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Parabolic Anderson Model [PAM] - from the point view of
particle system

Consider the following PAM:

∂ut(x)

∂t
= 4ut(x) + ξ(x)ut(x) (t ∈ R+, x ∈ Zd),

with initial u0(x) = 1 for all x ∈ Zd ,

where ξ(x) is a function and
4 is the discrete Laplacian:

4g(x) :=
1

2d

∑
|y−x |=1

[g(y)− g(x)] .

On each site x ∈ Zd , we put a particle.

At site x , the particle splits into two identical particles with
rate ξ+(x) or dies with rate ξ−(x).

Let n(t, x) denote the number of particles at time t and at
site x .

Define ut(x) = E [n(t, x)], then ut(x) solves the PAM.
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Stochastic Heat Equations [SHE]

Consider the following SHE:

∂

∂t
ut(x) = 4ut(x) + σ(ut(x))

∂2

∂t∂x
W (t, x), x ∈ D ⊆ R

(with boundary condition if D is an interval), where

4 is the Laplacian (the generator of Brownian motion Xt .)

σ : R→ R is globally Lipschitz continuous.

{W (t, x), t > 0, x ∈ [−1, 1]} is a Brownian sheet
(∂t∂xW (t, x) is a centered generalized Gaussian random field
with covariance
Cov(∂t∂xW (t, x), ∂t∂xW (s, y)) = δ0(t − s)δ(x − y).)

u0 is nonrandom, measurable and u0(x) is uniformly bounded
away from zero and infinity.
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Mild solution

Solution in mild form

ut(x) =

∫
D
pt(x , y)u0(y)dy +

∫
(0,t]×D

pt−s(x , y)σ(us(y))W (dsdy).

SHE on the whole domain R, pt(x , y) is the transition density
of Brownian motion.

SHE with Dirichlet boundary condition on [a, b]
(ut(a) = ut(b) = 0, t > 0), pt(x , y) is the transition density
of Killed Brownian motion.

SHE with Neumann boundary condition on [a, b]
(∂xut(a) = ∂xut(b) = 0, t > 0), pt(x , y) is the transition
density of reflected Brownian motion.

SHE with periodic boundary condition on [a, b]
(ut(a) = ut(b), ∂xut(a) = ∂xut(b), t > 0), pt(x , y) is the
transition density of the Brownian motion on the torus.



Stochastic Heat Equations Intermittency Dissipation Thank

Mild solution

Solution in mild form

ut(x) =

∫
D
pt(x , y)u0(y)dy +

∫
(0,t]×D

pt−s(x , y)σ(us(y))W (dsdy).

SHE on the whole domain R,

pt(x , y) is the transition density
of Brownian motion.

SHE with Dirichlet boundary condition on [a, b]
(ut(a) = ut(b) = 0, t > 0), pt(x , y) is the transition density
of Killed Brownian motion.

SHE with Neumann boundary condition on [a, b]
(∂xut(a) = ∂xut(b) = 0, t > 0), pt(x , y) is the transition
density of reflected Brownian motion.

SHE with periodic boundary condition on [a, b]
(ut(a) = ut(b), ∂xut(a) = ∂xut(b), t > 0), pt(x , y) is the
transition density of the Brownian motion on the torus.



Stochastic Heat Equations Intermittency Dissipation Thank

Mild solution

Solution in mild form

ut(x) =

∫
D
pt(x , y)u0(y)dy +

∫
(0,t]×D

pt−s(x , y)σ(us(y))W (dsdy).

SHE on the whole domain R, pt(x , y) is the transition density
of Brownian motion.

SHE with Dirichlet boundary condition on [a, b]
(ut(a) = ut(b) = 0, t > 0), pt(x , y) is the transition density
of Killed Brownian motion.

SHE with Neumann boundary condition on [a, b]
(∂xut(a) = ∂xut(b) = 0, t > 0), pt(x , y) is the transition
density of reflected Brownian motion.

SHE with periodic boundary condition on [a, b]
(ut(a) = ut(b), ∂xut(a) = ∂xut(b), t > 0), pt(x , y) is the
transition density of the Brownian motion on the torus.



Stochastic Heat Equations Intermittency Dissipation Thank

Mild solution

Solution in mild form

ut(x) =

∫
D
pt(x , y)u0(y)dy +

∫
(0,t]×D

pt−s(x , y)σ(us(y))W (dsdy).

SHE on the whole domain R, pt(x , y) is the transition density
of Brownian motion.

SHE with Dirichlet boundary condition on [a, b]
(ut(a) = ut(b) = 0, t > 0),

pt(x , y) is the transition density
of Killed Brownian motion.

SHE with Neumann boundary condition on [a, b]
(∂xut(a) = ∂xut(b) = 0, t > 0), pt(x , y) is the transition
density of reflected Brownian motion.

SHE with periodic boundary condition on [a, b]
(ut(a) = ut(b), ∂xut(a) = ∂xut(b), t > 0), pt(x , y) is the
transition density of the Brownian motion on the torus.



