Heat kernels of non-symmetric jump processes: beyond the stable case

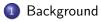
Renming Song

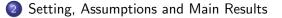
University of Illinois

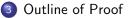
Workshop on Markov Processes & Related Topics July 13–17, 2016. Jiangsu Normal University

Renming Song (University of Illinois)

HK of Non-Sym Jump Processes







Renming Song (University of Illinois)

HK of Non-Sym Jump Processes



2 Setting, Assumptions and Main Results

Outline of Proof

Joint work with P. Kim and Z. Vondraček: arXiv:1606.02005

Renming Song (University of Illinois)

HK of Non-Sym Jump Processes

Workshop on Markov Processes & Related To

30

2) Setting, Assumptions and Main Results

Renming Song (University of Illinois)

HK of Non-Sym Jump Processes

Suppose $d \ge 1$, $\alpha \in (0,2)$ and κ is a Borel function on $\mathbb{R}^d \times \mathbb{R}^d$ such that

$$0 < \kappa_0 \le \kappa(x,z) \le \kappa_1, \quad \kappa(x,z) = \kappa(x,-z), \quad (1)$$

and for some $\beta \in (0,1)$,

$$|\kappa(x,z)-\kappa(y,z)| \leq \kappa_2 |x-y|^{\beta}.$$
⁽²⁾

Define

$$\mathcal{L}_{\alpha}^{\kappa}f(x) = \lim_{\varepsilon \downarrow 0} \int_{\{z \in \mathbb{R}^d : |z| > \varepsilon\}} (f(x+z) - f(x)) \frac{\kappa(x,z)}{|z|^{d+\alpha}} \, dz \,. \tag{3}$$

This is a non-symmetric and non-local stable-like operator.

Renming Song (University of Illinois)

HK of Non-Sym Jump Processes

These operator can be regarded as the non-local counterpart of elliptic operators in non-divergence form. In this context the Hölder continuity of $\kappa(\cdot, z)$ in (2) is a natural assumption.

These operator can be regarded as the non-local counterpart of elliptic operators in non-divergence form. In this context the Hölder continuity of $\kappa(\cdot, z)$ in (2) is a natural assumption.

In [PTRF16], Z.-Q. Chen and X. Zhang proved the existence and uniqueness of a non-negative jointly continuous function $p_{\alpha}^{\kappa}(t, x, y)$ in $(t, x, y) \in (0, 1] \times \mathbb{R}^d \times \mathbb{R}^d$ solving the equation

$$\partial_t p^\kappa_lpha(t,x,y) = \mathcal{L}^\kappa_lpha p^\kappa_lpha(t,\cdot,y)(x)\,, \quad x \neq y\,,$$

and satisfying four properties - an upper bound, Hölder's estimate, fractional derivative estimate and continuity.

These operator can be regarded as the non-local counterpart of elliptic operators in non-divergence form. In this context the Hölder continuity of $\kappa(\cdot, z)$ in (2) is a natural assumption.

In [PTRF16], Z.-Q. Chen and X. Zhang proved the existence and uniqueness of a non-negative jointly continuous function $p_{\alpha}^{\kappa}(t, x, y)$ in $(t, x, y) \in (0, 1] \times \mathbb{R}^d \times \mathbb{R}^d$ solving the equation

$$\partial_t p^\kappa_lpha(t,x,y) = \mathcal{L}^\kappa_lpha p^\kappa_lpha(t,\cdot,y)(x)\,, \quad x
eq y\,,$$

and satisfying four properties - an upper bound, Hölder's estimate, fractional derivative estimate and continuity.

Their main result is as follows:

Theorem (Chen-Zhang)

There exists a unique non-negative jointly continuous function $p_{\alpha}^{\kappa}(t, x, y)$, $(t, x, y) \in (0, 1] \times \mathbb{R}^{d} \times \mathbb{R}^{d}$, solving

$$\partial_t p^{\kappa}_{\alpha}(t, x, y) = \mathcal{L}^{\kappa}_{\alpha} p^{\kappa}_{\alpha}(t, \cdot, y)(x), \quad x \neq y, \qquad (4)$$

Workshop on Markov Processes & Related

30

and satisfying the following properties:

Theorem (Chen-Zhang)

There exists a unique non-negative jointly continuous function $p_{\alpha}^{\kappa}(t, x, y)$, $(t, x, y) \in (0, 1] \times \mathbb{R}^{d} \times \mathbb{R}^{d}$, solving

$$\partial_t p^{\kappa}_{\alpha}(t, x, y) = \mathcal{L}^{\kappa}_{\alpha} p^{\kappa}_{\alpha}(t, \cdot, y)(x), \quad x \neq y,$$
(4)

Workshop on Markov Processes & Related

and satisfying the following properties:

(i) There exists $c_1 > 0$ such that for all $t \in (0, 1]$ and $x, y \in \mathbb{R}^d$,

$$p^{\kappa}_{\alpha}(t,x,y) \leq c_1 t (t^{rac{1}{lpha}} + |x-y|)^{-d-lpha}.$$

Renming Song (University of Illinois)

