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Let D be a bounded open set in RN with boundary ∂D in which
we assume the boundary ∂D is Lipschitz in case the space
dimension N > 1. Let T > 0 be arbitrarily fixed. Set
Q = (0,T )× D and Σ = (0,T )× ∂D. Let (Ω,F ,P; {Ft}t∈[0,T ])
be a given probability set-up. We are concerned with the first
order stochastic conservation laws driven by a multiplicative
noise of the following type

du − div(f (u))dt = h(u)dw(t), in Ω×Q, (1)

with initial condition

u(0, ·) = u0(·), in D, (2)

and non-homogeneous Dirichlet boundary condition

u = a, on Σ, (3)

for a scalar random field
u : (ω, t , x) ∈ Ω× [0,T ]× D 7→ u(ω, t , x) =: u(t , x) ∈ R,
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where f = (f1, ..., fN) : R→ RN is a differentiable vector field
standing for the flux, h : R→ R is measurable and
w = {w(t)}0≤t≤T is a standard one-dimensional Brownian
motion on (Ω,F ,P; {Ft}t∈[0,T ]). The initial data
u0 : D ⊂ RN → R will be specified later and the boundary data
a : Σ→ R is supposed to be measurable.
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Problem (1)-(3) was studied recently by K. Kobayasi and D.
Noboriguchi (Acta Math Vietnamica, 2015) via kinetic solution
approach. By introducing a notion of kinetic formulations in
which the kinetic defect measures on the boundary of domain
are truncated, they obtained the well-posedness of (1)-(3).
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When h = 0, the deterministic problem (1)-(3) is well studied in
the PDEs literature, see e.g. K. Ammar,P. Wittbold, J.
Carrillo,JDE 2006 and references therein. The notion of entropy
solutions for the deterministic problem (1)-(3) in the L∞

framework was initiated by F. Otto in C.R. Acad. Sci. Paris
1996. Furthermore,A. Porretta and J. Vovelle, CPDE 2003
studied the problem (1)-(3) with h = 0 in the L1-setting, that is,
the solutions are allowed to be unbounded. In order to deal with
unbounded solutions, they have defined a notion of
renormalized entropy solutions which generalizes Otto’s
original definition of entropy solutions. They have proved
existence and uniqueness of such generalized solution in the
case when f is locally Lipschitz and the boundary data a
verifies the following condition: fmax (a) ∈ L1(Σ),
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where fmax is the “maximal effective flux” defined by

fmax (a) = {sup |f (u)|, u ∈ [−a−,a+]}.

They gave an example to illustrate that the assumption
a ∈ L1(Σ) is not enough in order to prove a priori estimates in
L1(Q), and that the assumption should be fmax (a) ∈ L1(Σ).
Moreover, the paper K. Ammar,P. Wittbold, J. Carrillo,JDE 2006
revisited the problem (1)-(3) with h = 0 and introduced the
following notion of entropy solutions to the problem (1)-(3)
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An entropy solution of (1)-(3) is a function u ∈ L∞(Q) satisfying

−
∫

Σ
ξω+(x , k ,a(t , x)) ≤

∫
Q

[
(u − k)+ξt − χu>k (f (u)− f (k)) · ∇ξ

]
+

∫
D

(u0 − k)+ξ(0, ·) and (4)

−
∫

Σ
ξω−(x , k ,a(t , x)) ≤

∫
Q

[
(k − u)+ξt − χk>u(f (k)− f (u)) · ∇ξ

]
+

∫
D

(k − u0)+ξ(0, ·) (5)