Stochastic Heat Equations Intermittency Dissipation Thank

Mild solution

Solution in mild form

ut(x) =

∫
D
pt(x , y)u0(y)dy +

∫
(0,t]×D

pt−s(x , y)σ(us(y))W (dsdy).

SHE on the whole domain R, pt(x , y) is the transition density
of Brownian motion.

SHE with Dirichlet boundary condition on [a, b]
(ut(a) = ut(b) = 0, t > 0), pt(x , y) is the transition density
of Killed Brownian motion.

SHE with Neumann boundary condition on [a, b]
(∂xut(a) = ∂xut(b) = 0, t > 0), pt(x , y) is the transition
density of reflected Brownian motion.

SHE with periodic boundary condition on [a, b]
(ut(a) = ut(b), ∂xut(a) = ∂xut(b), t > 0), pt(x , y) is the
transition density of the Brownian motion on the torus.



Stochastic Heat Equations Intermittency Dissipation Thank

Mild solution

Solution in mild form

ut(x) =

∫
D
pt(x , y)u0(y)dy +

∫
(0,t]×D

pt−s(x , y)σ(us(y))W (dsdy).

SHE on the whole domain R, pt(x , y) is the transition density
of Brownian motion.

SHE with Dirichlet boundary condition on [a, b]
(ut(a) = ut(b) = 0, t > 0), pt(x , y) is the transition density
of Killed Brownian motion.

SHE with Neumann boundary condition on [a, b]
(∂xut(a) = ∂xut(b) = 0, t > 0),

pt(x , y) is the transition
density of reflected Brownian motion.

SHE with periodic boundary condition on [a, b]
(ut(a) = ut(b), ∂xut(a) = ∂xut(b), t > 0), pt(x , y) is the
transition density of the Brownian motion on the torus.



Stochastic Heat Equations Intermittency Dissipation Thank

Mild solution

Solution in mild form

ut(x) =

∫
D
pt(x , y)u0(y)dy +

∫
(0,t]×D

pt−s(x , y)σ(us(y))W (dsdy).

SHE on the whole domain R, pt(x , y) is the transition density
of Brownian motion.

SHE with Dirichlet boundary condition on [a, b]
(ut(a) = ut(b) = 0, t > 0), pt(x , y) is the transition density
of Killed Brownian motion.

SHE with Neumann boundary condition on [a, b]
(∂xut(a) = ∂xut(b) = 0, t > 0), pt(x , y) is the transition
density of reflected Brownian motion.

SHE with periodic boundary condition on [a, b]
(ut(a) = ut(b), ∂xut(a) = ∂xut(b), t > 0), pt(x , y) is the
transition density of the Brownian motion on the torus.



Stochastic Heat Equations Intermittency Dissipation Thank

Mild solution

Solution in mild form

ut(x) =

∫
D
pt(x , y)u0(y)dy +

∫
(0,t]×D

pt−s(x , y)σ(us(y))W (dsdy).

SHE on the whole domain R, pt(x , y) is the transition density
of Brownian motion.

SHE with Dirichlet boundary condition on [a, b]
(ut(a) = ut(b) = 0, t > 0), pt(x , y) is the transition density
of Killed Brownian motion.

SHE with Neumann boundary condition on [a, b]
(∂xut(a) = ∂xut(b) = 0, t > 0), pt(x , y) is the transition
density of reflected Brownian motion.

SHE with periodic boundary condition on [a, b]
(ut(a) = ut(b), ∂xut(a) = ∂xut(b), t > 0),

pt(x , y) is the
transition density of the Brownian motion on the torus.



Stochastic Heat Equations Intermittency Dissipation Thank

Mild solution

Solution in mild form

ut(x) =

∫
D
pt(x , y)u0(y)dy +

∫
(0,t]×D

pt−s(x , y)σ(us(y))W (dsdy).

SHE on the whole domain R, pt(x , y) is the transition density
of Brownian motion.

SHE with Dirichlet boundary condition on [a, b]
(ut(a) = ut(b) = 0, t > 0), pt(x , y) is the transition density
of Killed Brownian motion.

SHE with Neumann boundary condition on [a, b]
(∂xut(a) = ∂xut(b) = 0, t > 0), pt(x , y) is the transition
density of reflected Brownian motion.

SHE with periodic boundary condition on [a, b]
(ut(a) = ut(b), ∂xut(a) = ∂xut(b), t > 0), pt(x , y) is the
transition density of the Brownian motion on the torus.



Stochastic Heat Equations Intermittency Dissipation Thank

Markov Property

ut(x) =

∫
R
pt(y−x)u0(y)dy+

∫
(0,t]×R

pt−r (y−x)σ(ur (y))W (drdy)

Does ut(x) have Markov property?

If not, this talk ends.

Thank you for your attention.

BUT...

us+t(x) =

∫
R
pt(y−x)us(y)dy+

∫
(0,t]×R

pt−r (y−x)σ(us+r (y))Ws(drdy)

where Ws(r , y) = W (s + r , y).
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Lyapunov exponent and Intermittency

Upper pth-moment Lyapunov exponent γ̄(p) of u at x0:

γ̄(p) := lim sup
t→∞

1

t
log E (|u(t, x0)|p) for all p ∈ (0,∞).

p → γ̄(p)

p
is nondecreasing.

