Decay property of stopped Markovian bulk-arriving queues with c-servers

Li Junping
Joint work with Zhang Lina

Central South University

July, 13-17, 2016, Xuzhou
1 Background
Contents

1 Background

2 Preliminary
Contents

1 Background

2 Preliminary

3 Conclusions
Contents

1 Background
2 Preliminary
3 Conclusions
4 References
Contents

1. Background
2. Preliminary
3. Conclusions
4. References
5. Acknowledgements
• Definition of Decay parameter

Let \mathbb{E} be a countable set.

$Q = (q_{ij}; i, j \in \mathbb{E})$ be a stable Q-matrix.

$(p_{ij}(t); i, j \in \mathbb{E})$ is the Feller minimal Q-process.

C is a communicating class of \mathbb{E} and

$$\lim_{t \to \infty} p_{ij}(t) = 0, \quad i, j \in C.$$

By Kingman (1963), there exists a number $\lambda_C \geq 0$ such that for all $i, j \in C$,

$$\frac{1}{t} \log p_{ij}(t) \to -\lambda_C \quad \text{as } t \to \infty$$

λ_C is called the decay parameter for C.
On the other hand, let

\[\mu_{ij} = \inf \{ \lambda \geq 0 : \int_{0}^{\infty} e^{\lambda t} p_{ij}(t) dt = \infty \} \]

\[= \sup \{ \lambda \geq 0 : \int_{0}^{\infty} e^{\lambda t} p_{ij}(t) dt < \infty \}. \]

It is easily seen that \(\mu_{ij} \) does not depend on \(i, j \in C \), the common value is denoted by \(\mu \). Moreover,

\[\lambda_{C} = \mu. \]

(see, for example, Pollett (2006)).
Background

• Problems:
 ▶ $\lambda_C = ?$;
 ▶ The λ_C-recurrency of the process.

• Known progress:
 (i) Finite Markov chains.

(ii) BDP (Chen M.F.).
Specially, BDP: $q_{i-1} = a$, $q_{i+1} = b$, then $\lambda_C = (\sqrt{a} - \sqrt{b})^2$.

(iii) MBP: $q_{ij} = ib_{j-i+1}$, then $\lambda_C = -B'(q)$ where

$$B(s) = \sum_{j=0}^{\infty} b_j s^j$$

and q is the smallest nonnegative root of $B(s) = 0$.

Li Junping
(iv) Stopped $M^X/M/1$ queue (Li and Chen, 2008):

\[
q_{ij} = \begin{cases}
 b_{j-i+1}, & \text{if } i \geq 1, j \geq i - 1 \\
 0, & \text{otherwise}
\end{cases}
\]

\[
\lambda_C = \sup\{\lambda \geq 0 : B(s) + \lambda s = 0 \text{ has a root in } (0, +\infty)\}
\]

where $B(s) = \sum_{k=0}^{\infty} b_k s^k$.
(iv) Stopped $M^X/M/1$ queue (Li and Chen, 2008):

\[q_{ij} = \begin{cases}
 b_{j-i+1}, & \text{if } i \geq 1, j \geq i - 1 \\
 0, & \text{otherwise}
\end{cases} \]

\[\lambda_C = \sup \{ \lambda \geq 0 : B(s) + \lambda s = 0 \text{ has a root in } (0, +\infty) \} \]

where $B(s) = \sum_{k=0}^{\infty} b_k s^k$.
(v) Controlled $M^X/M/1$ queue (Li and Chen, 2013):

$$q_{ij} = \begin{cases}
 h_j, & \text{if } i = 0, j \geq 0 \\
 b_{j-i+1}, & \text{if } i \geq 1, j \geq i - 1 \\
 0, & \text{otherwise,}
\end{cases}$$

where

$$\begin{cases}
 h_j \geq 0 \ (j > 0), \ 0 < \sum_{j=1}^{\infty} h_j = -h_0 < \infty \\
 b_j \geq 0 \ (j \neq 1), \ 0 < \sum_{j\neq 1} b_j = -b_1 < \infty.
\end{cases}$$

$$\lambda_Z = \min\{-\frac{B(s*)}{s*}, -\frac{B(s_h)}{s_h}\}$$
• Motivation

General controlled $M^X/M/1$ queue:

