int_0^t b(X_s) \mathrm{d}s. \end{split}$$

The infinitesimal generator of X_t is given by

$$\begin{aligned} \mathscr{L}f(x) &= \int_{\mathbb{R}^d} \left[f(x+z) - f(x) - \mathbb{1}_{\{|z| \leq 1\}} z \cdot \nabla f(x) \right] \sigma(x,z) \nu(\mathrm{d} z) \\ &+ b(x) \cdot \nabla f(x). \end{aligned}$$

- (日)

The infinitesimal generator of X_t is given by

$$\begin{aligned} \mathscr{L}f(x) &= \int_{\mathbb{R}^d} \left[f(x+z) - f(x) - \mathbb{1}_{\{|z| \leq 1\}} z \cdot \nabla f(x) \right] \sigma(x,z) \nu(\mathrm{d} z) \\ &+ b(x) \cdot \nabla f(x). \end{aligned}$$

Aim: Solve the SDE with singular coefficients which has \mathscr{L} as generator.

Background

◊ T. Kurtz and P. Protter (1996), T. Kurtz (2010):

$$\int_{\mathbb{R}^d} |\sigma(x,z) - \sigma(y,z)| \cdot |z|
u(\mathrm{d} z) \leqslant C_1 |x-y|,$$

and with some other assumptions.

Background

♦ T. Kurtz and P. Protter (1996), T. Kurtz (2010):

<u>Conditions</u>: • b is bounded and global Lipschitz continuous; • σ satisfies

$$\int_{\mathbb{R}^d} |\sigma(x,z) - \sigma(y,z)| \cdot |z| \nu(\mathrm{d} z) \leqslant C_1 |x-y|,$$

and with some other assumptions.

Notice that when $\sigma \equiv 0$, it is an ODE:

$$x'(t) = b(x(t)), \quad x(0) = x_0,$$

which is in general ill-posed if b is not Lipschitz continuous.

Background

♦ T. Kurtz and P. Protter (1996), T. Kurtz (2010):

<u>Conditions</u>: • b is bounded and global Lipschitz continuous; • σ satisfies

$$\int_{\mathbb{R}^d} |\sigma(x,z) - \sigma(y,z)| \cdot |z| \nu(\mathrm{d} z) \leqslant C_1 |x-y|,$$

and with some other assumptions.

Notice that when $\sigma \equiv 0$, it is an ODE:

$$x'(t) = b(x(t)), \quad x(0) = x_0,$$

which is in general ill-posed if b is not Lipschitz continuous.

It is interesting to find that noises may produce some regularization effects.

SDEs driven by Brownian motion:

• N. V. Krylov and M. Röckner (2005, PTRF):

$$\mathrm{d}X_t = \mathrm{d}W_t + b(X_t)\mathrm{d}t, \quad X_0 = x.$$

<u>Condition</u>: $b \in L^p(\mathbb{R}^d)$ with p > d.

• X. Zhang (2005, SPA):

$$\mathrm{d}X_t = \sigma(X_t)\mathrm{d}W_t + b(X_t)\mathrm{d}t, \quad X_0 = x.$$

<u>Condition</u>: σ is uniformly continuous in x, bounded and uniformly elliptic and $\nabla \sigma \in L^p(\mathbb{R}^d)$ with p > d.

SDEs driven by pure jump Lévy process:

$$\mathrm{d}X_t = \mathrm{d}L_t + b(X_t)\mathrm{d}t, \quad X_0 = x \in \mathbb{R}^d,$$

where L_t is a symmetric α -stable process with $\alpha \in (0, 2)$.

• Tanaka, Tsuchiya and Watanabe (1974, JMKU): When d = 1, $\alpha < 1$, b is bounded and β -Hölder continuous with $\alpha + \beta < 1$, SDE may not has pathwise uniqueness strong solutions. SDEs driven by pure jump Lévy process:

$$\mathrm{d}X_t = \mathrm{d}L_t + b(X_t)\mathrm{d}t, \quad X_0 = x \in \mathbb{R}^d,$$

where L_t is a symmetric α -stable process with $\alpha \in (0, 2)$.