Zeldovich, Molchanov, Ruzmajkin and Sokolov proposed a
rigorous and constructive definition of asymptotic (as t →∞)
intermittency.

Full intermittency: if, regardless of the value of x0,

p → γ̄(p)

p
is strictly increasing for all p ≥ 2.
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What does intermittency mean?

Remind that

γ̄(p) := lim sup
t→∞

1

t
log E (|u(t, x0)|p) for all p ∈ (0,∞).

Suppose that γ̄(p)/p < γ̄(q)/q if p < q.

Pick ` ∈ (γ̄(p)/p, γ̄(q)/q).

Let Et := {|ut(x0)| > exp(t`)}.
Chebychev’s inequality gives

P(Et) ≤ exp(−pt`) exp(log E |ut(x0)|p)

= exp(−t[p`− t−1 log E |ut(x0)|p])→ 0 as t →∞.

E [|ut(x0)|q1Ect ] ≤ etq` < etγ̄(q) ≈ E [|ut(x0)|q]

E [|ut(x0)|q1Et ] ≈ E [|ut(x0)|q].
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Moments

Remind that Et := {|ut(x0)| > exp(t`)}.

High peaks with small probability.

High peaks contribute the moment.

The p-th moment E |ut(x)|p is approximately exp(pkt) where
k > 1.

SHE with domain R.

E [|ut(x)|k ] ≤ C k exp(Ck3t).

PAM, E [|ut(x)|k ] ≈ C k exp(Ck3t) [Bertini-Cancrini, 1995].

σ is bounded, E |ut(x)|k = o(tk/2) [Foondun-Khoshnevisan,
2009].
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Chaotic Behaviors

c < lim sup
R→∞

log sup|x |≤R ut(x)

(logR)d
< C ,

PAM, d = 2/3 [Conus-Joseph-Khoshnevisan, 2013].

PAM, Xia Chen found the value of the limit superior (his talk
in on SUNDAY).

Apply the Hoph-Cole transformation ut(x) := exp(ht(x)). {ht(x)}
satisfies the following KPZ equation:

∂

∂t
ht(x) =

∂2

∂x2
ht(x) + (

∂

∂x
ht(x))2 +

∂2

∂t∂x
W (t, x).

The chaotic estimates for SHE give

at < lim sup
|x |→∞

ht(x)

(log |x |)2/3
< At .
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Moments

Consider

∂

∂t
ut(x) = 4ut(x) + λσ(ut(x))

∂2

∂t∂x
W (t, x), x ∈ [−1, 1]

with Neumann boundary condition and σ is approximately linear.

ct ≤ lim inf
λ→∞

log
√∫ 1
−1 E |ut(x)|2dx
λ4

≤ lim sup
λ→∞

log
√∫ 1
−1 E |ut(x)|2dx
λ4

≤ Ct

[K.W. Kim-Khoshnevisan, 2015].

lim inf
λ→∞

log log infx E |ut(x)|2

log λ
= lim sup

λ→∞

log log supx E |ut(x)|2

log λ
= 4

[Foondun-Joseph, 2014].
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Dissipation Theorem. When λ goes to ∞

Consider

∂

∂t
ut(x ;λ) = 4ut(x ;λ) + λσ(ut(x ;λ))

∂2

∂t∂x
W (t, x), x ∈ [−1, 1]

with periodic boundary condition.
Recall that SHE with Neumann boundary condition
E |ut(x ;λ)|2 ≈ exp(Cλ4t) as λ→∞.

Theorem (Khoshnevisan-K.W. Kim-Mueller-S, 2016+)

For fixed t > 0

sup
x∈[−1,1]

ut(x ;λ)→ 0 in probability as λ→∞.
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Dissipation Theorem. When t →∞

E |ut(x ;λ)|2 ≥ C exp(Cλ4t) [Foondun-E.Nualart, 2015].

Theorem (Khoshnevisan-K.W. Kim-Mueller-S, 2016+)

For all λ > 0,

−∞ < lim inf
t→∞

1

t
log inf

x∈[−1,1]
ut(x ;λ)

≤ lim sup
t→∞

1

t
log sup

x∈[−1,1]
ut(x ;λ) < 0 a.s.
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Dissipation Theorem, Hohenberg-Swift

∂

∂t
ψt(x ;λ) = 4ψt(x ;λ) + ψt(x ;λ)− ψ3

t (x ;λ)

+λσ(ψt(x ;λ))
∂2

∂t∂x
W (t, x), x ∈ [−1, 1].

with periodic boundary condition.

Theorem (Khoshnevisan-K.W. Kim-Mueller-S, 2016+)

There exists non-random constants 0 < λ1 <∞ such that:
whenever λ > λ1,

lim sup
t→∞

1

t
log sup

x∈[−1,1]
ψt(x , λ) < 0 a.s.
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