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Perturbed DTMC

Let X̃n be a time-homogeneous discrete-time Markov chain
(DTMC) on a countable state space E with an irreducible

stochastic transition matrix P̃ . Suppose that P̃ is nearly
decomposable, i.e.

P̃ = P + ∆,

. the (small) perturbation matrix ∆ satis�es that ∆e = 0.

. the unperturbed transition matrix P is decomposable
(reducible), the state space E is decomposed into denumerable
irreducible and ergodic classes En for n ∈ Ê, where the set
Ê := {0, 1, · · · , `}, 0 ≤ ` ≤ ∞. Thus E =

⋃
n∈Ê Ê× En.
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The unperturbed transition matrix P can be written as

P =


P0 0 0 · · ·
0 P1 0 · · ·
0 0 P2 · · ·
...

...
...

. . .

 .

When ` = 0, the perturbation is called regular perturbation;

when ` ≥ 1, the perturbation is called singular perturbation.
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Perturbed CTMC

Let X̃t be a time-homogeneous CTMC on a countable space E
with an irreducible, conservative and possibly unbounded
generator Q̃. Suppose that Q̃ is nearly decomposable, i.e.

Q̃ = Q + ∆,

where ∆ is the small and Q is decomposable:

Q =


Q0 0 0 · · ·
0 Q1 0 · · ·
0 0 Q2 · · ·
...

...
...

. . .

 .

Similarly, regular perturbation when ` = 0, and singular
perturbation when ` ≥ 1
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For singular perturbation, the elements of P (Q) and ∆ re�ect
the strong and weak interactions, respectively.

A wide range of large-scale systems are distinguished by this
feature and hence are nicely modeled with the help of
decomposable Markov chains, such as

. Markov decision processes, e.g., Bielecki and Stetlner
(1998), Yin and Zhang (2000);

. control problems, e.g., Delebecque and Quadrat (1981), Yin
and Zhang (2003);

. queueing networks, e.g., Latouche and Schweitzer (1995),
Yin and Zhang (2008)

......
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Example 1: a 2d discrete-time queue

Consider a DT queueing system with two stations:Edraw Trial Version

Edraw Trial Version

Edraw Trial Version

which is modi�ed from Yin and Zhang (2008) by letting that
Station 1 has an unlimited room and the arrival customers
follow a geometric distribution with a constant parameter.
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Let X̃j(n) be the number of customers at Station j at time n.

Then (X̃2(n), X̃1(n)) is a two-dimensional DTMC on the state
space E =

⋃
n∈Ê Ê× En, with Ê = En = {0, 1, 2, · · · }.

Its transition matrix P̃ is given by P̃ = P + ∆, where P is
decomposable and Pn, n ≥ 1 and ∆ are determined by

P0 =


a 1− a 0 · · ·
µ1 θ0 λ1 · · ·
0 µ1 θ0 · · ·
...

...
...

. . .

 , Pn =


c 1− c 0 · · ·
µ2 θ1 λ2 · · ·
0 µ2 θ1 · · ·
...

...
...

. . .

 .
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∆ =


∆0 ∆1 0 · · ·

∆−1 ∆0 ∆1 · · ·
0 ∆−1 ∆0 · · ·
...

...
...

. . .

, ∆0 =


0 0 0 · · ·
0 −γ̂12 0 · · ·
0 0 −γ̂12 · · ·
...

...
...

. . .

 ,

∆1 =


0 0 0 0 · · ·

aγ̂12 (1− a)γ̂12 0 0 · · ·
0 aγ̂12 (1− a)γ̂12 0 · · ·
...

...
...

...
. . .

 ,
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∆−1 =


aγ2 δ̂0 δ0 0 0 · · ·
aγ1γ2 δ1 δ̂1 δ1 0 · · ·
0 aγ1γ2 δ1 δ̂1 δ1 · · ·
...

...
...

...
...

. . .

 ,

∆1 =


0 0 0 0 · · ·

aa2γ̂12 (1− a)a2γ̂12 0 0 · · ·
0 aa2γ̂12 (1− a)a2γ̂12 0 · · ·
...

...
...

...
. . .

 ,
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and

∆0 =


−γ2 0 0 0 · · ·
aγ̂12γ2 θ̂1 (1− a)γ̂12γ̂21 0 · · ·

0 aγ̂12γ2 θ̂1 (1− a)γ̂12γ̂21 · · ·
...

...
...

...
. . .

 .
Assume that parameters α and (1− a2) are small⇒ ∆ is small.