Theorem (Chen-Zhang)

There exists a unique non-negative jointly continuous function $p_{\alpha}^{\kappa}(t, x, y)$, $(t, x, y) \in (0, 1] \times \mathbb{R}^{d} \times \mathbb{R}^{d}$, solving

$$\partial_t p^{\kappa}_{\alpha}(t, x, y) = \mathcal{L}^{\kappa}_{\alpha} p^{\kappa}_{\alpha}(t, \cdot, y)(x), \quad x \neq y, \qquad (4)$$

and satisfying the following properties:

(i) There exists $c_1 > 0$ such that for all $t \in (0,1]$ and $x, y \in \mathbb{R}^d$,

$$p^{\kappa}_{\alpha}(t,x,y) \leq c_1 t (t^{rac{1}{lpha}} + |x-y|)^{-d-lpha}.$$

(ii) For every $\gamma \in (0, \alpha \land 1)$, there exists $c_2 > 0$ such that for all $t \in (0, 1]$ and $x, x', y \in \mathbb{R}^d$,

$$|p^\kappa_\alpha(t,x,y)-p^\kappa_\alpha(t,x',y)|\leq c_2|x-x'|^\gamma t^{1-\frac{\gamma}{\alpha}}(t^{\frac{1}{\alpha}}+|x-y|\wedge|x'-y|)^{-d-\alpha}.$$

(iii) For all $x \neq y$ in \mathbb{R}^d , the map $t \mapsto \mathcal{L}^{\kappa}_{\alpha} p^{\kappa}_{\alpha}(t, \cdot, y)(x)$ is continuous in (0, 1] and $|\mathcal{L}^{\kappa}_{\alpha} p^{\kappa}_{\alpha}(t, \cdot, y)(x)| \leq c_3 (t^{\frac{1}{\alpha}} + |x - y|)^{-d - \alpha}.$

(iii) For all $x \neq y$ in \mathbb{R}^d , the map $t \mapsto \mathcal{L}^{\kappa}_{\alpha} p^{\kappa}_{\alpha}(t, \cdot, y)(x)$ is continuous in (0,1] and $|\mathcal{L}^{\kappa}_{\alpha} p^{\kappa}_{\alpha}(t, \cdot, y)(x)| \leq c_3 (t^{\frac{1}{\alpha}} + |x - y|)^{-d - \alpha}.$

(iv) For any bounded and uniformly continuous function $f : \mathbb{R}^d \to \mathbb{R}$,

$$\lim_{t\downarrow 0} \sup_{x\in \mathbb{R}^d} \left| \int_{\mathbb{R}^d} p_{\alpha}^{\kappa}(t,x,y) f(y) \, dy - f(x) \right| = 0.$$

Renming Song (University of Illinois)

(iii) For all $x \neq y$ in \mathbb{R}^d , the map $t \mapsto \mathcal{L}^{\kappa}_{\alpha} p^{\kappa}_{\alpha}(t, \cdot, y)(x)$ is continuous in (0,1] and $|\mathcal{L}^{\kappa}_{\alpha} p^{\kappa}_{\alpha}(t, \cdot, y)(x)| \leq c_3 (t^{\frac{1}{\alpha}} + |x - y|)^{-d - \alpha}.$

(iv) For any bounded and uniformly continuous function $f : \mathbb{R}^d \to \mathbb{R}$,

$$\lim_{t\downarrow 0} \sup_{x\in \mathbb{R}^d} \left| \int_{\mathbb{R}^d} p_{\alpha}^{\kappa}(t,x,y) f(y) \, dy - f(x) \right| = 0.$$

Moreover, the following conclusions are valid:

Renming Song (University of Illinois)

(1) For all $(t, x, y) \in (0, 1] imes \mathbb{R}^d imes \mathbb{R}^d$,

$$\int_{\mathbb{R}^d} p_\alpha^\kappa(t,x,y) dy = 1.$$

Renming Song (University of Illinois)

HK of Non-Sym Jump Processes

(1) For all $(t, x, y) \in (0, 1] imes \mathbb{R}^d imes \mathbb{R}^d$,

$$\int_{\mathbb{R}^d} p_{\alpha}^{\kappa}(t,x,y) dy = 1.$$

(2) For all $s, t \in (0, 1]$ with $s + t \in (0, 1]$, and all $x, y \in \mathbb{R}^d$, $\int_{\mathbb{R}^d} p_{\alpha}^{\kappa}(s, x, z) p_{\alpha}^{\kappa}(t, x, y) dz = p_{\alpha}^{\kappa}(s + t, x, y).$

Renming Song (University of Illinois)

