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Lebesgue decomposition

• Every distribution F on R can be written as

F = pFs + (1− p)Fa,

where p ∈ [0, 1], Fs is singular and Fa is absolutely

continuous with respect to the Lebesgue measure.

– Our reference measure is the Lebesgue measure

because our limit is the normal distribution.
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Some elementary observations

• Let Xi’s be iid taking values 0 and 1 with equal

probability, then

– X =
∑∞

k=1 2−kXk has uniform distribution on (0, 1):

this is a binary expansion.

– Y = 3
∑∞

r=1 4−rXr has singular distribution on (0, 1)

and is called Cantor-type distribution.

– U =
∑∞

k=1 2−2kX2k, V =
∑∞

k=1 2−(2k−1)X2k−1, then U

and V are independent, U
d
= 2V , both U and V have

singular distributions.

∗ The sum of independent singular rvs may be

absolutely continuous!

– V
d
= 2

3Y .
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Berry-Esseen thm

Let ηi’s be iid with Eηi = 0, Var(ηi) = 1 and finite third

moment, Yn =
∑n

i=1 ηi√
n

, then

dK(Yn, Z) := sup
x∈R
|P(Yn ≤ x)− P(Z ≤ x)| ≤ cE|η1|3√

n
,

where Z ∼ N(0, 1).
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Questions

1. What is the speed of convergence in the total variation:

dTV (Yn, Z) := sup
A∈B(R)

|P(Yn ∈ A)− P(Z ∈ A)|?

2. How about a sequence with dependence?
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Known results: all under independence

• Prohorov (1952): dTV (Yn, Z) ≡ 1 for all n or

dTV (Yn, Z) = o(1).

– If E|η1|3 <∞, dTV (Yn, Z) = o(n−1/2(lnn)1/2).

• Bally and Caramellino (2016): generalisation to higher

dimension with mixture distribution, in particular,

dTV (Yn, Z) = O(n−1/2).
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How to get there?

1. Characteristic functions.

2. Coupling method.

3. Stein’s method.
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A proof using Stein’s method

• Integration by parts and Stein’s method: for differentiable

bounded function f on R with bounded derivative f ′, let

φ be the pdf of Z, then

Ef ′(Z) =

∫
f ′(z)φ(z)dz =

∫
zf(z)φ(z)dz = EZf(Z).

• Z ∼ N(0, 1) iff

E[f ′(Z)− Zf(Z)] = 0

for a sufficiently rich class of functions f .
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• For an A ∈ B(R), we want to estimate

E1A(Yn)− E1A(Z), so we consider

f ′(w)− wf(w) = 1A(w)− E1A(Z).

– This is called Stein’s equation.

– One can solve the differential equation to get

fA(w) = ew
2/2

∫ w

−∞
(1A(x)− E1A(Z))e−x

2/2dx

= −e−w2/2

∫ ∞
w

(1A(x)− E1A(Z))e−x
2/2dx.

– The properties of fA:

‖f ′A‖ := sup
x∈R

∣∣f ′A(x)
∣∣ ≤ 2‖1A(·)− E1A(Z)‖ ≤ 2.
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• If there exists an m0 such that dTV (Ym0 , Z) < 1, we can

define η′i =
∑im0

j=(i−1)m0+1 ηj , so without loss, we assume

dTV (η1, Z) < 1.

• Write Y ′n = Yn − η1/
√
n, then

E[f ′(Yn)− Ynf(Yn)] = . . .