- Tanaka, Tsuchiya and Watanabe (1974, JMKU): When d = 1, $\alpha < 1$, b is bounded and β -Hölder continuous with $\alpha + \beta < 1$, SDE may not has pathwise uniqueness strong solutions.
- Priola (2012, OJM): <u>Condition</u>: $\alpha \ge 1$, *b* is bounded and β -Hölder continuous with $\beta > 1 - \alpha/2$.
- Zhang (2013, Poincare):

<u>Condition</u>: $\alpha > 1$, $b \in L^{\infty}(\mathbb{R}^d) \cap W^{\beta,p}(\mathbb{R}^d)$ with $p > 2d/\alpha$ and $\beta \in (1 - \alpha/2, 1)$.

Main result

Recall that

$$\begin{aligned} X_t &= x + \int_0^t \int_0^\infty \int_{|z| \leq 1} \mathbf{1}_{[0,\sigma(X_{s-},z)]}(r) z \tilde{N}(\mathrm{d}z \times \mathrm{d}r \times \mathrm{d}s) \\ &+ \int_0^t \int_0^\infty \int_{|z| > 1} \mathbf{1}_{[0,\sigma(X_{s-},z)]}(r) z \mathcal{N}(\mathrm{d}z \times \mathrm{d}r \times \mathrm{d}s) + \int_0^t b(X_s) \mathrm{d}s. \end{aligned}$$
(3.1)

Its generator is given by

$$\begin{aligned} \mathscr{L}f(x) &= \int_{\mathbb{R}^d} \left[f(x+z) - f(x) - \mathbf{1}_{\{|z| \leq 1\}} z \cdot \nabla f(x) \right] \sigma(x,z) \nu(\mathrm{d}z) \\ &+ b(x) \cdot \nabla f(x) \\ &=: \mathscr{L}_{\nu}f(x) + b(x) \cdot \nabla f(x). \end{aligned}$$

Conditions 1.:

 \diamond For all $x \in \mathbb{R}^d$,

$$\sigma(x,z) = \sigma(x,-z), \quad \forall z \in \mathbb{R}^d,$$
(3.2)

and for all $x, y \in B_n$, there exists $\beta \in (0, 1)$ such that

$$k_0^n \leqslant \sigma(x,z) \leqslant k_1^n, \ |\sigma(x,z) - \sigma(y,z)| \leqslant C_n |x-y|^{\beta}, \ \forall z \in \mathbb{R}^d.$$
 (3.3)

 \diamond There exists a function κ such that

$$\nu(\mathrm{d} z) = \frac{\kappa(z)}{|z|^{d+\alpha}} \mathrm{d} z, \ \kappa(z) = \kappa(-z), \ \kappa_0 \leqslant \kappa(z) \leqslant \kappa_1, \tag{3.4}$$

with $\alpha \in (1, 2)$.

Conditions 2.:

♦ There exists a function $g \in L^q(B_n)$ with $q > d/\alpha$, such that for almost all $x, y \in B_n$,

$$\int_{\mathbb{R}^d} |\sigma(x,z) - \sigma(y,z)| (|z| \wedge 1)\nu(\mathrm{d} z) \leqslant |x-y| \Big(g(x) + g(y)\Big).$$
(3.5)

 $\diamond \ b \in L^{\infty}(B_n) \cap W^{\theta,p}(B_n)$ with p > 2d/lpha and $\theta \in (1 - lpha/2, 1)$.