HK of Non-Sym Jump Processes

(1) For all $(t,x,y)\in (0,1] imes \mathbb{R}^d imes \mathbb{R}^d$,

$$\int_{\mathbb{R}^d} p^{\kappa}_{\alpha}(t,x,y) dy = 1.$$

(2) For all $s, t \in (0, 1]$ with $s + t \in (0, 1]$, and all $x, y \in \mathbb{R}^d$, $\int_{\mathbb{R}^d} p_{\alpha}^{\kappa}(s, x, z) p_{\alpha}^{\kappa}(t, x, y) dz = p_{\alpha}^{\kappa}(s + t, x, y).$

(3) There exists $c_4 > 0$ such that for all $t \in (0,1]$ and $x, y \in \mathbb{R}^d$,

$$p^\kappa_lpha(t,x,y)\geq c_4t(t^{rac{1}{lpha}}+|x-y|)^{-d-lpha}.$$

Renming Song (University of Illinois)

(4) For any
$$f \in C_b^2(\mathbb{R}^d)$$
,

$$\lim_{t\downarrow 0} \frac{1}{t} \int_{\mathbb{R}^d} p^{\kappa}_{\alpha}(t, x, y) (f(y) - f(x)) dy = \mathcal{L}^{\kappa}_{\alpha} f(x)$$

and the convergence is uniform.

Renming Song (University of Illinois)

HK of Non-Sym Jump Processes

(4) For any
$$f \in C_b^2(\mathbb{R}^d)$$
,

$$\lim_{t\downarrow 0} \frac{1}{t} \int_{\mathbb{R}^d} p^\kappa_\alpha(t,x,y) (f(y) - f(x)) dy = \mathcal{L}^\kappa_\alpha f(x)$$

and the convergence is uniform.

(5) The C_0 -semigroup $(P_t^{\kappa}:t\geq 0)$ defined by

$$\mathcal{P}_t^{\kappa}f(x) = \int_{\mathbb{R}^d} \mathcal{p}_{\alpha}^{\kappa}(t,x,y)f(y)dy$$

is analytic in $L^p(\mathbb{R}^d)$ for all $p \in [1,\infty)$.

In another direction, most of results on isotropic α -stable process have been generalized to more general symmetric Lévy processes, like subordinate Brownian motions, or unimodal Lévy processes.

In another direction, most of results on isotropic α -stable process have been generalized to more general symmetric Lévy processes, like subordinate Brownian motions, or unimodal Lévy processes.

Our goal is to extend the results of the Chen-Zhang paper to more general operators than the ones defined in (3). These operators will be non-symmetric and not necessarily stable-like. We will replace the kernel $\kappa(x,z)|z|^{-d-\alpha}$ with a kernel $\kappa(x,z)J(z)$ where κ still satisfies (1) and (2), but J(z) is the Lévy density of a rather general symmetric Lévy process.

2 Setting, Assumptions and Main Results

Renming Song (University of Illinois)

HK of Non-Sym Jump Processes

Setting and assumptions

Suppose that $S = (S_t : t \ge 0)$ is a subordinator, that is, a non-negative Lévy process with $S_0 = 0$. Let ϕ be the Laplace exponent of S, that is,

$$\mathbb{E}e^{-\lambda S_t} = e^{-t\phi(\lambda)}, \quad t > 0, \lambda > 0.$$

Renming Song (University of Illinois)

Workshop on Markov Processes & Related

30

Setting and assumptions

Suppose that $S = (S_t : t \ge 0)$ is a subordinator, that is, a non-negative Lévy process with $S_0 = 0$. Let ϕ be the Laplace exponent of S, that is,

$$\mathbb{E}e^{-\lambda S_t}=e^{-t\phi(\lambda)},\quad t>0,\lambda>0.$$

A function $\phi : (0, \infty) \mapsto (0, \infty)$ is the Laplace exponent of a subordinator iff it is a Bernstein function satisfying $\lim_{\lambda \to 0} \phi(\lambda) = 0$. Recall that a nonnegative function ϕ on $(0, \infty)$ is a Bernstein function if it is C^{∞} and $(-1)^{n-1}\phi^{(n)} \ge 0$.

Setting and assumptions II

Suppose that S has no drift. Then ϕ admits the following expression

$$\phi(\lambda) = \int_0^\infty (1 - e^{-\lambda t}) \mu(dt), \quad \lambda > 0,$$

where μ is a measure on $(0,\infty)$ such that $\int_0^\infty (1 \wedge t)\mu(dt) < \infty$. μ is called the Lévy measure of *S*.

Workshop on Markov Processes & Related

30

Setting and assumptions II

Suppose that S has no drift. Then ϕ admits the following expression

$$\phi(\lambda) = \int_0^\infty (1 - e^{-\lambda t}) \mu(dt), \quad \lambda > 0,$$

where μ is a measure on $(0, \infty)$ such that $\int_0^\infty (1 \wedge t) \mu(dt) < \infty$. μ is called the Lévy measure of *S*.

Suppose that $B = (B_t : t \ge 0)$ is a Brownian motion in \mathbb{R}^d with generator Δ . Suppose that B and S are independent. Then the process $(X_t : t \ge 0)$ defined by $X_t := B_{S_t}$ is a Lévy process and it is called a subordinate Brownian motion. The generator X is $-\phi(-\Delta)$.