for any ξ ∈ D([0,T )× RN), ξ ≥ 0 and for all k ∈ R, where

ω+(x , k ,a) := max
k≤r ,s≤a∨k

|(f (r)− f (s)) · ~n(x)|

ω−(x , k ,a) := max
a∧k≤r ,s≤k

|(f (r)− f (s)) · ~n(x)|

for any k ∈ R, a.e. x ∈ ∂D, and ~n denoting the unit outer
normal to ∂D.
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The above definition of entropy solution is a natural extension
of the definition of Otto. Having a stochastic forcing term
h(u)dw(t) in Equation (1) is very natural for problem modeling
arising in a wide variety of fields in physics, engineering,
biology, jut mention a few. The Cauchy problem of equation (1)
with additive noise has been studied by J.V. Kim in Indiana Univ
Math J 2003 wherein the author proposed a method of
compensated compactness to prove, via vanishing viscosity
approximation, the existence of a stochastic weak entropy
solution. Moreover, a Kruzhkov-type method was used there to
prove the uniqueness. Further, G. Vallet and P. Wittbold, Infin
Dimens Anal Quantum Probab 2009 extended the results of
Kim to the multi-dimensional (i.e., vector-valued) Dirichlet
problem with additive noise. By utilising the vanishing viscosity
method, Young measure techniques and Kruzhkov doubling
variables technique, they managed to show the existence and
uniqueness of the stochastic entropy solutions.
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Concerning the case of multiplicative noise, for Cauchy problem
over the whole spatial space, J. Feng and D. Nualart, J Funct
Anal 2008 introduced a notion of strong entropy solutions in
order to prove the uniqueness for the entropy solution. Using
the vanishing viscosity and compensated compactness
arguments, they established the existence of stochastic strong
entropy solutions only in 1D case. On the other hand, G. Chen,
Q. Ding, K.H. Karlsen, Arch Ration Mech Anal 2012 considered
higher space dimensional problem and they proved the
well-posedness of the multi-dimensional stochastic problem, by
using a uniform spatial BV-bound.
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Furthermore, C. Bauzet, G. Vallet, P. Wittbold, J. Hyperbolic Diff
Eqs 2012 proved a result of existence and uniqueness of the
weak measure-valued entropy solution to the multi-dimensional
Cauchy problem. C. Bauzet, G. Vallet, P. Wittbold, J Funct Anal
2014 studied the problem (1)-(3) with a = 0 (i.e., the
homogeneous boundary condition). Under the assumptions
that the flux function f and h satisfy the global Lipschitz
condition, they obtained the existence and uniqueness of
measure-valued solution to problem (1)-(3) with a = 0.
G. Lv, J. Duan, H. Gao, J.-L. Wu, Bull. Sci. Math. 140 (2016),
pp718-746 extended the results of C. Bauzet, G. Vallet, P.
Wittbold, J Funct Anal 2014 to the stochastic nonlocal
conservation laws in bounded domains.
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Using a kinetic formulation, A. Debussche, J. Vovelle, J Funct
Anal 2012 obtained a result of existence and uniqueness of the
entropy solution to the problem posed in a d-dimensional torus.
M. Hofmanova, T. Zhang, arXiv:1501.00548 discussed the
degenerate case.
G Lv, J Duan, H Gao, Discret Contin Dyn Syst 2016 considered
the Cauchy problem of stochastic nonlocal conservation laws
on a while spatial space. As a natural generalisation, we
propose to establish the existence and uniqueness of stochastic
entropy solution to the initial boundary value problem (1)-(3).
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Our strategy is as follows: First, a method of artificial viscosity
is introduced for verifying the existence of a solution. Second,
the compactness properties used are based on the theory of
Young measures and on measure-valued solutions which were
considered in Ch. Castaning, P. Raynaud de Fitte and M.
Valadier, Young Measures on Topological Spaces with
Applications in Control Theory and Probability Theory, Math.
Apple., vol. 571, Kluwer Academic Publishers, Dordrecht, 2004.
Finally, an approximation adaptation of the Kruzhkov’s doubling
variables is then proposed to prove the uniqueness of the
measure-valued entropy solution.
It is worth noting that the results of C. Bauzet, G. Vallet, P.
Wittbold, J Funct Anal 2014 are a special case to ours.
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Notations In general, if G ⊂ RN , D(G) denotes the restriction of
functions u ∈ D(RN) to G such that support(u) ∩G is compact.
The notation D+(G) stands for the subset of non-negative
elements of D(G).
For a given separable Banach space X , we denote by
N2