Theorem 1

For each $x \in \mathbb{R}^d$, there exists an stopping time $\varsigma(x)$ (called the explosion time) and a unique strong solution $X_t(x)$ to SDE (3.1) such that

$$\lim_{t\uparrow\varsigma(x)}X_t(x)=\infty, \quad a.s.. \tag{3.6}$$

Theorem 1

For each $x \in \mathbb{R}^d$, there exists an stopping time $\varsigma(x)$ (called the explosion time) and a unique strong solution $X_t(x)$ to SDE (3.1) such that

$$\lim_{t \uparrow \varsigma(x)} X_t(x) = \infty, \quad a.s.. \tag{3.6}$$

For a example of σ , we can take

$$\sigma(x,z) = K(z) + \tilde{\sigma}(x)|z|^{\gamma} \text{ for } |z| \leq 1,$$

with $0 < \mathcal{K}_1 \leqslant \mathcal{K}(z) \leqslant \mathcal{K}_2$, $\gamma > lpha - 1$ and

 $\nabla \tilde{\sigma} \in L^q_{loc}(\mathbb{R}^d), \quad q > d/\alpha.$

Since we assume $\alpha > 1$, our theorem can cover the regime $q \in (d/\alpha, d]$.

Basic idea: use Zvonkin's transformation and transform SDE (3.1) into a new one with more regular coefficients.

Basic idea: use Zvonkin's transformation and transform SDE (3.1) into a new one with more regular coefficients.

Difficulties:

1. The operator \mathscr{L}_{ν} is non-local and non-symmetric.

Basic idea: use Zvonkin's transformation and transform SDE (3.1) into a new one with more regular coefficients.

Difficulties:

- 1. The operator \mathscr{L}_{ν} is non-local and non-symmetric.
- 2. Proving the Krylov's estimate and solving the resolvent equation of \mathscr{L}_{ν} in the framework of Sobolev space.

Basic idea: use Zvonkin's transformation and transform SDE (3.1) into a new one with more regular coefficients.

Difficulties:

- 1. The operator \mathscr{L}_{ν} is non-local and non-symmetric.
- 2. Proving the Krylov's estimate and solving the resolvent equation of \mathscr{L}_{ν} in the framework of Sobolev space.
- 3. New challenges appear when dealing with the factor $1_{[0,\sigma(x,z)]} L_1$ -estimate is essential.

Lemma 1 – Krylov's estimate

Let X_t be a strong solution of SDE (3.1). Then, for any T > 0, there exist a constant C_T such that for any $f \in L^p(\mathbb{R}^d)$ with $p > d/\alpha$, we have

$$\mathbb{E}\left(\int_0^T f(X_s) \mathrm{d}s\right) \leqslant C_T \|f\|_p.$$
(3.7)

Proof of the main result

Instead of studying the elliptic equation

$$\lambda u - \mathscr{L}_{\nu} u - b \cdot \nabla u = b,$$

we consider the following integral equation:

$$u(x) = \int_0^\infty e^{-\lambda t} T_t (b \cdot \nabla u + b)(x) dt, \qquad (3.8)$$

where T_t is the semigroup corresponding to \mathscr{L}_{ν} .

Proof of the main result

Instead of studying the elliptic equation

$$\lambda u - \mathscr{L}_{\nu} u - b \cdot \nabla u = b,$$

we consider the following integral equation:

$$u(x) = \int_0^\infty e^{-\lambda t} T_t (b \cdot \nabla u + b)(x) dt, \qquad (3.8)$$

where T_t is the semigroup corresponding to \mathscr{L}_{ν} .

Lemma 2 – Resolvent equation

Let $1 < \gamma < \alpha$. Suppose that for some $p > \frac{d}{\gamma}$ and $0 < \theta \in (1 - \gamma + \frac{d}{p}, 1)$,

$$b\in L^{\infty}(\mathbb{R}^d)\cap\mathbb{W}_p^{ heta}.$$

Then, there exists a function $u \in \mathbb{H}_p^{\gamma+\theta}$ satisfying the integral equation (3.8). Moreover, $\|u\|_{\infty} + \|\nabla u\|_{\infty} \leq \frac{1}{2}$.

Define $\Phi(x) := x + u(x)$. Then, $x \to \Phi(x)$ forms a C^1 -diffeomorphism.