$$q_{ij} = \begin{cases}
 h_j, & \text{if } i = 0, j \geq 0 \\
 h^{(i)}_{j-i+1}, & \text{if } 1 \leq i < c, j \geq i - 1 \\
 b_{j-i+1}, & \text{if } i \geq c, j \geq i - 1 \\
 0, & \text{otherwise},
\end{cases}$$

where

$$\begin{align*}
 h_j &\geq 0 \ (j > 0), \ 0 < \sum_{j=1}^{\infty} h_j = -h_0 < \infty \\
 h^{(i)}_j &\geq 0 \ (j \neq 1), \ 0 < \sum_{j\neq 1} h^{(i)}_j = -h^{(i)}_1 < \infty, \ 1 \leq i < c \\
 b_j &\geq 0 \ (j \neq 1), \ 0 < \sum_{j\neq 1} b_j = -b_1 < \infty.
\end{align*}$$
This talk is concentrated on the decay parameter of stopped $M^X / M / c$.

Let $Q = (q_{ij}; i, j \in \mathbb{Z}_+) \text{ be defined as follows:}$

\[
q_{ij} = \begin{cases}
\min(i, c)b_0, & \text{if } i \geq 1, j = i - 1, \\
b_1 - \lfloor\min(i, c) - 1\rfloor b_0, & \text{if } i \geq 1, j = i, \\
b_{j-i+1}, & \text{if } i \geq 1, j \geq i + 1, \\
0, & \text{otherwise,}
\end{cases}
\]

(1.1)

where

\[
b_j \geq 0 \ (j \neq 1), \ 0 < \sum_{j\neq 1} b_j = -b_1 < \infty.
\]

(1.2)
Background

This talk is concentrated on the decay parameter of stopped \(M^X/M/c \).

Let \(Q = (q_{ij}; i, j \in \mathbb{Z}_+) \) be defined as follows:

\[
q_{ij} = \begin{cases}
\min(i, c)b_0, & \text{if } i \geq 1, j = i - 1, \\
b_1 - [\min(i, c) - 1]b_0, & \text{if } i \geq 1, j = i, \\
b_{j-i+1}, & \text{if } i \geq 1, j \geq i + 1, \\
0, & \text{otherwise},
\end{cases}
\]

(1.3)

where

\[
b_j \geq 0 \ (j \neq 1), \ 0 < \sum_{j \neq 1} b_j = -b_1 < \infty.
\]

(1.4)
Definition 1. Let $Q = (q_{ij}; i, j \in \mathbb{Z}_+)$ be a Q-matrix defined in (1.3)–(1.4). The corresponding transition function $P(t) = (p_{ij}(t); i, j \in \mathbb{Z}_+)$ is called a stopped $M^X/M/c$ queueing process.

If $c = 1$ then it is a stopped $M^X/M/1$ queueing model. In the following, we assume that $b_0 > 0$ and $\sum_{j=2}^{\infty} b_j > 0$ (to avoid trivial cases).
Let
\[K = \min\{ j \geq c; b_{j-c+2} > 0 \} (< \infty), \quad \mathbb{Z}_K^+ = \{1, 2, \cdots, K\} \]
and \(Q_K^+ = (q_{ij}; 1 \leq i, j \leq K) \) be the restriction of \(Q \) on \(\mathbb{Z}_K^+ \). Denote
\[\lambda_K = \min\{ \lambda \geq 0; \det(\lambda I + Q_K^+) = 0 \}. \]
Actually, \(\lambda_K \) is the decay parameter for \(\mathbb{Z}_K^+ \).
Define

\[B(s) = \sum_{k=0}^{\infty} b_k s^k \]

and

\[B_i(s) = B(s) + (i - 1)b_0(1 - s), \quad i = 1, 2, \ldots, c. \]

\[\rho = \limsup_{n \to \infty} \frac{1}{n} \sqrt[n]{b_n}. \]

Clearly, \(\rho \geq 1 \).

Now, let \(\rho_0 = \sup\{ s > 0 : B_c(s) \leq 0 \} \).
Lemma 2.1. $B_c(s)$ is convex on $[0, \rho)$ and has either one or two positive roots. More specifically,

(i) If either $\rho < +\infty$ and $B_c(\rho) \geq 0$ or $\rho = +\infty$ then $B_c(s) = 0$ has exactly two positive zeros q_s and q_L with $0 < q_s \leq q_L < \rho$.