Renming Song (University of Illinois)

Setting and assumptions III

When $\phi(\lambda) = \lambda^{\alpha/2}$, the resulting subordinate Brownian motion is a symmetric α -stable process. Without loss of generality, we will assume $\phi(1) = 1$.

Workshop on Markov Processes & Related

30

Setting and assumptions III

When $\phi(\lambda) = \lambda^{\alpha/2}$, the resulting subordinate Brownian motion is a symmetric α -stable process. Without loss of generality, we will assume $\phi(1) = 1$.

The Lévy exponent of X is $\Phi(\xi) = \phi(|\xi|^2)$. The Lévy measure of X has a density J(x) = J(|x|) with

$$J(r) = \int_{(0,\infty)} (4\pi t)^{-d/2} e^{-\frac{r^2}{4t}} \mu(dt), \quad r > 0.$$

Renming Song (University of Illinois)

HK of Non-Sym Jump Processes

Setting and assumptions IV

Our main assumption is the following weak lower scaling condition at infinity: There exist $\delta_1 \in (0,2]$ and $a_1 \in (0,1)$ such that

$$a_1 \lambda^{\delta_1} \Phi(r) \leq \Phi(\lambda r), \quad \lambda \geq 1, r \geq 1.$$
(5)

Workshop on Markov Processes & Related

30

This condition implies that $\lim_{\lambda\to\infty} \Phi(\lambda) = \infty$ and hence $\int_{\mathbb{R}^d\setminus\{0\}} j(|y|) dy = \infty$.

Setting and assumptions IV

Our main assumption is the following weak lower scaling condition at infinity: There exist $\delta_1 \in (0,2]$ and $a_1 \in (0,1)$ such that

$$\phi_1 \lambda^{\delta_1} \Phi(r) \leq \Phi(\lambda r), \quad \lambda \geq 1, r \geq 1.$$
 (5)

This condition implies that $\lim_{\lambda\to\infty} \Phi(\lambda) = \infty$ and hence $\int_{\mathbb{R}^d\setminus\{0\}} j(|y|) dy = \infty$.

The weak lower scaling condition governs the short-time small-space behavior of the subordinate Brownian motion. We also need a weak condition on the behavior of Φ near zero. We assume that

$$\int_0^1 \frac{\Phi(r)}{r} \, dr = C_* < \infty$$

(6)

Setting and assumptions V

Assume that κ is a function on $\mathbb{R}^d \times \mathbb{R}^d$ satisfying (1) and (2). We define

$$\mathcal{L}^{\kappa}f(x) := \lim_{\varepsilon \downarrow 0} \mathcal{L}^{\kappa,\varepsilon}f(x)$$

where

$$\mathcal{L}^{\kappa,\varepsilon}f(x):=\int_{|z|>\varepsilon}(f(x+z)-f(x))\kappa(x,z)J(z)\,dz,\quad \varepsilon>0.$$

Renming Song (University of Illinois)

HK of Non-Sym Jump Processes

Workshop on Markov Processes & Related

30

Setting and assumptions V

Assume that κ is a function on $\mathbb{R}^d \times \mathbb{R}^d$ satisfying (1) and (2). We define

$$\mathcal{L}^{\kappa}f(x):=\lim_{\varepsilon\downarrow 0}\mathcal{L}^{\kappa,\varepsilon}f(x)$$

where

$$\mathcal{L}^{\kappa,arepsilon}f(x):=\int_{|z|>arepsilon}(f(x+z)-f(x))\kappa(x,z)J(z)\,dz,\quadarepsilon>0.$$

For t > 0 and $\in \mathbb{R}^d$ we define

$$\rho(t,x) = \rho^{(d)}(t,x) := \Phi\left(\left(\frac{1}{\Phi^{-1}(t^{-1})} + |x|\right)^{-1}\right) \left(\frac{1}{\Phi^{-1}(t^{-1})} + |x|\right)^{-d}$$

In case when $\Phi(r) = r^{\alpha}$ we see that $\rho(t, x) = (t^{1/\alpha} + |x|)^{-d-\alpha}$.

Theorem 1

There exists a unique non-negative jointly continuous function $p^{\kappa}(t, x, y)$ on $(0, \infty) \times \mathbb{R}^d \times \mathbb{R}^d$ solving

$$\partial_t p^{\kappa}(t,x,y) = \mathcal{L}^{\kappa} p^{\kappa}(t,\cdot,y)(x), \quad x \neq y,$$

and satisfying the following properties:

Workshop on Markov Processes & Related

30

Theorem 1

There exists a unique non-negative jointly continuous function $p^{\kappa}(t, x, y)$ on $(0,\infty) \times \mathbb{R}^d \times \mathbb{R}^d$ solving

$$\partial_t p^{\kappa}(t,x,y) = \mathcal{L}^{\kappa} p^{\kappa}(t,\cdot,y)(x), \quad x \neq y,$$

and satisfying the following properties:

