A dichotomy for CLT in total variation

Aihua Xia（夏爱华）
School of Mathematics and Statistics
The University of Melbourne，VIC 3010

16 July， 2016

Lebesgue decomposition

- Every distribution F on \mathbb{R} can be written as

$$
F=p F_{s}+(1-p) F_{a},
$$

where $p \in[0,1], F_{s}$ is singular and F_{a} is absolutely continuous with respect to the Lebesgue measure.

- Our reference measure is the Lebesgue measure because our limit is the normal distribution.

Some elementary observations

- Let X_{i} 's be iid taking values 0 and 1 with equal probability, then
$-X=\sum_{k=1}^{\infty} 2^{-k} X_{k}$ has uniform distribution on $(0,1)$: this is a binary expansion.
- $Y=3 \sum_{r=1}^{\infty} 4^{-r} X_{r}$ has singular distribution on $(0,1)$ and is called Cantor-type distribution.
$-U=\sum_{k=1}^{\infty} 2^{-2 k} X_{2 k}, V=\sum_{k=1}^{\infty} 2^{-(2 k-1)} X_{2 k-1}$, then U and V are independent, $U \stackrel{\text { d }}{=} 2 V$, both U and V have singular distributions.
* The sum of independent singular rvs may be absolutely continuous!
$-V \stackrel{\text { d }}{=} \frac{2}{3} Y$.

Berry-Esseen thm

Let η_{i} 's be iid with $\mathbb{E} \eta_{i}=0, \operatorname{Var}\left(\eta_{i}\right)=1$ and finite third moment, $Y_{n}=\frac{\sum_{i=1}^{n} \eta_{i}}{\sqrt{n}}$, then

$$
d_{K}\left(Y_{n}, Z\right):=\sup _{x \in \mathbb{R}}\left|\mathbb{P}\left(Y_{n} \leq x\right)-\mathbb{P}(Z \leq x)\right| \leq \frac{c \mathbb{E}\left|\eta_{1}\right|^{3}}{\sqrt{n}},
$$

where $Z \sim N(0,1)$.

Questions

1. What is the speed of convergence in the total variation:

$$
d_{T V}\left(Y_{n}, Z\right):=\sup _{A \in \mathscr{B}(\mathbb{R})}\left|\mathbb{P}\left(Y_{n} \in A\right)-\mathbb{P}(Z \in A)\right| ?
$$

2. How about a sequence with dependence?

Known results: all under independence

- Prohorov (1952): $d_{T V}\left(Y_{n}, Z\right) \equiv 1$ for all n or $d_{T V}\left(Y_{n}, Z\right)=o(1)$.
- If $\mathbb{E}\left|\eta_{1}\right|^{3}<\infty, d_{T V}\left(Y_{n}, Z\right)=o\left(n^{-1 / 2}(\ln n)^{1 / 2}\right)$.
- Bally and Caramellino (2016): generalisation to higher dimension with mixture distribution, in particular, $d_{T V}\left(Y_{n}, Z\right)=O\left(n^{-1 / 2}\right)$.

How to get there?

1. Characteristic functions.
2. Coupling method.
3. Stein's method.

A proof using Stein's method

- Integration by parts and Stein's method: for differentiable bounded function f on \mathbb{R} with bounded derivative f^{\prime}, let ϕ be the pdf of Z, then

$$
\mathbb{E} f^{\prime}(Z)=\int f^{\prime}(z) \phi(z) d z=\int z f(z) \phi(z) d z=\mathbb{E} Z f(Z) .
$$

- $Z \sim N(0,1)$ iff

$$
\mathbb{E}\left[f^{\prime}(Z)-Z f(Z)\right]=0
$$

for a sufficiently rich class of functions f.