(ii) If $\rho < +\infty$, $B_c(\rho) < 0$ then $B_c(s) = 0$ has exactly one positive root $q_s = 1$.

Define

$$\lambda^* = \sup\{\lambda \geq 0 : \lambda s + B_c(s) = 0 \text{ has a root in } [q_s, \rho_0]\}. \quad (2.1)$$
Lemma 2.2 Suppose that $B'_c(1) \leq 0$. Then for any $\lambda \in [0, \lambda_K]$, there exist positive $(m_j; j = 1, 2, \ldots, K)$ such that

$$\begin{cases}
\sum_{i=1}^{j+1} m_i q_{ij} = -\lambda m_j, & j = 1, 2, \ldots, K - 1, \\
\sum_{i=1}^{K} m_i q_{iK} \leq -\lambda m_K.
\end{cases} \tag{2.2}$$
For any $\lambda \in [0, \lambda_K]$, let $(m_i; 1 \leq i \leq K)$ be determined in Lemma 2.2 and define

$$F_\lambda(s) = m_1 b_0 + \sum_{i=1}^{c-1} m_1 s^{i-1} [B_c(s) - B_i(s)].$$

$F_\lambda(s)$ is called test function which will play an important role in determining λ_C.

Also let

$$\bar{\lambda} = \min(\lambda_K, \lambda^*)$$

and \bar{s} be the smallest nonnegative root of $\bar{\lambda} s + B_c(s) = 0$.
Conclusions

• Decay parameter

We now consider the decay parameter λ_C of stopped $M^X/M/c$ process. For this purpose, we shall determine λ_C in two cases that $B'_c(1) > 0$ and $B'_c(1) \leq 0$ separately.

Theorem 3.1. Let Q be defined in (1.3)-(1.4). If $B'_c(1) > 0$, then

$$\lambda_C = \lambda^* = -\frac{B_c(s_*)}{s_*}.$$

Sketch of proof. We only need to prove $\lambda_C \geq \lambda^*$. Indeed, let $x_j = s_j^* \ (j \geq 1)$, then $(x_j; j \geq 1)$ is a λ^*-subinvariant vector for Q on C.

Next we consider the case $B'_c(1) \leq 0$. We will find that the exact value of the decay parameter λ_C in the case $F_{\lambda}(\bar{s}) \geq 0$ is quite different from the case $F_{\lambda}(\bar{s}) < 0$.

Lemma 3.1. Suppose that $B'_c(1) \leq 0$. Then for any $\lambda \in [0, \bar{\lambda}]$, if $F_{\lambda}(s_{\lambda}) \geq 0$, then $\frac{F_{\lambda}(s)}{\lambda s + B_c(s)}$ can be expanded as a Taylor series of $s \in [0, s_{\lambda})$ and with positive coefficients, where s_{λ} is the smallest nonnegative root of $\lambda s + B_c(s) = 0$.
Conclusions

Sketch of proof.

Step 1. Note that

\[s^{i-1} - s^{i-1} - s^i + s^i = (s_\lambda - s)[s^{i-1} + (s_\lambda - 1)(s^{i-2} + s^{i-3}s + \cdots + s^{i-2})], \]

we have

\[
\frac{F_\lambda(s)}{\lambda s + B_c(s)} = F_\lambda(s_\lambda) \cdot \frac{1}{\lambda s + B_c(s)} + \frac{s_\lambda - s}{\lambda s + B_c(s)} \sum_{i=1}^{c-1} m_i(c - i) b_0 \\
\cdot [s^{i-1} + (s_\lambda - 1)(s^{i-2} + s^{i-3}s + \cdots + s^{i-2})].
\]

Step 2. If \(B'_c(1) \leq 0 \), then \(s_\lambda \geq 1 \), and hence

\[
\frac{F_\lambda(s)}{\lambda s + B_c(s)}
\]

can be expanded as a Taylor series of \(s \in [0, s_\lambda) \) and with positive coefficients.
Theorem 3.2. Suppose that $B'_c(1) \leq 0$. If $F_{\lambda}(\bar{s}) \geq 0$, then

$$\lambda_C = \bar{\lambda} = \min(\lambda_K, \lambda^*)$$

Sketch of proof.
(i) $\lambda_C \leq \bar{\lambda}$: Easy!
(ii) $\lambda_C \geq \bar{\lambda}$.