⇒ the changes of the queue length process and departure
process corresponding to Station 2 are relatively slow compared
with those corresponding to Station 1, which results in that
the transition probability between any two levels is very small.
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Example 2: a M M Birth-death process

Consider a Markov modulated state dependent birth-death
process.

The environment process is a slowly varying M/M/1 queue, in
which customers arrive at this queue according to a Poisson
process with rate εq and are served at rate εp. Let X (t) be
the number of customers in the queue at time t.

De�ne a birth-death process Y (t) as follows: if at time t,
X (t) = n and Y (t) = i , then Y (t) jumps up to i + 1 at the
birth rate ribn and jumps down to i − 1 at the death rate sian
for non-negative functions ri and and si on {0, 1, 2, · · · }.
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The process (X (t),Y (t)) is a two-dimensional level dependent
QBD process with in�nitely many levels and phases.

Its generator is Q̃ = Q + ∆, where Q is decomposable with
Qn, n ≥ 0 given by

Qn =


−r0bn r0bn 0 · · ·
s1an −r1bn − s1an r1bn · · ·
0 s2an −r2bn − s2an · · ·
...

...
...

. . .

 ,
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and ∆ has the same form as that of Example 1 with

∆1 =


εq 0 0 · · ·
0 εq 0 · · ·
0 0 εq · · ·
...

...
...

. . .

 , ∆−1 =


εp 0 0 · · ·
0 εp 0 · · ·
0 0 εp · · ·
...

...
...

. . .

 ,

where ∆1 = ∆1, ∆0 = −∆1, ∆0 = −(∆−1 + ∆1).
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Our goal

Understand how perturbation a�ect the long-run behavior:

(i) Find conditions on ∆ and Pi to ensure that P̃ is positive
recurrent with stationary distribution π̃, and

π̃ = π(0)
∞∑
n=0

Un,

for some matrix U and probability vector π(0).

(ii) When (i) is addressed well, we consider the bound on the
di�erence π̃ − π(0) = π(0)

∑∞
n=1

Un.
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Literature

The singular perturbation problems are investigated by posing
the Dobelin condition, see, e.g.

�: Korolyuk and Turbin (1993), Bielecki and Stetlner (1998)
for singular perturbation of Markov chains on general
measurable state,

�: Yin and Zhang (2002, 2008) for two-time scales singular
perturbation.

The Dobelin condition is quite restrictive for DTMCs on an
in�nitely countable state space, see e.g. Hou and L (2004).
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Altman et al. (2004): �rst adopt geometric ergodicity
condition.

�: the bounds are not well investigated,

�: P̃ and Pn are aperiodic,

�: the perturbation ∆ is linear (i.e. ∆ = εG ),

�: the generator Q̃ and Q are bounded.

We will investigate these issues by extending the ideas for
regularly perturbed MCs, see e.g.

�: Kartashov (1986), Mouhoubi and Aissani (2010), L (2012)
for DTMCs,
�: Mitrophanov (2006), Heidergott etal. (2010), L (2015) for
CTMCs.
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Notations

Recall that each class Pn is positive recurrent, whose stationary
probability vector is πn and stationary probability matrix is Πn.

De�ne the fundamental matrix by Rn = (I − Pn + Πn)−1.

Let

� =


Π0 0 0 · · ·
0 Π1 0 · · ·
0 0 Π2 · · ·
...

...
...

. . .

 , R =


R0 0 0 · · ·
0 R1 0 · · ·
0 0 R2 · · ·
...

...
...

. . .

 .
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To introduce the aggregated CTMC (e.g. Delebecque 1983),
de�ne the matrices M and W by

M =


π0 0 0 · · ·
0 π1 0 · · ·
0 0 π2 · · ·
...

...
...

. . .


Ê×E

, W =


e0 0 0 · · ·
0 e1 0 · · ·
0 0 e2 · · ·
...

...
...

. . .


E×Ê

.

The generator Q̂ of the aggregated chain is de�ned by

Q̂ = M∆W , (q̂ij = πi∆ijej , i , j ∈ Ê),

whose stationary distribution and deviation matrix are denoted
respectively by π̂ and DQ̂ if they exist.
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a key matrix

Introduce a key matrix U as follows

U = ∆(R− �)(I + ∆WDQ̂M).

Remark:

(i) When ` = 0, U = ∆(R − Π), which plays a key role for
regular perturbation analysis.

(ii) Compared with Altman et al. (2004), this de�nition

permits that P̃ and each class Pn are periodic and the
perturbation ∆ is general.
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v-norm and Assumption 1

Let v ≥ 1. For a measure µ, its v -norm is de�ned by
‖µ‖v =

∑
i∈E |µi |vi . For a matrix A, its v -norm is de�ned by

‖A‖v = sup
i∈E

v−1i

∑
j∈E

|Aij |vj .

