Level statistics of eigenvalues for 1D random Schrödinger operators

S. Kotani

KwanseiGakuin University and Osaka University (joint work with F. Nakano of Gakushuin University)

12th Workshop on Markov Processes and Related Topics July 17, 2016 Jiangsu Normal University, Xuzhou, China

$$H_{\omega}=-\Delta+V_{\omega}\left(x
ight)$$
, $x\in\mathbb{R}^{d}$ or \mathbb{Z}^{d}

$$H_{\omega} = -\Delta + V_{\omega}\left(x
ight)$$
, $x \in \mathbb{R}^{d}$ or \mathbb{Z}^{d}

• Points of interest: Localization and delocalization

æ

イロン イ理と イヨン トラン

$$H_{\omega} = -\Delta + V_{\omega}\left(x
ight)$$
, $x \in \mathbb{R}^{d}$ or \mathbb{Z}^{d}

- Points of interest: Localization and delocalization
- Two mathematical aspects to study:

- 4 週 ト - 4 三 ト - 4 三 ト -

$$H_{\omega} = -\Delta + V_{\omega}\left(x
ight)$$
, $x \in \mathbb{R}^{d}$ or \mathbb{Z}^{d}

- Points of interest: Localization and delocalization
- Two mathematical aspects to study:
- **Spectral properties**: Point spectrum or Continuous spectrum

<回と < 回と < 回と

$$H_{\omega} = -\Delta + V_{\omega}\left(x
ight)$$
, $x \in \mathbb{R}^{d}$ or \mathbb{Z}^{d}

- Points of interest: Localization and delocalization
- Two mathematical aspects to study:
- **9** Spectral properties: Point spectrum or Continuous spectrum
- Ocal structures of spectrum: Poisson distribution or other dependent distribution

伺下 イヨト イヨト

• Schrödinger operators with random decaying potentials

$$H_{\omega}=-rac{d^{2}}{dx^{2}}+a(x)F\left(X_{x}\left(\omega
ight)
ight)$$
 ,

where $\{X_x\}_{x\geq 0}$ is a B.M. on \mathbb{T}^d and F is a smooth function on \mathbb{T}^d satisfying

$$\int_{\mathbb{T}^d} F(x) \, dx = 0, \quad F \neq 0.$$

★ 課 ▶ ★ 注 ▶ ★ 注 ▶ → 注

Schrödinger operators with random decaying potentials

$$H_{\omega} = -rac{d^2}{dx^2} + a(x)F\left(X_x\left(\omega
ight)
ight)$$
 ,

where $\{X_x\}_{x\geq 0}$ is a B.M. on \mathbb{T}^d and F is a smooth function on \mathbb{T}^d satisfying

$$\int_{\mathbb{T}^d} F(x) \, dx = 0, \quad F \neq 0.$$

• a(x) decays with order

$$a(x) \sim x^{-lpha}$$
 as $x \to \infty \ \exists lpha \geq 0.$

Random matrix v.s. Random Schrödinger operator

• Discrete random Schrödinger operators $\Delta_d + V_n$

$$\left(\begin{array}{cccccccccc} V_1 & 1 & 0 & 0 & \cdots & \cdots \\ 1 & V_2 & 1 & 0 & \cdots & \cdots \\ 0 & 1 & V_3 & 1 & \cdots & \cdots \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ \cdots & \cdots & \cdots & 1 & V_n & 1 \\ \cdots & \cdots & \cdots & \cdots & \cdots & \ddots \end{array}\right)$$

個 と く ヨ と く ヨ と

Random matrix v.s. Random Schrödinger operator

• Discrete random Schrödinger operators $\Delta_d + V_n$

• Random matrix

$$\begin{pmatrix} X_{11} & X_{12} & X_{13} & X_{14} & \cdots \\ X_{12} & X_{22} & X_{23} & X_{24} & \cdots \\ X_{13} & X_{23} & X_{33} & X_{34} & \cdots \\ X_{14} & X_{24} & X_{34} & X_{44} & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

 The spectral properties for H_ω (K-Ushiroya 1988) On [0,∞) we have

$\alpha > 1/2$	a.c. spec.	
$\alpha = 1/2$	$\exists E_c > 0 \text{ s.t.} \bigg\{$	point spec. on $(0, E_c)$ s.c. spec. on (E_c, ∞)
$0 < \alpha < 1/2$	point spec.	