(i) For every $T \ge 1$, there is a constant $c_1 > 0$ so that for all $t \in (0, T]$ and $x, y \in \mathbb{R}^d$,

$$p^{\kappa}(t,x,y) \leq c_1 t \rho(t,x-y).$$

Renming Song (University of Illinois)

HK of Non-Sym Jump Processes

Theorem 1 (cont)

(ii) For any $x, y \in \mathbb{R}^d$, $x \neq y$, the mapping $t \mapsto \mathcal{L}^{\kappa} \rho^{\kappa}(t, \cdot, y)(x)$ is continuous in $(0, \infty)$, and, for each T > 0 there is a constant $c_2 > 0$ so that for all $t \in (0, T]$, $\varepsilon \in [0, 1]$ and $x, y \in \mathbb{R}^d$,

$$|\mathcal{L}^{\kappa,\varepsilon}p^{\kappa}(t,\cdot,y)(x)| \leq c_2
ho(t,x-y)$$
.

Workshop on Markov Processes & Related

30

Theorem 1 (cont)

(ii) For any $x, y \in \mathbb{R}^d$, $x \neq y$, the mapping $t \mapsto \mathcal{L}^{\kappa} \rho^{\kappa}(t, \cdot, y)(x)$ is continuous in $(0, \infty)$, and, for each T > 0 there is a constant $c_2 > 0$ so that for all $t \in (0, T]$, $\varepsilon \in [0, 1]$ and $x, y \in \mathbb{R}^d$,

$$|\mathcal{L}^{\kappa,\varepsilon}p^{\kappa}(t,\cdot,y)(x)| \leq c_2
ho(t,x-y)$$
.

(iii) For any bounded and uniformly continuous function $f : \mathbb{R}^d \to \mathbb{R}$,

$$\lim_{t\downarrow 0} \sup_{x\in\mathbb{R}^d} \left| \int_{\mathbb{R}^d} p^{\kappa}(t,x,y) f(y) \, dy - f(x) \right| = 0 \, .$$

Renming Song (University of Illinois)

The following conclusions are also valid:

Workshop on Markov Processes & Related To

30

The following conclusions are also valid:

(1) For all
$$(t, x, y) \in (0, \infty) \times \mathbb{R}^d \times \mathbb{R}^d$$
, $p^{\kappa}(t, x, y) \ge 0$ and
$$\int_{\mathbb{R}^d} p^{\kappa}(t, x, y) \, dy = 1 \, .$$

Renming Song (University of Illinois)

The following conclusions are also valid:

(1) For all
$$(t, x, y) \in (0, \infty) \times \mathbb{R}^d \times \mathbb{R}^d$$
, $p^{\kappa}(t, x, y) \ge 0$ and
$$\int_{\mathbb{R}^d} p^{\kappa}(t, x, y) \, dy = 1 \, .$$

(2) For all s, t > 0 and all $x, y \in \mathbb{R}^d$,

$$\int_{\mathbb{R}^d} p^{\kappa}(t,x,z) p^{\kappa}(s,z,y) \, dz = p^{\kappa}(t+s,x,y) \, .$$

Renming Song (University of Illinois)

(3) For every $T \ge 1$, there is a constant $c_4 > 0$ such that for all $0 < s \le t \le T$ and $x, x', y \in \mathbb{R}^d$ with either $x \ne y$ or $x' \ne y$,

$$egin{aligned} &|p^\kappa(s,x,y)-p^\kappa(t,x',y)|\ &\leq c_4\left(|t-s|+|x-x'|t\Phi^{-1}(t^{-1})
ight)\left(
ho(s,x-y)ee
ho(s,x'-y)
ight). \end{aligned}$$

Workshop on Markov Processes & Related

30

(3) For every $T \ge 1$, there is a constant $c_4 > 0$ such that for all $0 < s \le t \le T$ and $x, x', y \in \mathbb{R}^d$ with either $x \ne y$ or $x' \ne y$,

$$egin{aligned} &p^\kappa(s,x,y)-p^\kappa(t,x',y)|\ &\leq c_4\left(|t-s|+|x-x'|t\Phi^{-1}(t^{-1})
ight)\left(
ho(s,x-y)ee
ho(s,x'-y)
ight). \end{aligned}$$

(4) For every $T \ge 1$, there exists $c_5 => 0$ so that for all $x, y \in \mathbb{R}^d$, $x \neq y$, and $t \in (0, T]$,

$$abla_x p^\kappa(t,x,y)| \leq c_5 \Phi^{-1}(t^{-1}) t
ho(t,x-y) \,.$$

Renming Song (University of Illinois)

(a) Let
$$\varepsilon > 0$$
. For any $f \in C_b^{2,\varepsilon}(\mathbb{R}^d)$, we have
$$\lim_{t\downarrow 0} \frac{1}{t} \left(P_t^{\kappa} f(x) - f(x) \right) = \mathcal{L}^{\kappa} f(x) \,,$$

and the convergence is uniform.

