A dichotomy for CLT in total variation

Aihua Xia (夏爱华)

School of Mathematics and Statistics

The University of Melbourne, VIC 3010

16 July, 2016

Lebesgue decomposition

• Every distribution F on \mathbb{R} can be written as

$$F = pF_s + (1-p)F_a,$$

where $p \in [0, 1]$, F_s is singular and F_a is absolutely continuous with respect to the Lebesgue measure.

 Our reference measure is the Lebesgue measure because our limit is the normal distribution.

Some elementary observations

- Let X_i 's be iid taking values 0 and 1 with equal probability, then
 - $X = \sum_{k=1}^{\infty} 2^{-k} X_k$ has uniform distribution on (0, 1): this is a binary expansion.
 - $Y = 3 \sum_{r=1}^{\infty} 4^{-r} X_r$ has singular distribution on (0, 1)and is called *Cantor-type* distribution.
 - $U = \sum_{k=1}^{\infty} 2^{-2k} X_{2k}, V = \sum_{k=1}^{\infty} 2^{-(2k-1)} X_{2k-1}$, then U and V are independent, $U \stackrel{d}{=} 2V$, both U and V have singular distributions.
 - * The sum of independent singular rvs may be absolutely continuous!

$$-V \stackrel{\mathrm{d}}{=} \frac{2}{3}Y.$$

Berry-Esseen thm

Let η_i 's be iid with $\mathbb{E}\eta_i = 0$, $\operatorname{Var}(\eta_i) = 1$ and finite third moment, $Y_n = \frac{\sum_{i=1}^n \eta_i}{\sqrt{n}}$, then

$$d_K(Y_n, Z) := \sup_{x \in \mathbb{R}} |\mathbb{P}(Y_n \le x) - \mathbb{P}(Z \le x)| \le \frac{c\mathbb{E}|\eta_1|^3}{\sqrt{n}},$$

where $Z \sim N(0, 1)$.

Questions

1. What is the speed of convergence in the total variation:

$$d_{TV}(Y_n, Z) := \sup_{A \in \mathscr{B}(\mathbb{R})} |\mathbb{P}(Y_n \in A) - \mathbb{P}(Z \in A)|?$$

2. How about a sequence with dependence?

Known results: all under independence

• Prohorov (1952): $d_{TV}(Y_n, Z) \equiv 1$ for all n or $d_{TV}(Y_n, Z) = o(1)$.

- If $\mathbb{E}|\eta_1|^3 < \infty$, $d_{TV}(Y_n, Z) = o(n^{-1/2}(\ln n)^{1/2})$.

• Bally and Caramellino (2016): generalisation to higher dimension with mixture distribution, in particular, $d_{TV}(Y_n, Z) = O(n^{-1/2}).$

How to get there?

- 1. Characteristic functions.
- 2. Coupling method.
- 3. Stein's method.

A proof using Stein's method

Integration by parts and Stein's method: for differentiable bounded function f on R with bounded derivative f', let φ be the pdf of Z, then

$$\mathbb{E}f'(Z) = \int f'(z)\phi(z)dz = \int zf(z)\phi(z)dz = \mathbb{E}Zf(Z).$$

•
$$Z \sim N(0,1)$$
 iff

$$\mathbb{E}[f'(Z) - Zf(Z)] = 0$$

for a sufficiently rich class of functions f.

• For an $A \in \mathscr{B}(\mathbb{R})$, we want to estimate $\mathbb{E}\mathbf{1}_A(Y_n) - \mathbb{E}\mathbf{1}_A(Z)$, so we consider

$$f'(w) - wf(w) = \mathbf{1}_A(w) - \mathbb{E}\mathbf{1}_A(Z).$$

- This is called *Stein's equation*.
- One can solve the differential equation to get

$$f_A(w) = e^{w^2/2} \int_{-\infty}^w (\mathbf{1}_A(x) - \mathbb{E}\mathbf{1}_A(Z))e^{-x^2/2}dx$$
$$= -e^{-w^2/2} \int_w^\infty (\mathbf{1}_A(x) - \mathbb{E}\mathbf{1}_A(Z))e^{-x^2/2}dx.$$

– The properties of f_A :

$$\|f'_A\| := \sup_{x \in \mathbb{R}} \left| f'_A(x) \right| \le 2 \|\mathbf{1}_A(\cdot) - \mathbb{E}\mathbf{1}_A(Z)\| \le 2.$$

• If there exists an m_0 such that $d_{TV}(Y_{m_0}, Z) < 1$, we can define $\eta'_i = \sum_{j=(i-1)m_0+1}^{im_0} \eta_j$, so without loss, we assume $d_{TV}(\eta_1, Z) < 1$.