w (0,T ,X ) the space of the predictable X -valued processes.
This space is the space L2((0,T )× Ω,X ) for the product
measure dt ⊗ dP on PT , the predictable σ-field (i.e. the σ-field
generated by the sets {0} × F0 and the rectangles (s, t)× A for
any A ∈ Fs, for t > s > 0).
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Denote E+ the totality of non-negative convex functions η in
C2,1(R), approximating the semi-Kruzhkov entropies x → x+

such that η(x) = 0 if x ≤ 0 and that there exists δ > 0 such that
η′(x) = 1 if x > δ. Then η′′ has a compact support and η and η′

are Lipschitz-continuous functions. E− denotes the set
{η̆ := η(−·), η ∈ E+} and E = E+ ∪ E−. Then, for convenience,
denote

sgn+
0 (x) = 1 if x > 0 and 0 else;

sgn−0 (x) = −sgn+
0 (−x) sgn0 = sgn+

0 + sgn−0 ,
F (a,b) = sgn0(a− b)[f (a)− f (b)];

F +(−)(a,b) = sgn+(−)
0 (a− b)[f (a)− f (b)],

and for any η ∈ E ,

F η(a,b) =

∫ a

b
η′(σ − b)f ′(σ)dσ.
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In order to propose an entropy formula, let us analyse the
viscous parabolic case. For this, let us assume that for any
ε > 0, uε is the solution of the stochastic nonlinear parabolic
problem

duε − [ε∆uε + div(f (uε))]dt = h(uε)dw(t) in Q,
uε(0, x) = u0ε(x) in D,
uε = aε on Σ.

(6)
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Let ϕ ∈ D((0,T )× RN), k a real number, and η ∈ E .
Since η(uε − k)ϕ ∈ L2(0,T ; H1(D)) a.s., it is possible to apply
the Itô formula to the operator Ψ(t ,uε) :=

∫
D η(uε − k)ϕdx and

thus we get

0 ≤
∫

D
η(uε(T )− k)ϕ(T )dx =∫

D
η(u0ε − k)ϕ(0)dx +

∫
Q
η(uε − k)∂tϕdxdt (7)

+

∫
Q
η′(uε − k)h(uε)ϕdxdw(t) +

1
2

∫
Q
η′′(uε − k)h2(uε)ϕdxdt

−ε
∫

Q
η′(uε − k)∇uε · ∇ϕdxdt −

∫
Q
η′(uε − k)f (uε) · ∇ϕdxdt

−ε
∫

Q
η′′(uε − k)ϕ|∇uε|2dxdt −

∫
Q
η′′(uε − k)ϕf (uε) · ∇uεdxdt

+ε

∫
Σ
η′(aε − k)ϕ∇aε · ~n(x)dxdt +

∫
Σ
η′(aε − k)ϕf (aε) · ~n(x)dxdt .
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Since the support of η′′ is compact, for any i = 1, · · · ,N,
R 3 r 7→ η′′(r − k)fi(r) is a bounded continuous function (Here
we assume that fi is a continuous function and fi(0) = 0). Then,
by using the chain-rule Sobolev functions and integrating by
part, we have

−
∫

Q
η′(uε − k)f (uε) · ∇ϕdxdt −

∫
Q
η′′(uε − k)ϕf (uε) · ∇uεdxdt

= −
∫

Q
η′(uε − k)f (uε) · ∇ϕdxdt

−
∫

Q
ϕdiv

(∫ uε

0
η′′(σ − k)f (σ)dσ

)
dxdt

= −
∫

Q
F η(uε, k)∇ϕdxdt −

∫
Σ
ϕη′(uε − k)f (uε) · ~n(x)dSdt

+

∫
Σ
ϕ

∫ uε

0
η′(σ − k)f ′(σ)dσ · ~n(x)dSdt , (8)
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where we have used η′(σ − k) = 0 if 0 < σ < k . And thus we
get