(a) Let
$$\varepsilon > 0$$
. For any $f \in C_b^{2,\varepsilon}(\mathbb{R}^d)$, we have
$$\lim_{t\downarrow 0} \frac{1}{t} \left(P_t^{\kappa} f(x) - f(x) \right) = \mathcal{L}^{\kappa} f(x) \,,$$

and the convergence is uniform.

(b) The semigroup $(P_t^{\kappa})_{t\geq 0}$ of \mathcal{L}^{κ} is analytic in $L^{p}(\mathbb{R}^d)$ for every $\rho \in [1, \infty)$.

Renming Song (University of Illinois)

Workshop on Markov Processes & Related

30

For a lower bound, we will assume the following weak upper scaling condition: there exist $\delta_2 \in (0,2)$ and $a_2 > 0$ such that

$$\Phi(\lambda r) \le a_2 \lambda^{\delta_2} \Phi(r), \quad \lambda \ge 1, r \ge 1.$$
(7)

Theorem 4

Renming Song (University of Illinois)

For a lower bound, we will assume the following weak upper scaling condition: there exist $\delta_2 \in (0, 2)$ and $a_2 > 0$ such that

$$\Phi(\lambda r) \leq a_2 \lambda^{\delta_2} \Phi(r), \quad \lambda \geq 1, r \geq 1.$$
 (7)

Workshop on Markov Processes & Related

Theorem 4

For every $T \ge 1$, there exists $c_6 > 0$ such that for all $t \in (0, T]$

$$p^{\kappa}(t,x,y) \geq c_6 egin{cases} \Phi^{-1}(t^{-1})^d & ext{if } |x-y| \leq 3\Phi^{-1}(t^{-1})^{-1}, \ tj\left(|x-y|
ight) & ext{if } |x-y| > 3\Phi^{-1}(t^{-1})^{-1}. \end{cases}$$

In particular, for every $T, M \ge 1$, there exists $c_7 > 0$ for all $t \in (0, T]$ and $x, y \in \mathbb{R}^d$ with $|x - y| \le M$,

$$p^{\kappa}(t,x,y) \geq c_7 t \rho(t,x-y)$$
.

Renming Song (University of Illinois)

When the global lower and upper scaling conditions are both satisfied, the lower and upper bound differ by a multiplicative constant.

When the global lower and upper scaling conditions are both satisfied, the lower and upper bound differ by a multiplicative constant.

Here are some examples: (i) $\phi(\lambda) = \lambda^{\alpha_1} + \lambda^{\alpha_2}$, $0 < \alpha_1 < \alpha_2 < 1$; (ii) $\phi(\lambda) = (\lambda + \lambda^{\alpha_1})^{\alpha_2}$, $\alpha_1, \alpha_2 \in (0, 1)$; (iii) $\phi(\lambda) = (\lambda + m^{1/\alpha})^{\alpha} - m$, $\alpha \in (0, 1)$, m > 0; (iv) $\phi(\lambda) = \lambda^{\alpha_1} (\log(1 + \lambda))^{\alpha_2}$, $\alpha_1 \in (0, 1)$, $\alpha_2 \in (0, 1 - \alpha_1]$;

(v)
$$\phi(\lambda) = \lambda^{\alpha_1} (\log(1+\lambda))^{-\alpha_2}$$
, $\alpha_1 \in (0,1)$, $\alpha_2 \in (0,\alpha_1)$;
(vi) $\phi(\lambda) = \lambda / \log(1+\lambda^{\alpha})$, $\alpha \in (0,1)$.

When the global lower and upper scaling conditions are both satisfied, the lower and upper bound differ by a multiplicative constant.

Here are some examples: (i) $\phi(\lambda) = \lambda^{\alpha_1} + \lambda^{\alpha_2}$, $0 < \alpha_1 < \alpha_2 < 1$; (ii) $\phi(\lambda) = (\lambda + \lambda^{\alpha_1})^{\alpha_2}$, $\alpha_1, \alpha_2 \in (0, 1)$; (iii) $\phi(\lambda) = (\lambda + m^{1/\alpha})^{\alpha} - m$, $\alpha \in (0, 1)$, m > 0; (iv) $\phi(\lambda) = \lambda^{\alpha_1} (\log(1 + \lambda))^{\alpha_2}$, $\alpha_1 \in (0, 1)$, $\alpha_2 \in (0, 1 - \alpha_1]$; (v) $\phi(\lambda) = \lambda^{\alpha_1} (\log(1 + \lambda))^{-\alpha_2}$, $\alpha_1 \in (0, 1)$, $\alpha_2 \in (0, \alpha_1)$; (vi) $\phi(\lambda) = \lambda / \log(1 + \lambda^{\alpha})$, $\alpha \in (0, 1)$.

The functions in (i)–(v) satisfy (5), (6) and (7); while the function in (vi) satisfies (5) and (6), but does not satisfy (7). The function $\phi(\lambda) = \lambda/\log(1 + \lambda)$ satisfies (5), but does not satisfy the other two conditions.