Assumption 1: Let v ≥ 1. Assume that

(i) all the matrices P , ∆, �, π̂M, R and WDQ̂M have �nite
v -norm; and

(ii) there exists a �nite positive integer N and a constant
δN ∈ (0, 1) such that δN = ‖UN‖v < 1.
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Main results

Theorem 1: Suppose that Assumption 1 holds. Then
(i) P̃ has a unique stationary distribution, given by

π̃ = π̂M
∞∑
k=0

Uk .

(ii) For N = 1 (the case N > 1 can be obtained )∥∥∥∥∥π̃ − π̂M
m∑

k=0

Uk

∥∥∥∥∥
v

≤ ‖π̂M‖v
‖U‖m+1

v

1− ‖U‖v
.
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Remark:

� Note that for regular perturbation π̂M = π (πP = π),
while for singular perturbation π̂M = (π̂0π1, π̂1π1, · · · ).

� We call
∑m

k=0
π̂MUk the (m+1)-th order approximation of

the stationary distribution π̃.

� For regular perturbation, the �rst approximation π̂M (i.e.,
m = 0) becomes the stationary distribution of P , which has
caused much concern in the literature.

� To prove this theorem, we need to make use of associativity
for the multiplications of (possibly negative) in�nite matrices.
(i) of Assumption 1 can guarantee the associativity.
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We now state Lyapunov drift conditions (see Chen (2003)),
which are equivalent to geometric and exponential ergodicity,
respectively.

D1(V , λ, b, {i}): For a transition matrix P , suppose that
there exist a �nite vector V , V ≥ e, some state i and positive
numbers b <∞, λ < 1 such that

PV ≤ λV + bI{i}.

D2(V , λ, b, {i}): For a q-matrix Q, suppose that there exist
a �nite function V , V ≥ e, some state i and positive
constants λ > 0, b <∞ such that

QV ≤ −λV + bI{i}.
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Assumption 2: Assume that
(i) D1(V , λ, b,{i0(n)}) holds uniformly for each Pn; and

(ii) D2(V̂ , λ̂, b̂, {̂i0}) holds for the generator Q̂.

Theorem 2: Suppose that Assumption 2 holds and
‖∆‖v <∞, where vni := V̂nVi , n ∈ Ê, i ∈ En. Then
Assumption 1 holds and

‖U‖v ≤ x(1 + y‖∆‖v + z),

where x , y , z are given by

x =
c1

1− λ
, y =

c2(1 + c3)2

λ̂
, z = c2c3

with c1 := ‖∆(I − Π)‖v , c2 := supn∈Ê πn(V ) and c3 := π̂(V̂ ).

Note that c1 ≤ (1 + c2)‖∆‖v c2 ≤ b/(1− λ), and c3 ≤ b̂/λ̂.
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Back to Example 1

Assumption-1: Suppose that (i) a1 + aα < a + aa1α; and
(ii) a2 + α < 1 + aa2α.

� Note that (i) of Assumption-1 is equivalent to ρ := λ1
µ1
< 1.

� Under (i) of Assumption-1, D1(V , λ, b, {i0(n)}) holds

uniformly in n for i0(n) = 0, V j =
(√

1

ρ

)j
, j ≥ 0,

λ = 1−
(√

λ1 −
√
µ1

)2
and b = a + (1− a)

√
1

ρ
− λ0.

πn,0 =

a1
ρ

a1
ρ

+ 1

1−ρ
, πn,i =

ρi−1

a1
ρ

+ 1

1−ρ
, i ≥ 1.
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The generator of the aggregated CTMC Q̂ is

Q̂ =


d0 d1 0 · · ·
c0 c1 c2 · · ·
0 c0 c1 · · ·
...

...
. . . · · ·

 ,
where di = π0∆0ie, and ci = π0∆ie.

� Note that (ii) of Assumption-1 is equivalent to ρ̂ := c2
c0
< 1.

� When ρ̂ < 1, D2(V̂ , λ̂, b̂, {̂i0}) holds for î0 = 0, V̂j =(√
1

ρ̂

)j
, j ≥ 0, λ̂ =

(√
c2 −

√
c0
)2
, b̂ = d0 + d1

√
1

ρ̂
+ λd .
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De�ne the drift vector v for the whole space by

v ni = V̂nVi =

(√
1

ρ̂

)n(√
1

ρ

)i

.

Assumption-2: Both parameters α and (1− a2) are small
enough such that x (1 + y‖∆‖v + z) < 1.