 The spectral properties for H_ω (K-Ushiroya 1988) On [0,∞) we have

$\alpha > 1/2$	a.c. spec.	
$\alpha = 1/2$	$\exists E_c > 0 \text{ s.t.} \bigg\{$	point spec. on $(0, E_c)$ s.c. spec. on (E_c, ∞)
$0 < \alpha < 1/2$	point spec.	

• If $\alpha = 0$, Molchanov-Goldsheid-Pastur (1977): point spec.

▲圖▶ ▲ 国▶ ▲ 国▶ …

Eigenvalues distribution

• Let $\{E_j(L)\}_{j\geq 1}$ be positive eigenvalues for the operator H_ω restricted to [0, L] with Dirichlet boundary condition.

▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

Eigenvalues distribution

- Let $\{E_j(L)\}_{j\geq 1}$ be positive eigenvalues for the operator H_{ω} restricted to [0, L] with Dirichlet boundary condition.
- Fix a reference energy $E_0 > 0$ and define

$$\xi_L = \sum_{j \ge 1} \delta_{L\left(\sqrt{E_j(L)} - \sqrt{E_0}
ight)}.$$

Eigenvalues distribution

- Let $\{E_j(L)\}_{j\geq 1}$ be positive eigenvalues for the operator H_{ω} restricted to [0, L] with Dirichlet boundary condition.
- Fix a reference energy $E_0 > 0$ and define

$$\xi_L = \sum_{j \ge 1} \delta_{L\left(\sqrt{E_j(L)} - \sqrt{E_0}
ight)}.$$

• If
$$H_{\omega} = -\frac{d^2}{dx^2}$$
, namely $a(x) = 0$, then
 $\sqrt{E_j(L)} = \frac{\pi j}{L} \Longrightarrow \xi_L = \sum_{j \ge 1} \delta_{(\pi j - L\sqrt{E_0})}$

Classical results on limit of eigenvalues distribution

• Molchanov 1981 In \mathbb{R}^1 if $\alpha = 0$

$$H_{\omega} = -\frac{d^2}{dx^2} + F\left(X_x\left(\omega\right)\right)$$

then

 $\xi_L \xrightarrow[L \to \infty]{} \operatorname{Poisson}(n(E_0) d\lambda) \quad (n(E) \text{ is the density of states})$

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ □ 臣

Classical results on limit of eigenvalues distribution

• Molchanov 1981 In \mathbb{R}^1 if $\alpha = 0$

$$H_{\omega} = -\frac{d^2}{dx^2} + F\left(X_x\left(\omega\right)\right)$$

then

 $\xi_L \xrightarrow[L \to \infty]{} \operatorname{Poisson}(n(E_0) d\lambda) \quad (n(E) \text{ is the density of states})$

• Minami 1996 In \mathbb{Z}^d

 $H_{\omega} = \Delta_d + V_{\omega}(x) ,$ $\{V_{\omega}(x)\}_{x \in \mathbb{Z}^d} \text{ i.i.d. with smooth prob. density}$ If E_0 is in the point spectral region, then

$$\xi_{\Lambda_{L}} \xrightarrow[L \to \infty]{} \operatorname{Poisson} (n(E_{0}) d\lambda).$$

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ □ 臣

Main results

• If
$$\alpha > \frac{1}{2}$$
 (super critical) (K-Nakano 2014)

$$\xi_L \xrightarrow[L \to \infty]{} \text{clock process}$$

Main results

• If
$$\alpha > \frac{1}{2}$$
 (super critical) (K-Nakano 2014)
 $\xi_L \xrightarrow[L \to \infty]{} clock \ process$
• If $\alpha = \frac{1}{2}$ (critical) (K-Nakano 2014)
 $\xi_L \xrightarrow[L \to \infty]{} Sine_{\beta}$ -process

Main results

• If
$$\alpha > \frac{1}{2}$$
 (super critical) (K-Nakano 2014)
 $\xi_{L} \xrightarrow{\rightarrow} clock \ process$
• If $\alpha = \frac{1}{2}$ (critical) (K-Nakano 2014)
 $\xi_{L} \xrightarrow{\rightarrow} Sine_{\beta}$ -process
• If $0 < \alpha < \frac{1}{2}$ (subcritical) (K-Nakano 2016)
 $\xi_{L} \xrightarrow{\rightarrow} Poisson\left(\frac{d\lambda}{\pi}\right)$

Supercritical case

Clock process (Kotani-Nakano 2014)
 Assume the subsequence {L_j}_{j≥1} satisfies

$$\sqrt{E_0}L_j=m_j\pi+\gamma+o(1)$$
 as $j
ightarrow\infty$

for some $m_j \in \mathbb{N}$ satisfying $m_j \to \infty$ and $\gamma \in [0, \pi)$. Then we have

$$\xi_{\infty} = \lim_{d \to \infty} \xi_{L_j}.$$

 ${{{{\xi}}_{\infty }}}$ is

$$\mathfrak{E}_{\infty} = \sum_{n \in \mathbb{Z}} \delta_{ heta_{\gamma} + n\pi},$$

where θ_{γ} is a random variable taking value in $[0, \pi]$.

