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Williams decomposition for
superprocesses

Yan-Xia Ren

Peking University

The talk is based on a working paper with Renming
Song and Rui Zhang.

12th Workshop on Markov Processes and Related Topics,
JNU and BNU, July 13-17, 2016
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Williams’ decompositions

D. Williams (Proc. London Math. Soc., 1974) decomposed the
Brownian excursion with respect to its maximum.

D. Aldous (Ann. Probab., 1991) recognized the genealogy of a
quadratic (branching mechanism ψ(z) = z2) continuous state
branching process can be recognized in the Brownian excursion.

The genealogical structure of a general continuous branching
process can be recognized in spectrally positive Lévy process (from
Z. Li’s talk).

Later Williams’ decomposition also refers to decompositions of
branching processes with respect to their height.
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Let X be a non-homogeneous superprocess. It models the evolution
of a large population, where the location of the individuals is allowed
to affect their reproduction law. We assume the extinction time H of
this population is finite.

We are interested in the following conditioning on the genealogical
structure of X :

The distribution X (h0) of X conditioned on H = h0: we
derive it using a spinal decomposition involving the
ancestral lineage of the last individual alive (Williams’
decomposition).
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Previous results

For superprocesses with homogeneous branching mechanism, the
spatial motion is independent of the genealogical structure. As a
consequence, the law of the ancestral lineage of the last individual
alive does not distinguish from the original motion. Therefore, in this
setting, the description of X (h0) may be deduced from Abraham and
Delmas (2009) where no spatial motion is taken into account.

For nonhomogeneous branching mechanisms on the contrary, the
law of the ancestral lineage of the last individual alive should depend
on the distance to the extinction time h0.

Using the Brownian snake, Delmas and Hénard (2013) provide a
description of the genealogy for superprocesses with the following
non-homogeneous branching mechanism

ψ(x , z) = a(x)z + β(x)z2

with the functions a and β satisfying some conditions.
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We would like to find conditions such that the Williams’
decomposition works for superprocesses with general
non-homogeneous branching mechanisms. The conditions should
be easy to check and satisfied by a lot of superpossess.
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Superprocesses

The superprocess X = {Xt : t ≥ 0} we are going to work with is
determined by two objects:

(i) a spatial motion ξ = {ξt ,Πx} on E , which is Hunt process on E .

(ii) a branching mechanism Ψ of the form

Ψ(x , z) = −α(x)z+b(x)z2+

∫
(0,+∞)

(e−zy−1+zy)n(x ,dy), x ∈ E , z > 0,

(1)
where α ∈ Bb(E), b ∈ B+

b (E) and n is a kernel from E to (0,∞)
satisfying

sup
x∈E

∫
(0,+∞)

(y ∧ y2)n(x ,dy) <∞. (2)
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MF (E): the space of finite measures on E . ⟨f , µ⟩ :=
∫

E f (x)µ(dx).

The superprocess X is a Markov process taking values in MF (E).
For any µ ∈ MF (E), we denote the law of X with initial configuration
µ by Pµ. Then for every f ∈ B+

b (E) and µ ∈ MF (E),

− logPµ

(
e−⟨f ,Xt⟩

)
= ⟨uf (t , ·), µ⟩,

where uf (t , x) is the unique positive solution to the equation

uf (t , x) + Πx

∫ t∧ζ

0
Ψ(ξs, uf (t − s, ξs))β(ξs)ds = Πx f (ξt),

For any f ∈ Bb(E) and (t , x) ∈ (0,∞)× E , define

Tt f (x) := Πx

[
e
∫ t

0 α(ξs) dsf (ξt)
]
. (3)

It is well-known that Tt f (x) = Pδx ⟨f ,Xt⟩ for every x ∈ E .
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Assumptions

Define ∥µ∥ := ⟨1, µ⟩; v(t , x) := − logPδx (∥Xt∥ = 0). Note that, since
Pδx∥Xt∥ = Tt1(x) > 0, we have Pδx (∥Xt∥ = 0) < 1.