Under the above two assumptions, by Theorem 2, we have

∥∥∥∥∥π̃ − π̂M
m∑

k=0

Uk

∥∥∥∥∥
v

≤ [x (1 + y‖∆‖v + z)]m+1

1− x (1 + y‖∆‖v + z)
‖π̂M‖v ,

Note that ‖∆‖v , ‖π̂M‖v , x , y , and z can be determined by the
model parameters.
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Singular perturbation for CTMCs

Let πn and Dn respectively be the stationary distribution and
the deviation matrix corresponding to Qn whenever they exist.

Let

DQ =


D0 0 0 · · ·
0 D1 0 · · ·
0 0 D2 · · ·
...

...
...

. . .

 .
The generator Q̂ of the aggregated CTMC is de�ned by

Q̂ = M∆W .

Let π̂ and DQ̂ respectively be the stationary distribution and

the deviation matrix of Q̂ whenever they exist.
31 / 38



Background Singular perturbation for DTMCs Singular perturbation for CTMCs

To establish the counterpart of the discrete-time perturbation
results, de�ne

U = ∆DQ(I + ∆WDQ̂M).

Assumption 1': Let v ≥ 1 be a vector on E.
(i) All the matrices Q, ∆, Π, π̂M, DQ and WDQ̂M have �nite
v -norm;
(ii) there exists a �nite number N and a constant δN ∈ (0, 1)
such that δN = ‖UN‖v < 1.

Theorem 1' Suppose that Assumption 1' holds. Then the
same results as that in Theorem 1 hold.
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Assumption 2': Assume that
(i) D2(V , λ, b, {i0(n)}) holds uniformly in n for the same
V , λ and b; and
(ii) D2(V̂ , λ̂, b̂, {̂i0}) holds for Q̂.

Theorem 2' Suppose that Assumption 2' and ‖∆‖v <∞,
where vni := V̂nVi for n ∈ Ê, i ∈ En. Then (i) of Assumption
1' holds and

‖U‖v ≤ x

[
1 +

(1 + π̂(V̂ ))2

λ̂
sup
n∈Ê

πn(V )‖∆‖v

]
,

where the value of x is given by

x = ‖∆DQ‖v ≤
(1 + supn∈Ê πn(V ))2

λ
‖∆‖v .
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To prove the above result, one key point is to use the
following result

Theorem [L 2015] For a CTMC with a (possibly unbound)
Q-matrix. Suppose that D2(V , λ, b, {i}) holds. Then we
have

‖D‖V ≤
(1 + π(V ))2

λ
≤ (λ + b)2

λ3
.
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Back to Example 2

Assumption: Assume that (i) infn≥0(an − bn) > 0,
supn≥0 bn <∞; and (ii) p < q.

(i) of this assumption implies that D2(V , λ, b, {i0(n)}) holds
uniformly in n for i0(n) = 0, Vj = j + 1, j ≥ 0,

λ =
inf

n≥0(an−bn)
2

, and b = supn≥0 bn.

The stationary distribution {πn, n ∈ Ê}, dependent on n, is
given by

πn,0 =
1

1− log(1− bn/an)
, πn,k =

1

k
(
bn

an
)kπn,0, k ≥ 1.
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The generator Q̂ of the aggregated CTMC is given by

Q̂ =


−εq εq 0 · · ·
εp −ε(p + q) εq · · ·
0 εp −ε(p + q) · · ·
...

...
...

. . .

 .

(ii) of the assumption implies that ρ̂ := q

p
< 1, and

D2(V̂ , λ̂, b̂, {̂i0}) holds for î0 = 0, V̂j =
(√

1

ρ̂

)j
, j ≥ 0,

λ̂ = ε
(√

p −√q
)2
, b̂ = ε(p −√pq). Furthermore, we have

π̂0 = 1− ρ̂, π̂n = (1− ρ̂)ρ̂n−1, n ≥ 1, π̂(V̂ ) = 1 +
√
ρ̂.
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De�ne the drift vector v for the whole space by

v ni = V̂nVi =

(√
1

ρ̂

)n

(i + 1), n ≥ 0, i ≥ 0.

Let c = supn≥0 πn(V ) and

u =
(1 + c)2(

√
p +
√
q)2

λ

[
1 + c(2 +

√
q/p)2

(
√
p +
√
q)4

(p − q)2

]
.

Under the above assumption, if 0 < ε < 1/u, then we have∥∥∥∥∥π̃ − π̂M
m∑

k=0

Uk

∥∥∥∥∥
v

≤ c(1 +
√
ρ̂)

(εu)m+1

1− εu
.
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Thank you for your attention!
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