- For an $A \in \mathscr{B}(\mathbb{R})$, we want to estimate $\mathbb{E} \mathbf{1}_{A}\left(Y_{n}\right)-\mathbb{E} \mathbf{1}_{A}(Z)$, so we consider

$$
f^{\prime}(w)-w f(w)=\mathbf{1}_{A}(w)-\mathbb{E} \mathbf{1}_{A}(Z) .
$$

- This is called Stein's equation.
- One can solve the differential equation to get

$$
\begin{aligned}
f_{A}(w) & =e^{w^{2} / 2} \int_{-\infty}^{w}\left(\mathbf{1}_{A}(x)-\mathbb{E} \mathbf{1}_{A}(Z)\right) e^{-x^{2} / 2} d x \\
& =-e^{-w^{2} / 2} \int_{w}^{\infty}\left(\mathbf{1}_{A}(x)-\mathbb{E} \mathbf{1}_{A}(Z)\right) e^{-x^{2} / 2} d x
\end{aligned}
$$

- The properties of f_{A} :

$$
\left\|f_{A}^{\prime}\right\|:=\sup _{x \in \mathbb{R}}\left|f_{A}^{\prime}(x)\right| \leq 2\left\|\mathbf{1}_{A}(\cdot)-\mathbb{E} \mathbf{1}_{A}(Z)\right\| \leq 2
$$

- If there exists an m_{0} such that $d_{T V}\left(Y_{m_{0}}, Z\right)<1$, we can define $\eta_{i}^{\prime}=\sum_{j=(i-1) m_{0}+1}^{i m_{0}} \eta_{j}$, so without loss, we assume $d_{T V}\left(\eta_{1}, Z\right)<1$.
- Write $Y_{n}^{\prime}=Y_{n}-\eta_{1} / \sqrt{n}$, then

$$
\begin{aligned}
& \mathbb{E}\left[f^{\prime}\left(Y_{n}\right)-Y_{n} f\left(Y_{n}\right)\right]=\ldots \\
& =\mathbb{E}\left\{\mathbb{E}\left[f^{\prime}\left(Y_{n}^{\prime}+\eta_{1} / \sqrt{n}\right)-f^{\prime}\left(Y_{n}^{\prime}\right) \mid \eta_{1}\right]\right\} \\
& -\int_{0}^{1} \mathbb{E}\left\{\eta_{1}^{2} \mathbb{E}\left[f^{\prime}\left(Y_{n}^{\prime}+u \eta_{1} / \sqrt{n}\right)-f^{\prime}\left(Y_{n}^{\prime}\right) \mid \eta_{1}\right]\right\} d u .
\end{aligned}
$$

- The estimate:

$$
\begin{aligned}
&\left|\mathbb{P}\left(Y_{n} \in A\right)-\mathbb{P}(Z \in A)\right| \\
&=\left|\mathbb{E}\left[f^{\prime}\left(Y_{n}\right)-Y_{n} f\left(Y_{n}\right)\right]\right| \\
& \leq 2\left\|f^{\prime}\right\| \int_{\mathbb{R}} d_{T V}\left(Y_{n}^{\prime}, Y_{n}^{\prime}+r / \sqrt{n}\right) d F_{\eta_{1}}(r) \\
&+2\left\|f^{\prime}\right\| \int_{0}^{1} \int_{\mathbb{R}} r^{2} d_{T V}\left(Y_{n}^{\prime}, Y_{n}^{\prime}+u r / \sqrt{n}\right) d F_{\eta_{1}}(r) d u \\
& \leq 4 \int_{\mathbb{R}} d_{T V}\left(Y_{n}^{\prime}, Y_{n}^{\prime}+r / \sqrt{n}\right) d F_{\eta_{1}}(r) \\
&+4 \int_{0}^{1} \int_{\mathbb{R}} r^{2} d_{T V}\left(Y_{n}^{\prime}, Y_{n}^{\prime}+u r / \sqrt{n}\right) d F_{\eta_{1}}(r) d u
\end{aligned}
$$

What's crucial?

- $d_{T V}\left(Y_{n}, Y_{n}+v / \sqrt{n}\right)=d_{T V}\left(S_{n}, S_{n}+v\right)$, where $S_{n}=\sum_{i=1}^{n} \eta_{i}$.
- Assume ξ_{1}, \ldots, ξ_{n} are iid random variables having the triangular density function

$$
\kappa_{a}(x)= \begin{cases}\frac{1}{a}\left(1-\frac{|x|}{a}\right), & \text { for }|x| \leq a \tag{1}\\ 0, & \text { for }|x|>a\end{cases}
$$

where $a>0$. Let $T_{n}=\sum_{i=1}^{n} \xi_{i}$. Then for any $\gamma>0$,

$$
\begin{equation*}
d_{T V}\left(T_{n}, T_{n}+\gamma\right) \leq \frac{\gamma}{a}\left\{\sqrt{\frac{3}{\pi n}}+\frac{2}{(2 n-1) \pi^{2 n}}\right\} \tag{2}
\end{equation*}
$$

Why?