0 ≤
∫

D
η(u0ε − k)ϕ(0)dx +

∫
Q
η(uε − k)∂tϕdxdt

+

∫
Q
η′(uε − k)h(uε)ϕdxdw(t) +

1
2

∫
Q
η′′(uε − k)h2(uε)ϕdxdt

−ε
∫

Q
η′(uε − k)∇uε · ∇ϕdxdt −

∫
Q

F η(uε, k)∇ϕdxdt

+ε

∫
Σ
η′(aε − k)ϕ∇aε · ~n(x)dxdt +

∫
Σ
ϕ

∫ uε

0
η′(σ − k)f ′(σ)dσ · ~n(x)dSdt .(9)
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Now, let us assume that as ε tends to 0, the approximation
solution uε converges in an appropriate sense to a function
u ∈ N2

w (0,T ; L2(D)) such that for any dP-measurable set A

εE
∫

Q
1Aη

′(uε − k)∇uε · ∇ϕdxdt → 0, as ε→ 0,

εE
∫

Σ
η′(aε − k)ϕ∇aε · ~n(x)dxdt → 0, as ε→ 0,

where aε is an approximate function of a such that aε ∈ C1(Σ),
‖aε‖C1 ≤ ‖a‖L∞ . Since η′(u) = 1 if u > δ and η′(u) = 0 if u ≤ 0,
and f ∈ C2, we can assume that f ′ keeps sign in (k , k + δ) for
any k ∈ R.
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Note that η′′ ≥ 0. If f ′ ≥ 0 in (k , k + δ), we have∫ uε

0
η′(σ − k)f ′(σ)dσ

=

∫ uε∨(k+δ)

k+δ
f ′(σ)dσ +

∫ k+δ

k
η′(σ − k)f ′(σ)dσ

≤
∫ uε∨(k+δ)

k+δ
f ′(σ)dσ + η′(δ)

∫ k+δ

k
f ′(σ)dσ

= (uε − (k + δ))+[f (uε)− f (k + δ)] + η′(δ)[f (k + δ)− f (k)]

≤ η′(uε − k)[f (uε)− f (k)]. (10)
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If f ′ ≤ 0 in (k , k + δ), we have∫ uε

0
η′(σ − k)f ′(σ)dσ

=

∫ uε∨(k+δ)

k+δ
f ′(σ)dσ +

∫ k+δ

k
η′(σ − k)f ′(σ)dσ

≤
∫ uε∨(k+δ)

k+δ
f ′(σ)dσ

≤ (uε − (k + δ))+[f (uε)− f (k + δ)]

≤ η′(uε − k)[f (uε)− f (k + δ)]. (11)
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In order to have the same estimate for (10) and (11), we will
take maximum. Combining the above discussion, we get∣∣∣ ∫

Σ
ϕ

∫ uε

0
η′(σ − k)f ′(σ)dσ · ~n(x)dSdt

∣∣∣
≤

∫
Σ
ϕ

∫ uε

0
η′(σ − k)|f ′(σ)dσ · ~n(x)|dSdt

≤
∫

Σ
η′(uε − k)ϕω+(x , k ,uε)dxdt .