= E
{

E
[
f ′(Y ′n + η1/

√
n)− f ′(Y ′n)|η1

]}
−
∫ 1

0
E
{
η21E

[
f ′(Y ′n + uη1/

√
n)− f ′(Y ′n)|η1

]}
du.
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• The estimate:

|P(Yn ∈ A)− P(Z ∈ A)|

=
∣∣E[f ′(Yn)− Ynf(Yn)]

∣∣
≤ 2‖f ′‖

∫
R
dTV (Y ′n, Y

′
n + r/

√
n)dFη1(r)

+2‖f ′‖
∫ 1

0

∫
R
r2dTV (Y ′n, Y

′
n + ur/

√
n)dFη1(r)du

≤ 4

∫
R
dTV (Y ′n, Y

′
n + r/

√
n)dFη1(r)

+4

∫ 1

0

∫
R
r2dTV (Y ′n, Y

′
n + ur/

√
n)dFη1(r)du.
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What’s crucial?

• dTV (Yn, Yn + v/
√
n) = dTV (Sn, Sn + v), where

Sn =
∑n

i=1 ηi.

• Assume ξ1, . . . , ξn are iid random variables having the

triangular density function

κa(x) =


1
a

(
1− |x|a

)
, for |x| ≤ a,

0, for |x| > a,
(1)

where a > 0. Let Tn =
∑n

i=1 ξi. Then for any γ > 0,

dTV (Tn, Tn + γ) ≤ γ

a

{√
3

πn
+

2

(2n− 1)π2n

}
. (2)
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Why?

• The pdf of Tn is symmetric and unimodel.

– NB The convolution of two unimodal pdfs is

generally not unimodal

• Let Gn and gn be the cdf and pdf of Tn, then

dTV (Tn, Tn+r) = sup
x
|Gn(x)−Gn(x− r)| =

∫ r/2

−r/2
gn(x)dx.

• gn(0) ≤ 1
a

{√
3
πn + 2

(2n−1)π2n

}
. �
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Mixing distribution

If F is non-singular, then there exist a > 0, u ∈ R and

θ ∈ (0, 1] such that, with H1 being the distribution of κa,

F 2∗ = (1− θ)H2 + θH1 ∗ δu.

Why? F is non-singular so there exists a bounded function

with bounded support f0 6≡ 0 such that F (A) ≥
∫
A f0(x)dx.

Then f2∗0 is continuous.
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The bound

For v > 0, we have

dTV (Sn, Sn + v) ≤ (v ∨ 1)O(n−1/2),

where O(n−1/2) does not depend on v.
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Why?

• Let ξ1 = η1 + η2, ξ2 = η3 + η4, ..., then ξi has a mixture

distribution with one component of being triangular.

• m = bn/2c, there exists X1j ∼ H1, X2j ∼ H2 and

X3j ∼Bernoulli(θ) such that

S′m :=
m∑
j=1

[(X1j + u)X3j +X2j(1−X3j)]
d
=

m∑
i=1

ξi.

• Let I =
∑m

j=1X3j ∼Bi(m, θ), then

S′m ∼
m∑

k=0

P(I = k)(H1 + δu)k∗ ∗H(m−k)∗
2 .

• P(I ≤ b0.5mθc − 1) = O(m−1).

• For k ≥ b0.5mθc, it gives bound γ(m−1/2). �
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Remarks

• ChFs can work easily from identical distribution to

non-identical distributions, with some complexity of

formulation.

• ChFs fail completely when dependence is present.

• From independence to dependence: yes, a mixing

condition is needed and the variance of Sn must become

large when n→∞.

[Slide 17]



A warning example

• Recall that we can define independent U and V such that

both are singular but U + V ∼uniform.

• Let Ui
d
= U − EU and Vi

d
= V − EV be all independent.

• Consider

(U0 + V1) + (−V1 − U1) + (U1 + V2) + (−V2 − U2) + . . .

– This sequence is 1-dependent.

– (U0 + V1), (−V1 − U1), . . . all follow the uniform

distribution on (−0.5, 0.5).

– No CLT for the sum.

– Hence, mixing condition is not enough: more is

needed.
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A puzzling fact

• By ChFs, when ηi’s are iid with k ≥ 3 moments,

dTV (Yn, Z) = O(n(k−2)/2).

• For k > 3, Stein’s method has never achieved such a

result.
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Thank you!
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