Step 1. By Lemma 2.2, there exists \(\{m_j > 0; \ j = 1, 2, \ldots, c - 1\} \) such that

$$m_{j+1} = \frac{-\bar{\lambda}m_j - \sum_{i=1}^{j} m_iq_{ij}}{q_{j+1j}}, \quad j = 1, 2, \ldots, c - 1.$$ \hspace{1cm} (3.1)
Step 2. By Lemma 3.1, \(\frac{F_\bar{\lambda}(s)}{\bar{\lambda}s + B_c(s)} \) can be expanded as a Taylor series for \(s \in [0, \bar{s}) \), i.e.,

\[
\frac{F_\bar{\lambda}(s)}{\bar{\lambda}s + B_c(s)} = \sum_{k=1}^{\infty} u_k s^{k-1}, \quad s \in [0, \bar{s})
\] (3.2)

where the coefficients \(u_k > 0 \ (k \geq 1) \).

Step 3. \(u_j = m_j \ (j = 1, 2, \ldots, c - 1) \) and hence \((u_j; j \geq 1)\) is a \(\bar{\lambda} \)-invariant measure for \(Q \) on \(C \).
Now we consider the case $F_{\bar{\lambda}}(\bar{s}) < 0$. Denote

$$G(s) := \frac{F_{-Bc}(s)}{s(s)}$$

which is a continuous function on $[q_s, \rho_0]$. Since $\bar{s} \in [q_s, \rho_0]$ and $G(\bar{s}) = F_{\bar{\lambda}}(\bar{s}) < 0$, we know that $\{s \in [q_s, \rho_0]; \ G(s) < 0\} \neq \emptyset$.

Define

$$\hat{s} = \inf\{s \in [q_s, \rho_0] | G(s) < 0\} \quad (3.3)$$

and

$$\hat{\lambda} = -\frac{B_c(\hat{s})}{\hat{s}}. \quad (3.4)$$
Theorem 3.3. Suppose that $B'_c(1) \leq 0$. If $F_{\hat{\lambda}}(\bar{s}) < 0$, then

$$\lambda_C = \hat{\lambda}.$$
Conclusions

Sketch of proof.

Step 1. $\lambda_C \geq \hat{\lambda}$. First prove $G(\hat{s}) = F\hat{\lambda}(\hat{s}) = 0$. Note that $G(\bar{s}) < 0$, we have $\bar{\lambda} > \hat{\lambda}$. Similarly as the proof of Theorem 3.2, we get $\lambda_C \geq \hat{\lambda}$.

Step 2. Note that $-\frac{B_c(s)}{s}$ is increasing and continuous, if $\lambda_C > \hat{\lambda}$, then $s_C > \hat{s}$, where s_C is the smallest nonnegative root of $\lambda_C s + B_c(s) = 0$.

By (3.3), there exists $s_2 \in (\hat{s}, s_C)$ such that $G(s_2) < 0$. Denote $\lambda_2 = -\frac{B_c(s_2)}{s_2}$, we have $\lambda_C > \lambda_2 > \hat{\lambda}$.
Step 3. It can be proved that there exists a λ_2-invariant measure $(u_k; \ k \in C)$ for Q on C, satisfying

$$
\sum_{k=1}^{\infty} u_k s^k = \frac{F_{\lambda_2}(s)}{\lambda_2 s + B_c(s)}, \ s \in [0, s_2).
$$

Hence, \(\frac{F_{\lambda_2}(s)}{\lambda_2 s + B_c(s)} \geq 0 \) for \(s \in [0, s_2) \) and therefore,

$$
\lim_{s \uparrow s_2} \frac{F_{\lambda_2}(s)}{\lambda_2 s + B_c(s)} \geq 0. \quad (3.5)
$$

However, by the continuity of $G(s)$, we have $\lim_{s \uparrow s_2} G(s) = G(s_2) < 0$. Then

$$
\lim_{s \uparrow s_2} \frac{F_{\lambda_2}(s)}{\lambda_2 s + B_c(s)} < 0,
$$

which is a contradiction with (3.5).
Conclusions

• Summary

Case (i): $B'_c(1) > 0$. Then $\lambda_C = \lambda^*$.

Case (ii): $B'_c \leq 0$ and $F_{\lambda}(\bar{s}) \geq 0$. Then $\lambda_C = \min(\lambda_K, \lambda^*)$, where λ_K is the smallest eigenvalue of $-Q^*_K$.