Assumption 1 For ∀t > 0,

sup
x∈E

v(t , x) <∞ (⇔ inf
x∈E

Pδx (∥Xt∥ = 0) > 0) and

lim
t→∞

sup
x∈E

v(t , x) = 0 (⇔ lim
t→∞

inf
x∈E

Pδx (∥Xt∥ = 0) = 1). (4)

Remark 1 Now we give a sufficient condition for Assumption 1.

Ψ(x , z) ≥ Ψ̃(z) := az + bz2 +

∫ ∞

0

(
e−yz − 1 + yz

)
n(dy), (5)

where a ≥ 0,
∫∞

0 (y ∧ y2)n(dy) <∞ and Ψ̃ satisfies the Grey
condition:

∫∞
0

1
Ψ̃(z)

dz <∞.
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Assumptions

Remark 2 In 2014, Duquesne and Labbé proved that:

1) a Continuous State Branching Process (CSBP) with general
branching mechanism such that the Grey condition holds has an Eve.

2) If the Grey condition does not hold CSBP may have (finitely and
infinitely) many settlers. Moreover, under some conditions on the
Lévy measure of the branching mechanism, there is even dust.
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Assumptions

Recall that v(t , x) := − logPδx (∥Xt∥ = 0).

Assumption 2 We assume that, for any x ∈ E and t > 0,

w(t , x) := −∂v
∂t

(t , x)

exists, and for any u > 0 and 0 < r < t ,

Tu

(
sup

r≤s≤t
w(s, ·)

)
(x) <∞.
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Excursion measures

We use D to denote the space of MF (E)-valued right continuous
functions t 7→ ωt on (0,∞) having zero as a trap.

One can associate with {Pδx : x ∈ E} a family of σ-finite measures
{Nx : x ∈ E} defined on (D,A) such that Nx({0}) = 0,∫

D
(1 − e−⟨f ,ωt⟩)Nx(dω) = − logPδx (e

−⟨f ,Xt⟩), f ∈ B+
b (E), t > 0. (6)

See El Karoui and Roelly (1991), Le Gall (1999), Zenghu Li (2002)
and Dynkin and Kuznetsov (2004) for further details.
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We use D to denote the space of MF (E)-valued right continuous
functions t 7→ ωt on (0,∞) having zero as a trap.

One can associate with {Pδx : x ∈ E} a family of σ-finite measures
{Nx : x ∈ E} defined on (D,A) such that Nx({0}) = 0,∫

D
(1 − e−⟨f ,ωt⟩)Nx(dω) = − logPδx (e

−⟨f ,Xt⟩), f ∈ B+
b (E), t > 0. (6)

See El Karoui and Roelly (1991), Le Gall (1999), Zenghu Li (2002)
and Dynkin and Kuznetsov (2004) for further details.
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Spine

Since v(t + s, x) = − logPµe−⟨v(s,·),Xt⟩, then we have, for s, t > 0,

v(t + s, x) + Πx

∫ t

0
Ψ(ξu, v(t + s − u, ξu))du = Πx(v(s, ξt)). (7)

By Assumption 2, both sides of the above equation is differentiable
with respect to s and we get that

w(t+s, x)+Πx

∫ t

0
Ψ′

z(ξu, v(t+s−u, ξu))w(t+s−u, ξu)du = Πx(w(s, ξt)),

(8)
which implies that

w(t + s, x) = Πx

(
exp

{
−
∫ t

0
Ψ′

z(ξu, v(t + s − u, ξu))du

}
w(s, ξt)

)
.

(9)



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Motivation Superprocesses Assumptions Main result Examples An application of the main result

Spine

Since v(t + s, x) = − logPµe−⟨v(s,·),Xt⟩, then we have, for s, t > 0,

v(t + s, x) + Πx

∫ t

0
Ψ(ξu, v(t + s − u, ξu))du = Πx(v(s, ξt)). (7)

By Assumption 2, both sides of the above equation is differentiable
with respect to s and we get that

w(t+s, x)+Πx

∫ t

0
Ψ′

z(ξu, v(t+s−u, ξu))w(t+s−u, ξu)du = Πx(w(s, ξt)),

(8)
which implies that

w(t + s, x) = Πx

(
exp

{
−
∫ t

0
Ψ′

z(ξu, v(t + s − u, ξu))du

}
w(s, ξt)

)
.