白マ くぼ マ イ ママン

Critical case

• For a $\mathbb{C}-B.M \{Z_t\}_{t\geq 0}$ let $\alpha_t^{\beta}(\lambda)$ be the solution to $d\alpha_t^{\beta}(\lambda) = \lambda e^{-t} dt + \frac{2}{\sqrt{\beta}} \operatorname{Re}\left\{\left(e^{i\alpha_t^{\beta}(\lambda)} - 1\right) dZ_t\right\}$, $\alpha_0^{\beta}(\lambda) = 0$.

御 と く ヨ と く ヨ と … ヨ

Critical case

• For a
$$\mathbb{C}-B.M \{Z_t\}_{t\geq 0}$$
 let $\alpha_t^{\beta}(\lambda)$ be the solution to
 $d\alpha_t^{\beta}(\lambda) = \lambda e^{-t} dt + \frac{2}{\sqrt{\beta}} \operatorname{Re} \left\{ \left(e^{i\alpha_t^{\beta}(\lambda)} - 1 \right) dZ_t \right\}, \ \alpha_0^{\beta}(\lambda) = 0.$
• $\alpha_t^{\beta}(\lambda)$ is non-decreasing in λ , and the limit
 $\exists \alpha_{\infty}^{\beta}(\lambda) = \lim_{t \to \infty} \alpha_t^{\beta}(\lambda) \in 2\pi\mathbb{Z}$
exists a.s. and $Sine_{\beta}$ -process ζ_{β} is defined by
 $\zeta_{\beta}([\lambda_1, \lambda_2]) = \frac{\alpha_{\infty}^{\beta}(\lambda_2) - \alpha_{\infty}^{\beta}(\lambda_1)}{2\pi}$ (Varko-Virag 2009).

Critical case

• For a C-B.M
$$\{Z_t\}_{t\geq 0}$$
 let $\alpha_t^{\beta}(\lambda)$ be the solution to
 $d\alpha_t^{\beta}(\lambda) = \lambda e^{-t} dt + \frac{2}{\sqrt{\beta}} \operatorname{Re} \left\{ \left(e^{i\alpha_t^{\beta}(\lambda)} - 1 \right) dZ_t \right\}, \alpha_0^{\beta}(\lambda) = 0.$
• $\alpha_t^{\beta}(\lambda)$ is non-decreasing in λ , and the limit
 $\exists \alpha_{\infty}^{\beta}(\lambda) = \lim_{t \to \infty} \alpha_t^{\beta}(\lambda) \in 2\pi \mathbb{Z}$
exists a.s. and $Sine_{\beta}$ -process ζ_{β} is defined by
 $\zeta_{\beta}([\lambda_1, \lambda_2]) = \frac{\alpha_{\infty}^{\beta}(\lambda_2) - \alpha_{\infty}^{\beta}(\lambda_1)}{2\pi}$ (Varko-Virag 2009).
• The limit process $\xi_{\infty} = \lim_{L \to \infty} \xi_L$ exists and $\xi_{\infty} = \zeta_{\beta}$ with
 $\beta = \beta(E_0) = -4E_0 \left(\operatorname{Re} \left(\left(\frac{1}{2} \Delta + 2i\sqrt{E_0} \right)_{-1}^{-1} F, F \right) \right) \right)_{+}^{-1} \ge 0.$

• For a solution φ to the eigen-equation $H\varphi = \kappa^2 \varphi$ set

$$heta = rg\left(rac{arphi'}{\kappa} + i arphi
ight)$$
 (The Prüfer variable).

▲圖▶ ▲屋▶ ▲屋▶

• For a solution ϕ to the eigen-equation $H\phi=\kappa^2\phi$ set

$$heta = rg\left(rac{arphi'}{\kappa} + i arphi
ight) \;\;$$
 (The Prüfer variable).

• Then θ satisfies

$$\theta'_t(\kappa) = \kappa + \frac{1}{2\kappa} a(t) F(X_t) \operatorname{Re}\left(e^{2i\theta_t(\kappa)} - 1\right), \ \theta_0(\kappa) = 0.$$

(replaced x by t.) $\theta_t(\kappa)$ is increasing in κ for fixed t > 0.