Renming Song (University of Illinois)

Setting, Assumptions and Main Results

Renming Song (University of Illinois)

HK of Non-Sym Jump Processes

We follow the ideas and the road-map from the Chen-Zhang paper, and use the freezing coefficient method. At many stages we encounter substantial technical difficulties due to the fact that in the stable-like case one deals with power functions while in the present situation the power functions are replaced with a quite general Φ and its variants.

We follow the ideas and the road-map from the Chen-Zhang paper, and use the freezing coefficient method. At many stages we encounter substantial technical difficulties due to the fact that in the stable-like case one deals with power functions while in the present situation the power functions are replaced with a quite general Φ and its variants.

Here is a lemma that will give a flavor of the things we have to deal with. For $\gamma,\beta\in\mathbb{R},$ let

$$ho_\gamma^eta(t,x):=\Phi^{-1}(t^{-1})^{-\gamma}(|x|^eta\wedge 1)
ho(t,x)\,,\quad t>0,x\in\mathbb{R}^d$$

Note that $\rho_0^0(t,x) = \rho(t,x)$.

Renming Song (University of Illinois)

HK of Non-Sym Jump Processes

Lemma

(a) For every $T \ge 1$, there exists c > 0 such that for $0 < t \le 1$, all $\beta \in [0, \delta_1/2]$ and $\gamma \in \mathbb{R}$,

$$\int_{\mathbb{R}^d} \rho_{\gamma}^{\beta}(t,x) \, dx \leq ct^{-1} \Phi^{-1}(t^{-1})^{-\gamma-\beta} \, .$$

Renming Song (University of Illinois)

Lemma

(a) For every $T \ge 1$, there exists c > 0 such that for $0 < t \le 1$, all $\beta \in [0, \delta_1/2]$ and $\gamma \in \mathbb{R}$,

$$\int_{\mathbb{R}^d} \rho_{\gamma}^{\beta}(t,x) \, dx \leq ct^{-1} \Phi^{-1}(t^{-1})^{-\gamma-\beta}$$

(b) For every $T \ge 1$, there exists $C_0 > 0$ such that for all $\beta_1, \beta_2 \ge 0$ with $\beta_1 + \beta_2 \le \delta_1/2, \ \gamma_1, \gamma_2 \in \mathbb{R}$ and $0 < s < t \le 1$,

Renming Song (University of Illinois)

HK of Non-Sym Jump Processes

Lemma (cont)

(c) For all $\beta_1, \beta_2 \ge 0$ with $\beta_1 + \beta_2 \le \delta_1/2, \ \theta, \eta \in [0, 1]$, $\gamma_1 + \beta_1 + 2 - 2\theta > 0, \ \gamma_2 + \beta_2 + 2 - 2\eta > 0, \ 0 < t \le T$ and $x \in \mathbb{R}^d$, we have

$$\int_{0}^{t} \int_{\mathbb{R}^{d}} (t-s)^{1-\theta} \rho_{\gamma_{1}}^{\beta_{1}} (t-s,x-z) s^{1-\eta} \rho_{\gamma_{2}}^{\beta_{2}} (s,z) \, dz \, ds$$

$$\leq c_{2} t^{2-\theta-\eta} \left(\rho_{\gamma_{1}+\gamma_{2}+\beta_{1}+\beta_{2}}^{0} + \rho_{\gamma_{1}+\gamma_{2}+\beta_{2}}^{\beta_{1}} + \rho_{\gamma_{1}+\gamma_{2}+\beta_{1}}^{\beta_{2}} \right) (t,x) \, .$$

where

$$c_2 = 4C_0(T)B((\gamma_1 + \beta_1)/2 + 1 - \theta, \gamma_2 + \beta_2/2 + 1 - \eta).$$

Renming Song (University of Illinois)

HK of Non-Sym Jump Processes

Workshop on Markov Processes & Related To

30

Let $\mathfrak{K} : \mathbb{R}^d \to (0,\infty)$ be a symmetric function, that is, $\mathfrak{K}(z) = \mathfrak{K}(-z)$. Assume that there are $0 < \kappa_0 \le \kappa_1 < \infty$ such that

$$\kappa_0 \leq \mathfrak{K}(z) \leq \kappa_1 \,, \qquad ext{for all } z \in \mathbb{R}^d \,.$$
(8)

Workshop on Markov Processes & Related

Let $j^{\mathfrak{K}}(z) := \mathfrak{K}(z)J(z)$, $z \in \mathbb{R}^d$. Let $Z^{\mathfrak{K}}$ be the purely discontinuous Lévy process with Lévy measure $j^{\mathfrak{K}}(z)$. The infinitesimal generator of $Z^{\mathfrak{K}}$ is given by

$$\mathcal{L}^{\mathfrak{K}}f(x) = \mathrm{p.v.} \int_{\mathbb{R}^d} (f(x+z) - f(x))\mathfrak{K}(z)J(z)\,dz.$$