Case (iii): $B'_c \leq 0$ and $F_{\lambda}(\bar{s}) < 0$. Then $\lambda_C = \hat{\lambda} < \min(\lambda_K, \lambda^*)$.

Li Junping
Theorem 3.4. There exists a unique (up to constant multiples) λ_C-invariant measure $\{m_i; \ i \geq 1\}$ for Q on C, whose generating function $\sum_{i=1}^{\infty} m_i s^{i-1}$ is given by

$$\sum_{i=1}^{\infty} m_i s^{i-1} = \frac{m_1 b_0 + \sum_{i=1}^{c-1} m_i s^{i-1}[B_c(s) - B_i(s)]}{\lambda_C s + B_c(s)}, \quad s \in [0, s_C)$$

where $\{m_i > 0; \ i = 1, 2, \ldots, c - 1\}$ is given in Lemma 2.2.
Conclusions

- An example

Consider \(b_0 = a, \ b_2 = 1, \ b_k = 0 \ (k \geq 3) \) and \(c = 3 \).

\[
B_3(s) = s^2 - (3a + 1)s + 3a, \quad K = \min\{j \geq 3; b_{j-1} > 0\} = 3.
\]

Then

\[
q_s = \min(1, 3a), \quad \lambda^* = (\sqrt{3a} - 1)^2, \quad s^*_* = \sqrt{3a}.
\]

\[
\lambda_K = \min\{\lambda \geq 0 : \det(\lambda I + Q^+_K) = 0\}
\]

where

\[
det(\lambda I + Q^+_K) = \lambda^3 - (6a + 3)\lambda^2 + (11a^2 + 7a + 3)\lambda - (6a^3 + 2a^2 + a + 1).
\]

Denote \(\bar{\lambda} = \min(\lambda_K, (\sqrt{3a} - 1)^2) \). The smallest nonnegative root of \(\bar{\lambda}s + B_3(s) = 0 \) is given by

\[
\bar{s} = \frac{3a + 1 - \bar{\lambda} - \sqrt{(3a + 1 - \bar{\lambda})^2 - 12a}}{2}.
\]
For $\lambda \in [0, \lambda_K]$, $F_\lambda(s) = a(3 - 2s) + \frac{1}{2}(a + 1 - \lambda)s(1 - s)$.

By Theorems 3.1-3.3, we have

(i) If $3a < 1$ then $\lambda_C = (\sqrt{3a} - 1)^2$.

(ii) If $3a \geq 1$ and $a(3 - 2\bar{s}) + \frac{1}{2}(a + 1 - \bar{\lambda})\bar{s}(1 - \bar{s}) \geq 0$, then $\lambda_C = \bar{\lambda}$.

(iii) If $3a \geq 1$ and $a(3 - 2\bar{s}) + \frac{1}{2}(a + 1 - \bar{\lambda})\bar{s}(1 - \bar{s}) < 0$, then $\lambda_C = \hat{\lambda} = -\frac{B_3(\hat{s})}{\hat{s}}$, where \hat{s} is the smallest positive root of $G(s) = F_{-B(s)}/s(s) = 0$, i.e., $s^3 - (1 + 2a)s^2 + 9as - 9a = 0.$

From Markov Chains to Non-Equilibrium Particle Systems.
World Scientific, Singapore.

Eigenvalues, Inequalities, and Ergodic Theory.
Springer-Verlag, London.

Quasi-stationary behaviour of a left-continuous random walk.

Gross, D. and Harris, C.M. (1985).
Fundamentals of Queueing Theory.
Wiley, New York.

The Theory of Branching Processes.
References

Invariant measures and the generator.

The exponential decay of Markov transition probability.

Decay property of stopped Markovian bulk-arriving queues.

The decay parameter and invariant measures for Markovian bulk-arrival queues with control at idle time.

Pollett, P.K. (1995).
The determination of quasi-instationary distribution directly from the transition rates of an absorbing Markov chain.

Pollett, P.K. (1999).
Quasi-stationary distributions for continuous time Markov chains when absorption is not certain.

J. Appl. Prob., 36, 268-272.

Van Doorn, E.A. (1991).
Quasi-stationary distributions and convergence to quasi-stationarity of birth-death processes.

Thank you!