個 と く ヨ と く ヨ と

• For a solution φ to the eigen-equation $H \varphi = \kappa^2 \varphi$ set

$$heta = rg\left(rac{arphi'}{\kappa} + i arphi
ight)~~$$
 (The Prüfer variable).

• Then θ satisfies

$$\theta'_t(\kappa) = \kappa + \frac{1}{2\kappa}a(t)F(X_t)\operatorname{Re}\left(e^{2i\theta_t(\kappa)} - 1\right), \ \theta_0(\kappa) = 0.$$

(replaced x by t.) $\theta_t(\kappa)$ is increasing in κ for fixed t > 0. • Define

$$\Theta_t\left(\lambda
ight) = heta_t\left(\sqrt{E_0} + rac{\lambda}{t}
ight) - heta_t\left(\sqrt{E_0}
ight), \ \phi_t = \pi \left\{rac{ heta_t\left(\sqrt{E_0}
ight)}{\pi}
ight\},$$

where $\{x\} \in [0,1)$ denotes the fractional part of x. Then $\xi_L(f) = \sum_{k \in \mathbb{Z}} f\left(\Theta_L^{-1} \left(k\pi - \phi_L\right)\right).$

• The key equation

$$\theta_t'(\kappa) = \kappa + \frac{1}{2\kappa} a(t) F(X_t) \operatorname{Re}\left(e^{2i\theta_t(\kappa)} - 1\right), \ \theta_0(\kappa) = 0$$

is equivalent to

$$\theta_t(\kappa) = \kappa t + \frac{1}{2\kappa} \int_0^t a(s) F(X_s) \operatorname{Re}\left(e^{2i\theta_s(\kappa)} - 1\right) ds.$$

æ

- 4 同 6 4 日 6 4 日 6

• The key equation

$$\theta_{t}^{\prime}(\kappa) = \kappa + \frac{1}{2\kappa}a(t)F(X_{t})\operatorname{Re}\left(e^{2i\theta_{t}(\kappa)} - 1\right), \ \theta_{0}(\kappa) = 0$$

is equivalent to

$$\theta_t(\kappa) = \kappa t + \frac{1}{2\kappa} \int_0^t a(s) F(X_s) \operatorname{Re}\left(e^{2i\theta_s(\kappa)} - 1\right) ds.$$

• A prototype for this integral is

$$\int_0^t \frac{\sin s}{s^{\alpha}} ds,$$

and Integration by parts gives

$$\int_0^t \frac{\sin s}{s^{\alpha}} ds = \frac{1 - \cos t}{t^{\alpha}} - \alpha \int_0^t \frac{1 - \cos s}{s^{\alpha+1}} ds.$$

Subcritical case

• We can show for $\alpha > 0$ $(a(x) = x^{-\alpha} + o(x^{-\alpha}))$ $d\Theta_{nt}(\lambda) \doteq \lambda dt + n^{\frac{1}{2}-\alpha} \operatorname{Re}\left[\left(e^{2i\Theta_{nt}(\lambda)} - 1\right)t^{-\alpha}dZ_t\right]$

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ― 臣

Subcritical case

• We can show for
$$\alpha > 0$$
 $(a(x) = x^{-\alpha} + o(x^{-\alpha}))$
 $d\Theta_{nt}(\lambda) \doteq \lambda dt + n^{\frac{1}{2}-\alpha} \operatorname{Re}\left[\left(e^{2i\Theta_{nt}(\lambda)} - 1\right)t^{-\alpha}dZ_{t}\right]$
• If $0 < \alpha < 1/2$, Time change $t = s^{\gamma}$ $(\gamma = \frac{1}{1-2\alpha} > 1)$
 $d\Theta_{ns^{\gamma}}(\lambda) \doteq \lambda \gamma s^{\gamma-1}ds + n^{\frac{1}{2}-\alpha} \operatorname{Re}\left[\left(e^{2i\Theta_{ns^{\gamma}}(\lambda)} - 1\right)d\widetilde{Z}_{s}\right]$

Subcritical case

• We can show for
$$\alpha > 0$$
 $(a(x) = x^{-\alpha} + o(x^{-\alpha}))$
 $d\Theta_{nt}(\lambda) \doteq \lambda dt + n^{\frac{1}{2}-\alpha} \operatorname{Re}\left[\left(e^{2i\Theta_{nt}(\lambda)} - 1\right)t^{-\alpha}dZ_{t}\right]$
• If $0 < \alpha < 1/2$, Time change $t = s^{\gamma}$ $(\gamma = \frac{1}{1-2\alpha} > 1)$
 $d\Theta_{ns^{\gamma}}(\lambda) \doteq \lambda \gamma s^{\gamma-1}ds + n^{\frac{1}{2}-\alpha} \operatorname{Re}\left[\left(e^{2i\Theta_{ns^{\gamma}}(\lambda)} - 1\right)d\widetilde{Z}_{s}\right]$