(9)



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Motivation Superprocesses Assumptions Main result Examples An application of the main result

Spine

Define, for t ∈ [0, h),

Y h
t :=

w(h − t , ξt)

w(h, x)
e−

∫ t
0 Ψ′

z(ξu ,v(h−u,ξu)) du.

Lemma For any x ∈ E and t < h, Πx(Y h
t ) = 1. Under Πx ,

{Y h
t , t < h} is a nonnegative martingale.

Now we define a martingale change of measure by, for t < h,

Πh
x

Πx

∣∣∣∣
Ft

:= Y h
t .

Then {ξt , 0 ≤ t < h; Πh
x} is a conservative Markov process(Spine). If ν

is a probability measure on E , define Πh
ν :=

∫
E Πh

x ν(dx).
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Main result

We put
H := inf{t ≥ 0 : ∥Xt∥ = 0},

H(ω) := inf{t ≥ 0 : ∥ωt∥ = 0}, for ω ∈ D.

We aim to reconstruct the process {Xt , t < h} conditioned on H = h.

Theorem (Main Result)

Spine Let ξh := {ξt , 0 ≤ t < h} be a Markov process according to
the measure Πh

ν , where ν(dx) = w(h,x)
⟨w(h,·),µ⟩µ(dx). Given the trajectory

of ξh, in the following, we will give three independent proceses:
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Main result

Continuous immigration Suppose that N 1,h(ds, dω) is a Poisson
random measure on [0, h)× D with density measure
21[0,h)(s)1H(ω)<h−sβ(ξs)b(ξs)Nξs(dω)ds.
Define, for t ∈ [0, h),

X 1,h,N
t :=

∫ t

0

∫
D
ωt−sN 1,h(ds, dω); (10)

Jump immigration Suppose that N 2,h(ds, dω) is a Poisson random
measure on [0, h)× D with density measure
1[0,h)(s)1H(ω)<h−s

∫∞
0 yn(ξs, dy)Pyδξs

(X ∈ dω) ds.
Define, for t ∈ [0, h),

X 2,h,P
t :=

∫ t

0

∫
D
ωt−sN 2,h(ds, dω). (11)
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Main result

Immigration at time 0 Let X 0,h
t , 0 ≤ t < h, be a superprocess

distributed according to the probability measure
Pµ(X ∈ ·|H < h).

Define
Λh

t := X 0,h
t + X 1,h,N

t + X 2,h,P
t . (12)

Then {Λh
t , t < h} has the same distribution as {Xt , t < h} conditioned

on H = h.
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Example 1 Let {Pt}t≥0 be the semigroup of ξ. Suppose that Pt is
conservative and preserves Cb(E). Let (A,D(A)) be the infinitesimal
generator of Pt in Cb(E). Also assume that

(A) Ψ(x , z) = −α(x)z + b(x)z2, where sup
x∈E

α(x) ≤ 0 and

inf
x∈E

b(x) > 0 and 1/b ∈ D(A).

(This implies Assumption 1)
(B) −α(x)− b(x)A(1/b)(x) ∈ D(A(1/b)).

(This implies Assumption 2)

This example covers Delmas and Hénard (2013).

In the following examples, we always suppose the branching
mechanism is given by

Ψ(x , z) = −α(x)z + b(x)z2 +

∫
(0,+∞)

(e−zy − 1 + zy)n(x , dy),

and Ψ(x , z) ≥ Ψ̃(z) with Ψ̃ satisfying the Grey condition.
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Example 2 Assume ξ is a diffusion with infinitesimal generator

L =
∑

aij(x)
∂

∂xi

∂

∂xj
+
∑

bj(x)
∂

∂xj

satisfy the following conditions:
(A) (Uniform ellipticity) There exists a constant γ > 0 such

that ∑
ai,j(x)uiuj ≥ γ

∑
u2

j .

(B) aij and bj are bounded, continuous in x and satisfy
Hölder’s conditions.

Then the (ξ,Ψ)-superprocess X satisfies Assumption 1.

Suppose further that, for any M > 0, there exists c such that

|Ψ(x , z)−Ψ(y , z)| ≤ c|x − y |, x , y ∈ Rd , z ∈ [0,M].

Then X also satisfies Assumption 2.