• Write
$$Y'_n = Y_n - \eta_1 / \sqrt{n}$$
, then

$$\mathbb{E}[f'(Y_n) - Y_n f(Y_n)] = \dots$$

= $\mathbb{E} \left\{ \mathbb{E} \left[f'(Y'_n + \eta_1 / \sqrt{n}) - f'(Y'_n) | \eta_1 \right] \right\}$
- $\int_0^1 \mathbb{E} \left\{ \eta_1^2 \mathbb{E} \left[f'(Y'_n + u\eta_1 / \sqrt{n}) - f'(Y'_n) | \eta_1 \right] \right\} du.$

• The estimate:

$$\begin{split} |\mathbb{P}(Y_n \in A) - \mathbb{P}(Z \in A)| \\ &= \left| \mathbb{E}[f'(Y_n) - Y_n f(Y_n)] \right| \\ &\leq 2 \|f'\| \int_{\mathbb{R}} d_{TV}(Y'_n, Y'_n + r/\sqrt{n}) dF_{\eta_1}(r) \\ &+ 2 \|f'\| \int_0^1 \int_{\mathbb{R}} r^2 d_{TV}(Y'_n, Y'_n + ur/\sqrt{n}) dF_{\eta_1}(r) du \\ &\leq 4 \int_{\mathbb{R}} d_{TV}(Y'_n, Y'_n + r/\sqrt{n}) dF_{\eta_1}(r) \\ &+ 4 \int_0^1 \int_{\mathbb{R}} r^2 d_{TV}(Y'_n, Y'_n + ur/\sqrt{n}) dF_{\eta_1}(r) du. \end{split}$$

What's crucial?

- $d_{TV}(Y_n, Y_n + v/\sqrt{n}) = d_{TV}(S_n, S_n + v)$, where $S_n = \sum_{i=1}^n \eta_i$.
- Assume ξ_1, \ldots, ξ_n are iid random variables having the triangular density function

$$\kappa_a(x) = \begin{cases} \frac{1}{a} \left(1 - \frac{|x|}{a} \right), & \text{for } |x| \le a, \\ 0, & \text{for } |x| > a, \end{cases}$$
(1)

where a > 0. Let $T_n = \sum_{i=1}^n \xi_i$. Then for any $\gamma > 0$,

$$d_{TV}(T_n, T_n + \gamma) \le \frac{\gamma}{a} \left\{ \sqrt{\frac{3}{\pi n}} + \frac{2}{(2n-1)\pi^{2n}} \right\}.$$
 (2)

Why?

- The pdf of T_n is symmetric and unimodel.
 - NB The convolution of two unimodal pdfs is generally not unimodal
- Let G_n and g_n be the cdf and pdf of T_n , then

$$d_{TV}(T_n, T_n + r) = \sup_x |G_n(x) - G_n(x - r)| = \int_{-r/2}^{r/2} g_n(x) dx.$$

• $g_n(0) \le \frac{1}{a} \left\{ \sqrt{\frac{3}{\pi n}} + \frac{2}{(2n-1)\pi^{2n}} \right\}. \square$

Mixing distribution

If F is non-singular, then there exist $a > 0, u \in \mathbb{R}$ and $\theta \in (0, 1]$ such that, with H_1 being the distribution of κ_a ,

$$F^{2*} = (1-\theta)H_2 + \theta H_1 * \delta_u.$$

Why? F is non-singular so there exists a bounded function with bounded support $f_0 \not\equiv 0$ such that $F(A) \geq \int_A f_0(x) dx$. Then f_0^{2*} is continuous.

The bound

For v > 0, we have

$$d_{TV}(S_n, S_n + v) \le (v \lor 1)O(n^{-1/2}),$$

where $O(n^{-1/2})$ does not depend on v.

Why?

- Let $\xi_1 = \eta_1 + \eta_2$, $\xi_2 = \eta_3 + \eta_4$, ..., then ξ_i has a mixture distribution with one component of being triangular.
- $m = \lfloor n/2 \rfloor$, there exists $X_{1j} \sim H_1$, $X_{2j} \sim H_2$ and $X_{3j} \sim \text{Bernoulli}(\theta)$ such that

$$S'_m := \sum_{j=1}^m [(X_{1j} + u)X_{3j} + X_{2j}(1 - X_{3j})] \stackrel{\mathrm{d}}{=} \sum_{i=1}^m \xi_i.$$

• Let
$$I = \sum_{j=1}^{m} X_{3j} \sim \operatorname{Bi}(m, \theta)$$
, then

$$S'_m \sim \sum_{k=0}^m \mathbb{P}(I=k)(H_1+\delta_u)^{k*} * H_2^{(m-k)*}.$$

•
$$\mathbb{P}(I \leq \lfloor 0.5m\theta \rfloor - 1) = O(m^{-1}).$$

• For $k \ge \lfloor 0.5m\theta \rfloor$, it gives bound $\gamma(m^{-1/2})$. \Box

[Slide 16]

Remarks

- ChFs can work easily from identical distribution to non-identical distributions, with some complexity of formulation.
- ChFs fail completely when dependence is present.
- From independence to dependence: yes, a mixing condition is needed and the variance of S_n must become large when $n \to \infty$.

A warning example

- Recall that we can define independent U and V such that both are singular but $U + V \sim$ uniform.
- Let $U_i \stackrel{d}{=} U \mathbb{E}U$ and $V_i \stackrel{d}{=} V \mathbb{E}V$ be all independent.
- Consider

 $(U_0 + V_1) + (-V_1 - U_1) + (U_1 + V_2) + (-V_2 - U_2) + \dots$

- This sequence is 1-dependent.
- $(U_0 + V_1)$, $(-V_1 U_1)$, ... all follow the uniform distribution on (-0.5, 0.5).
- No CLT for the sum.
- Hence, mixing condition is not enough: more is needed.

A puzzling fact

- By ChFs, when η_i 's are iid with $k \ge 3$ moments, $d_{TV}(Y_n, Z) = O(n^{(k-2)/2}).$
- For k > 3, Stein's method has never achieved such a result.

Thank you!