Lemma 3 – Zvonkin transformation

Let X_t solve SDE (3.1). Then, $Y_t := \Phi(X_t)$ satisfies

$$Y_{t} = \Phi(x) + \int_{0}^{t} \int_{0}^{\infty} \int_{|z| \leq 1}^{\infty} \tilde{g}(Y_{s-}, z) \mathbf{1}_{[0, \tilde{\sigma}(Y_{s-}, z)]}(r) \tilde{N}(\mathrm{d}z \times \mathrm{d}r \times \mathrm{d}s) + \int_{0}^{t} \int_{0}^{\infty} \int_{|z| > 1}^{\infty} \tilde{g}(Y_{s-}, z) \mathbf{1}_{[0, \tilde{\sigma}(Y_{s-}, z)]}(r) N(\mathrm{d}z \times \mathrm{d}r \times \mathrm{d}s) + \int_{0}^{t} \tilde{b}(Y_{s}) \mathrm{d}s.$$
(3.9)

The new coefficients:

$$\widetilde{g}(x,z) := \Phi ig(\Phi^{-1}(x) + z ig) - x, \quad \widetilde{\sigma}(x,z) := \sigma ig(\Phi^{-1}(x),z ig).$$

and

$$\begin{split} \tilde{b}(x) &= \lambda u \big(\Phi^{-1}(x) \big) - \int_{|z| > 1} \big[u \big(\Phi^{-1}(x) + z \big) \\ &- u \big(\Phi^{-1}(x) \big) \big] \sigma \big(\Phi^{-1}(x), z \big) \nu(\mathrm{d} z). \end{split}$$

э

Let Y_t and \hat{Y}_t be two strong solutions for SDE (3.9). Define

$$Z_t := Y_t - \hat{Y}_t,$$

Then,

$$Z_{t} = \int_{0}^{t} \int_{0}^{\infty} \int_{|z| \leq 1} \left[\tilde{g}(Y_{s-}, z) \mathbf{1}_{[0, \tilde{\sigma}(Y_{s-}, z)]}(r) - \tilde{g}(\hat{Y}_{s-}, z) \mathbf{1}_{[0, \tilde{\sigma}(\hat{Y}_{s-}, z)]}(r) \right] \tilde{N}(\mathrm{d}z \times \mathrm{d}r \times \mathrm{d}s) + \cdots.$$

► < ∃ ►</p>

We arrive at that for any stopping time τ ,

$$\mathbb{E}\left[\sup_{t\in[0,\tau]}|Z_t|\right]\leqslant C_0\mathbb{E}\int_0^\tau |Z_s|\mathrm{d}A(s)+C_0\mathbb{E}\left(\int_0^\tau |Z_s|^2\mathrm{d}A(s)\right)^{\frac{1}{2}},$$

where $t \mapsto A(t)$ is a continuous strictly increasing process.

This implies that $Z_t \equiv 0, a.e.$.

- Chen Z. and Zhang X.: Heat kernel and analyticity of non-symmetric jump diffusion semigroups. Prob. Theory and Related Fields.
- Krylov N. V. and Röckner M.: Strong solutions of stochastic equations with singular time dependent drift. Probab. Theory Related Fields.
- Kurtz T. G.: Equivalence of Stochastic Equations and Martingale Problems. Stochastic Analysis.
- Kurtz T. G. and Protter P. E.: Weak convergence of stochastic integrals and differential equations. II. Infinite-dimensional case. Lecture Notes in Math..

- Priola E.: Pathwise uniqueness for singular SDEs driven by stable processes. Osaka Journal of Mathematics.
- Tanaka H., Tsuchiya M. and Watanabe S.: Perturbation of drift-type for Lévy processes. J. Math. Kyoto Univ..
- Zhang X.: Strong solutions of SDEs with singular drift and Sobolev diffusion coefficients. Stoch. Proc. Appl..
- **Chang X.**: Stochastic differential equations with Sobolev drifts and driven by α-stable processes. Ann. Inst. H. Poincare Probab. Statist..

Thank You !

Longjie Xie (Jiangsu Normal University) Singular SDEs driven by Markov processes

• • • • • • • • • •