Here we can see why we can define the boundary effect. Then
we may pass to the limit in (9) and obtain a family of entropy
inequalities satisfied by the limit of u. This observation
motivates the definition of entropy solution for the stochastic
conservation law (1)-(3). For convenience, for
u ∈ N2

w (0,T ; L2(D)), for any real k and any regular function
η ∈ E+, denote dP-a.s. in Ω by µη,k , the distribution in D
defined by
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ϕ 7→ µη,k (ϕ) =∫
D
η(u0 − k)ϕ(0)dx +

∫
Q
η(u − k)∂tϕ− F η(u, k)∇ϕdxdt

+

∫
Q
η′(u − k)h(u)ϕdxdw(t) +

1
2

∫
Q
η′′(u − k)h2(u)ϕdxdt

+

∫
Σ
η′(a− k)ϕω+(x , k ,a(t , x))dSdt ;

ϕ 7→ µη̆,k (ϕ) =∫
D
η̆(u0 − k)ϕ(0)dx +

∫
Q
η̆(u − k)∂tϕ− F η̆(u, k)∇ϕdxdt

+

∫
Q
η̆′(u − k)h(u)ϕdxdw(t) +

1
2

∫
Q
η̆′′(u − k)h2(u)ϕdxdt

+

∫
Σ
η̆′(a− k)ϕω−(x , k ,a(t , x))dSdt ,

where ω+(x , k ,a(t , x)) and ω−(x , k ,a(t , x)) are defined as in
Introduction.
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Now we propose the following definition of entropy solution of
(1)-(3).

Definition

A function u of N2
w (0,T ; L2(D)) is an entropy solution of

stochastic conservation law (1 ) with the initial condition
u0 ∈ Lp(D) and boundary condition a ∈ L∞(Σ), if
u ∈ L2(0,T ; L2(Ω; Lp(D))), p = 2,3, · · · and

µη,k (ϕ) ≥ 0, µη̆,k (ϕ) ≥ 0 dP − a.s.,

where ϕ ∈ D+((0,T × RN)), k ∈ R, η ∈ E+ and η̆ ∈ E−.
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For technical reasons, we need to consider a generalized
notion of entropy solution. In fact, in the first step, we will only
prove the existence of a Young measure-valued solution. Then,
thanks to a result of uniqueness, we will be able to deduce the
existence of an entropy solution in the sense of Definition 3.1.

Definition

A function u of
N2

w (0,T ; L2(D × (0,1))) ∩ L∞(0,T ; Lp(Ω× D × (0,1))) is a
Young measure-valued solution of stochastic conservation law
(1) with the initial condition u0 ∈ Lp(D) and boundary condition
a ∈ L∞(Σ), p = 2,3, · · · , if∫ 1

0
µη,k (ϕ)dα ≥ 0,

∫ 1

0
µη̆,k (ϕ)dα ≥ 0 dP − a.s.,

where ϕ ∈ D+((0,T × RN)), k ∈ R, η ∈ E+ and η̆ ∈ E−.
Jiang-Lun Wu Stochastic scalar conservation laws



Introduction
Entropy solutions

Renormalized entropy solutions

Remark

Note that an entropy solution of (1)-(3) is a.s. a weak solution.
In fact, choosing ϕ ∈ D(Q), ϕ ≥ 0, and letting k → −∞ in
µη,k (ϕ) ≥ 0 and k → +∞ in µη̆,k (ϕ) ≥ 0, we find that

∂t

[
u −

∫ t

0
h(u)dw(s)

]
− divf (u) = 0 in D′(Q).

Moreover, u satisfies the initial condition in the following sense:
ess lim

t→0+
E
∫

D |u − u0|ds = 0.
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Remark
Let a = 0, then we find µη,k (ϕ) will become the ”µη,k (ϕ)” in
Definition 1 of C. Bauzet, G. Vallet, P. Wittbold, J Funct Anal
2014. Let h = 0, then µη,k (ϕ) ≥ 0 and µη̆,k (ϕ) ≥ 0 will coincide
with (4) and (5), respectively. That is, Definition 3.1 is a natural
extension of the definition of entropy solution given by K.
Ammar,P. Wittbold, J. Carrillo,JDE 2006 and C. Bauzet, G.
Vallet, P. Wittbold, J Funct Anal 2014.
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We assume the following
(H1): The flux function f : R 7→ RN is of class C2, its derivatives
have at most polynomial growth, f (0) = 0RN , and f ′′ is bounded
in R if a 6≡ 0;
(H2): h : R 7→ R is a Lipschitz-continuous function with
h(0) = 0;
(H3): u0 ∈ Lp(D), p ≥ 2 and a ∈ L∞(Σ).
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Theorem