Renming Song (University of Illinois)

HK of Non-Sym Jump Processes

Let $\mathfrak{K} : \mathbb{R}^d \to (0,\infty)$ be a symmetric function, that is, $\mathfrak{K}(z) = \mathfrak{K}(-z)$. Assume that there are $0 < \kappa_0 \le \kappa_1 < \infty$ such that

$$\kappa_0 \leq \mathfrak{K}(z) \leq \kappa_1, \quad \text{for all } z \in \mathbb{R}^d.$$
(8)

Workshop on Markov Processes & Related

Let $j^{\mathfrak{K}}(z) := \mathfrak{K}(z)J(z)$, $z \in \mathbb{R}^d$. Let $Z^{\mathfrak{K}}$ be the purely discontinuous Lévy process with Lévy measure $j^{\mathfrak{K}}(z)$. The infinitesimal generator of $Z^{\mathfrak{K}}$ is given by

$$\mathcal{L}^{\mathfrak{K}}f(x) = \mathrm{p.v.} \int_{\mathbb{R}^d} (f(x+z) - f(x))\mathfrak{K}(z)J(z)\,dz.$$

We first study the heat kernel estimates of this process.

Renming Song (University of Illinois)

For a fixed $y \in \mathbb{R}^d$, let $\mathfrak{K}_y(z) = \kappa(y, z)$ and let $\mathcal{L}^{\mathfrak{K}_y}$ be the freezing operator

$$\mathcal{L}^{\mathfrak{K}_{y}}f(x) = \mathcal{L}^{\mathfrak{K}_{y},0}f(x) = \lim_{\varepsilon \downarrow 0} \mathcal{L}^{\mathfrak{K}_{y},\varepsilon}f(x),$$

where

$$\mathcal{L}^{\mathfrak{K}_{y},\varepsilon}f(x) = \int_{|z|>\varepsilon} \delta_{f}(x;z)\kappa(y,z)J(z)dz$$
$$\delta_{f}(x;z) = f(x+z) + f(x-z) - 2f(x).$$

Let $p_y(t,x) = p^{\mathfrak{K}_y}(t,x)$ be the heat kernel of the operator $\mathcal{L}^{\mathfrak{K}_y}$.

Renming Song (University of Illinois)

HK of Non-Sym Jump Processes

For a fixed $y \in \mathbb{R}^d$, let $\mathfrak{K}_y(z) = \kappa(y, z)$ and let $\mathcal{L}^{\mathfrak{K}_y}$ be the freezing operator

$$\mathcal{L}^{\mathfrak{K}_{y}}f(x) = \mathcal{L}^{\mathfrak{K}_{y},0}f(x) = \lim_{\varepsilon \downarrow 0} \mathcal{L}^{\mathfrak{K}_{y},\varepsilon}f(x),$$

where

$$\mathcal{L}^{\hat{\kappa}_{y},\varepsilon}f(x) = \int_{|z|>\varepsilon} \delta_{f}(x;z)\kappa(y,z)J(z)dz$$

 $\delta_{f}(x;z) = f(x+z) + f(x-z) - 2f(x).$

Let $p_y(t,x) = p^{\hat{\kappa}_y}(t,x)$ be the heat kernel of the operator $\mathcal{L}^{\hat{\kappa}_y}$.

Define

$$q_0(t,x,y) := \left(\mathcal{L}^{\mathfrak{K}_x} - \mathcal{L}^{\mathfrak{K}_y}\right) p_y(t,\cdot)(x-y).$$

Renming Song (University of Illinois)

HK of Non-Sym Jump Processes

Then we solve the integral equation

$$q(t,x,y) = q_0(t,x,y) + \int_0^t \int_{\mathbb{R}^d} q_0(t-s,x,z)q(s,z,y) \, dz \, ds$$

by iteration:

$$q_n(t,x,y) := \int_0^t \int_{\mathbb{R}^d} q_0(t-s,x,z)q_{n-1}(s,z,y)\,dz\,ds$$

and

$$q(t,x,y) = \sum_{n=0}^{\infty} q_n(t,x,y).$$

Renming Song (University of Illinois)

HK of Non-Sym Jump Processes

Then we solve the integral equation

$$q(t,x,y) = q_0(t,x,y) + \int_0^t \int_{\mathbb{R}^d} q_0(t-s,x,z)q(s,z,y) \, dz \, ds$$

by iteration:

$$q_n(t,x,y) := \int_0^t \int_{\mathbb{R}^d} q_0(t-s,x,z)q_{n-1}(s,z,y)\,dz\,ds$$

and

$$q(t,x,y) = \sum_{n=0}^{\infty} q_n(t,x,y).$$

Finally, we define

$$p^{\kappa}(t,x,y) := p_y(t,x-y) + \int_0^t \int_{\mathbb{R}^d} p_z(t-s,x-z)q(s,z,y)\,dz\,ds\,.$$

Renming Song (University of Illinois)

HK of Non-Sym Jump Processes