- The pdf of T_{n} is symmetric and unimodel.
- NB The convolution of two unimodal pdfs is generally not unimodal
- Let G_{n} and g_{n} be the cdf and pdf of T_{n}, then

$$
d_{T V}\left(T_{n}, T_{n}+r\right)=\sup _{x}\left|G_{n}(x)-G_{n}(x-r)\right|=\int_{-r / 2}^{r / 2} g_{n}(x) d x
$$

- $g_{n}(0) \leq \frac{1}{a}\left\{\sqrt{\frac{3}{\pi n}}+\frac{2}{(2 n-1) \pi^{2 n}}\right\} . \square$

Mixing distribution

If F is non-singular, then there exist $a>0, u \in \mathbb{R}$ and $\theta \in(0,1]$ such that, with H_{1} being the distribution of κ_{a},

$$
F^{2 *}=(1-\theta) H_{2}+\theta H_{1} * \delta_{u} .
$$

Why? F is non-singular so there exists a bounded function with bounded support $f_{0} \not \equiv 0$ such that $F(A) \geq \int_{A} f_{0}(x) d x$. Then $f_{0}^{2 *}$ is continuous.

The bound

For $v>0$, we have

$$
d_{T V}\left(S_{n}, S_{n}+v\right) \leq(v \vee 1) O\left(n^{-1 / 2}\right)
$$

where $O\left(n^{-1 / 2}\right)$ does not depend on v.

Why?

- Let $\xi_{1}=\eta_{1}+\eta_{2}, \xi_{2}=\eta_{3}+\eta_{4}, \ldots$, then ξ_{i} has a mixture distribution with one component of being triangular.
- $m=\lfloor n / 2\rfloor$, there exists $X_{1 j} \sim H_{1}, X_{2 j} \sim H_{2}$ and $X_{3 j} \sim \operatorname{Bernoulli}(\theta)$ such that

$$
S_{m}^{\prime}:=\sum_{j=1}^{m}\left[\left(X_{1 j}+u\right) X_{3 j}+X_{2 j}\left(1-X_{3 j}\right)\right] \stackrel{\mathrm{d}}{=} \sum_{i=1}^{m} \xi_{i}
$$

- Let $I=\sum_{j=1}^{m} X_{3 j} \sim \operatorname{Bi}(m, \theta)$, then

$$
S_{m}^{\prime} \sim \sum_{k=0}^{m} \mathbb{P}(I=k)\left(H_{1}+\delta_{u}\right)^{k *} * H_{2}^{(m-k) *}
$$

- $\mathbb{P}(I \leq\lfloor 0.5 m \theta\rfloor-1)=O\left(m^{-1}\right)$.
- For $k \geq\lfloor 0.5 m \theta\rfloor$, it gives bound $\gamma\left(m^{-1 / 2}\right)$. \square

Remarks

- ChFs can work easily from identical distribution to non-identical distributions, with some complexity of formulation.
- ChFs fail completely when dependence is present.
- From independence to dependence: yes, a mixing condition is needed and the variance of S_{n} must become large when $n \rightarrow \infty$.

A warning example

- Recall that we can define independent U and V such that both are singular but $U+V \sim$ uniform.
- Let $U_{i} \stackrel{\mathrm{~d}}{=} U-\mathbb{E} U$ and $V_{i} \stackrel{\mathrm{~d}}{=} V-\mathbb{E} V$ be all independent.
- Consider

$$
\left(U_{0}+V_{1}\right)+\left(-V_{1}-U_{1}\right)+\left(U_{1}+V_{2}\right)+\left(-V_{2}-U_{2}\right)+\ldots
$$

- This sequence is 1-dependent.
$-\left(U_{0}+V_{1}\right),\left(-V_{1}-U_{1}\right), \ldots$ all follow the uniform distribution on $(-0.5,0.5)$.
- No CLT for the sum.
- Hence, mixing condition is not enough: more is needed.

A puzzling fact

- By ChFs, when η_{i} 's are iid with $k \geq 3$ moments, $d_{T V}\left(Y_{n}, Z\right)=O\left(n^{(k-2) / 2}\right)$.
- For $k>3$, Stein's method has never achieved such a result.

Thank you!