Under assumptions H1 − H3 there exists a unique
measure-valued entropy solution in sense of Definition 4.1 and
this solution is obtained by viscous approximation.
It is unique entropy solution in sense of Definition 3.1.
If u1,u2 are entropy solutions of (1) corresponding to initial data
u01, u02 ∈ Lp(D) and the boundary data a1, a2 ∈ L∞(Σ),
respectively, then for any t ∈ (0,T )

E
∫

D
|u1 − u2| ≤

∫
D
|u01 − u02|dx

+

∫
Σ

max
min(a1,a2)≤r ,s≤max(a1,a2)

|(f (r)− f (s)) · ~n(x)|.
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Theorem

Under assumptions H1-H3 there exists a unique
measure-valued entropy solution.
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For a continuous flux function f : R 7→ RN and for any
measurable boundary data a : Σ 7→ R with f̄ (a, x) ∈ L1(Σ)
where f̄ : R× ∂D 7→ R is defined by
f̄ (s, x) := sup{|f (r) · ~n(x)|, r ∈ [−s−, s+]}. Now we give the
definition of renormalized stochastic entropy solution.
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Definition

Let a ∈M(Σ) with f̄ (a, x) ∈ L1(Σ) and u0 ∈ L1(D). We call
u ∈ L1(Ω; L1(Q)) a renormalized stochastic entropy solution of
the conservation law (1)-(3) if there exist some families of
non-negative random measures µl := µl(ω; t , x) and
νl := νl(ω; t , x) on [0,T ]× D̄ such that

Eµl(·; [0,T ]× D̄)→ 0, Eν−l(·; [0,T ]× D̄)→ 0, as l → +∞,
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Definition
and the following entropy inequalities hold: for all k ∈ R, for all
l ≥ k, for any ξ ∈ D+([0,T )× RN),∫

Q
(u ∧ l − k)+ξt −

∫
Q

sgn+
0 (u ∧ l − k)[f (u ∧ l)− f (k)] · ∇ξ

+

∫
Q

sgn+
0 (u ∧ l − k)h(u ∧ l)ξdxdw(t)

+
1
2

∫
Q

[1− sgn+
0 (k − u ∧ l)]h2(k)ξ

+

∫
D

(u0 ∧ l − k)+ξ +

∫
Σ

sgn+
0 (a ∧ l − k)ξω+(x , k ,a ∧ l)

≥ −〈µl , ξ〉, dP − a.s.,
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Definition

and for all k ∈ R, for all l ≤ k, for any ξ ∈ D+([0,T )× RN),∫
Q

(k − u ∨ l)+ξt −
∫

Q
sgn+

0 (k − u ∨ l)[f (k)− f (u ∨ l)] · ∇ξ

+

∫
Q

sgn+
0 (k − u ∨ l)h(u ∨ l)ξdxdw(t)

+
1
2

∫
Q

[1− sgn+
0 (u ∨ l − k)]h2(k)ξ

+

∫
D

(k − u0 ∧ l)+ξ +

∫
Σ

sgn+
0 (k − a ∨ l)ξω−(x , k ,a ∨ l)

≥ −〈νl , ξ〉, dP − a.s..
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By using the facts lim
δ→0

ηδ(x) = x+, lim
δ→0

η′δ(x) = sgn+
0 (x) and

lim
δ→0

η′′δ (x − k) = δx (k), we have

lim
δ→0

µηδ,k (ξ) =∫
Q

(u − k)+ξt −
∫

Q
sgn+

0 (u − k)[f (u)− f (k)] · ∇ξ

+

∫
Q

sgn+
0 (u − k)h(u)ξdxdw(t)