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Motivation Superprocesses Assumptions Main result Examples An application of the main result

Example 2 Assume ξ is a diffusion with infinitesimal generator

L =
∑

aij(x)
∂

∂xi

∂

∂xj
+
∑

bj(x)
∂

∂xj

satisfy the following conditions:
(A) (Uniform ellipticity) There exists a constant γ > 0 such

that ∑
ai,j(x)uiuj ≥ γ

∑
u2

j .

(B) aij and bj are bounded, continuous in x and satisfy
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Example 3 Suppose that B = {Bt} is a Brownian motion in Rd and
S = {St} is an independent subordinator with Laplace exponent φ,
that is

Ee−λSt = e−tφ(λ), t > 0, λ > 0.

The process ξt = BSt is called a subordinate Brownian motion in Rd .
Then the (ξ,Ψ)-superprocess X satisfies Assumption 1.

1) Suppose further that φ satisfies the following conditions:
1
∫ 1

0
φ(r2)

r dr <∞.

2 There exist constants δ ∈ (0, 2] and a1 ∈ (0, 1) such that

a1λ
δ/2φ(r) ≤ φ(λr), λ ≥ 1, r ≥ 1.

2) Suppose that for any M > 0, there exists c such that

|Ψ(x , z)−Ψ(y , z)| ≤ c|x − y |, x , y ∈ Rd , z ∈ [0,M].

Then X also satisfies Assumption 2.
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Remark Actually, by the same arguments and the results from
Kim-Song-Vondracek (Preprint, 2016), one check that in the example
above, we could have replaced the subordinate Brownian motion by
the non-symmetric jump process considered there, which contains
the non-symmetric stable-like process discussed in Chen-Zhang
(Probab. Theory Relat. Fields, 2016+).
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An application of the main result

Assumption 3 For any bounded open set B ⊂ E and any t > 0, the
function

x → − logPδx

(∫ t

0
Xs(Bc) ds = 0

)
is finite for x ∈ B and locally bounded.

Remark Suppose ξ is a diffusion with generator L satisfying (A) and
(B) in Example 2, and suppose X is a (ξ,Ψ)-superdiffusion. If the
branching mechanism Ψ(x , z) satisfies that, for some α ∈ (1,2],
Ψ(x , z) ≥ zα for all x ∈ Rd then Assumption 3 is satisfied.
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An application of the main result

Corollary Assume that Assumption 3 holds and that for any
µ ∈ MF (E),

lim
t↑h

ξt =: ξh− exists, Πh
ν − a.s., (13)

where ν(dx) = w(h,x)
⟨w(h,·),µ⟩µ(dx). Then there exists a E-valued random

variable Z such that

lim
t↑H

Λt

∥Λt∥
= δZ (weak), Pµ − a.s.

Conditioned on {H = h}, Z has the same law as {ξh−,Π
h
ν}.
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In 1992, Tribe proved that if the spatial motion is Feller process and
the branching mechanism is binary (Ψ(z) = z2). Compared with Tribe
(1992), we assume that the spatial motion ξ is a diffusion (special),
while our branching mechanisms is more general.

In 2014, Duquesne and Labbé proved that a Continuous State
Branching Process (CSBP) with general branching mechanism such
that the Grey condition holds has an Eve.

In some sense, our result gives a special dependent version of the
result of Duquesne and Labbé (2014) under the Grey condition.
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Lévy continuum random tree and simultaneous extinction probability
for populations with neutral mutations. Stochastic Process. Appl., 119
(2009), 1124-1143.
[2] Delmas, J. F. and Hénard, O.: A Williams decomposition for
spatially dependent super-processes. Electron. J. Probab. 18 (2013),
1–43.
[3] Dynkin, E. B. and Kuznetsov, S. E.: N-measure for branching exit
Markov system and their applications to differential equations.
Probab. Theory Rel. Fields 130 (2004), 135–150.
[4] Li, Z.: Measure-Valued Branching Markov Processes. Springer,
Heidelberg, 2011.
[5] Tribe, R.: The behavior of superprocesses near extinction. Ann.
Probab. 20 (1992), 286–311.
[6] Thomas Duquesne, T. and Labbé C.: On the Eve property for
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Thank you!
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