+
1
2

∫
Q

[1− sgn+
0 (k − u)]h2(k)ξ

+

∫
D

(u0 − k)+ξ +

∫
Σ

sgn+
0 (a− k)ξω+(x , k ,a)

=: −µ̃k (ξ).
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In addition, we can also have the following

Definition

Let a ∈M(Σ) with f̄ (a, x) ∈ L1(Σ) and u0 ∈ L1(D). A function u
of L1(Ω; L1(Q)) is said to be a renormalized stochastic entropy
solution of conservation law (1)-(3) if for all k , l ∈ R, for any
ξ ∈ D+([0,T )× RN), the functionals
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Definition

µk ,l(ξ) = −
∫

Q
(u ∧ l − k)+ξt

+

∫
Q

sgn+
0 (u ∧ l − k)[f (u ∧ l)− f (k)] · ∇ξ

−
∫

Q
sgn+

0 (u ∧ l − k)h(u ∧ l)ξdxdw(t)

−1
2

∫
Q

[1− sgn+
0 (k − u ∧ l)]h2(k)ξ

−
∫

D
(u0 ∧ l − k)+ξ −

∫
Σ

sgn+
0 (a ∧ l − k)ξω+(x , k ,a ∧ l) a.s.,
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Definition

νk ,l(ξ) = −
∫

Q
(k − u ∨ l)+ξt

+

∫
Q

sgn+
0 (k − u ∨ l)[f (k)− f (u ∨ l)] · ∇ξ

−
∫

Q
sgn+

0 (k − u ∨ l)h(u ∨ l)ξdxdw(t)

−1
2

∫
Q

[1− sgn+
0 (u ∨ l − k)]h2(k)ξ

−
∫

D
(k − u0 ∧ l)+ξ −

∫
Σ

sgn+
0 (k − a ∨ l)ξω−(x , k ,a ∨ l) a.s.

are random measure on [0,T ]× D̄ satisfying
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Definition

lim
l→+∞

Eµ+
k ,l(·; [0,T ]× D̄) = 0

lim
l→−∞

Eν+
k ,l(·; [0,T ]× D̄) = 0

∀k ∈ R, where µ+
k ,l denotes the positive part of the random

measure µk ,l .
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It is not difficult to show the equivalence of the above two
definitions by using the following decomposition

µk ,l(ξ) =

µ̃k (ξ)− µ̃l(ξ)−
∫

Q
sgn+

0 (u − l)h(l)ξdxdw(t)

−1
2

∫
Q

[1− sgn+
0 (l − u)]h2(l)dxdt

−
∫

Σ
[ω+(x , k ,a ∧ l)− ω+(x , k ,a) + ω+(x , l ,a)]ξ, dP − a.s.,

where we used the facts that for l > k ,
(u ∧ l − k)+ = (u − k)+ − (u − l)+ and
sgn+

0 (u ∧ l − k)[f (u ∧ l)− f (k)] =
sgn+

0 (u − k)[f (u)− f (k)]− sgn+
0 (u − l)[f (u)− f (l)]. In other

words, µl in the first definition is µ+
k ,l of the second definition.
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Next, we consider the equivalence between the renormalized
stochastic entropy solutions and stochastic entropy solutions.

Proposition

If u is a stochastic entropy solution in sense of Definition 3.1,
then u is a renormalized stochastic entropy solution in
Definition 4.1.

Jiang-Lun Wu Stochastic scalar conservation laws



Introduction
Entropy solutions

Renormalized entropy solutions

The main result is the following

Theorem

Let a ∈M(Σ) with f̄ (a, x) ∈ L1(Σ) and u0 ∈ L1(D). Under
assumptions H1 − H2 there exists a unique renormalized
stochastic entropy solution.

Remark C. Bauzet, G. Vallet, P. Wittbold, J Funct Anal 2014
posed an open problem: whether there exists a renormalized
stochastic entropy solution to the problem (1)-(3) with a = 0?
Our result clearly provides a positive answer to this open
problem.
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Thank You!
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