• Allez-Dumaz (2014) showed

$$\lim_{\beta \to 0} \textit{Sine}_{\beta} \text{-process } \alpha^{\beta}_{\infty}\left(\lambda\right) = \text{Poisson}\left(\frac{d\lambda}{2\pi}\right).$$

Recall $\alpha_{\infty}^{\beta}(\lambda) = \lim_{t \to \infty} \alpha_{t}^{\beta}(\lambda)$ and $\alpha_{t}^{\beta}(\lambda)$ is defined by $d\alpha_{t}^{\beta}(\lambda) = \lambda e^{-t} dt + \frac{2}{\sqrt{\beta}} \operatorname{Re}\left\{\left(e^{i\alpha_{t}^{\beta}(\lambda)} - 1\right) dZ_{t}\right\}.$

Observation

• For simplicity fix λ . Then

$$d\alpha_t^{\beta}(\lambda) = \lambda e^{-t} dt + \frac{2}{\sqrt{\beta}} \operatorname{Re}\left\{\left(e^{i\alpha_t^{\beta}(\lambda)} - 1\right) dZ_t\right\}$$

$$\Leftrightarrow dX_t = \lambda e^{-t} dt + \frac{2\sqrt{2}}{\sqrt{\beta}} \sin\frac{X_t}{2} dB_t.$$

2

<ロ> (日) (日) (日) (日) (日)

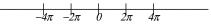
Observation

• For simplicity fix λ . Then

$$d\alpha_t^{\beta}(\lambda) = \lambda e^{-t} dt + \frac{2}{\sqrt{\beta}} \operatorname{Re}\left\{\left(e^{i\alpha_t^{\beta}(\lambda)} - 1\right) dZ_t\right\}$$

$$\Leftrightarrow \\ dX_t = \lambda e^{-t} dt + \frac{2\sqrt{2}}{\sqrt{\beta}} \sin\frac{X_t}{2} dB_t.$$

• ${X_t}_{t\geq 0}$ moves on each interval $(2n\pi, 2(n+1)\pi)$ below randomly and it never reaches the left edge $2n\pi$ and once reaches the right edge $2(n+1)\pi$, then it never returns to $(2n\pi, 2(n+1)\pi)$.



One can apply the argument by Allez-Dumaz to our $\Theta_{ns^{\gamma}}\left(\lambda\right)$ and obtain

Theorem

(Kotani-Nakano) $\{\Theta_{nt}(\lambda), \phi_{nt}\}$ converges to $\{\widehat{\Theta}_t(\lambda), \widehat{\phi}_t\}$, the two processes are independent and

(1) $\hat{\phi}_t$ has the uniform distribution on $[0, \pi)$ for each t > 0. (2)

$$\widehat{\Theta}_{t}\left(\lambda\right) = \pi \int_{\left[0,t\right]\times\left[0,\lambda\right]} \Pi\left(dsd\xi\right)$$

where $\Pi(dsd\xi)$ is the Poisson random measure on \mathbb{R}^2 whose intensity measure is $dsd\xi$.

Related results

(1) **CMV matrices** Killip-Stoiciu 2009 $\Xi_k = \left(egin{array}{cc} \overline{lpha}_k & \sqrt{1 - |lpha_k|^2} \ \sqrt{1 - |lpha_k|^2} & -lpha_k \end{array}
ight)$ with $|lpha_k| < 1$ $\mathcal{L} = diag (\Xi_0, \Xi_2, \Xi_4, \cdots), \ \mathcal{M} = diag (1, \Xi_1, \Xi_3, \cdots)$ CMV matrix $\mathcal{C} = \mathcal{C}(\alpha_0, \alpha_1, \alpha_2, \cdots) := \mathcal{LM}$ CMV matrix is unitary. Assume $\mathbb{E}\left(|\alpha_k|^2\right) = ck^{-lpha} + o\left(k^{-lpha}\right)$. Then $\begin{array}{ll} \alpha > \frac{1}{2} & \text{Clock process} \\ \alpha = \frac{1}{2} & \text{Sine}_{\beta}\text{-process} \\ 0 < \alpha < \frac{1}{2} & \text{Poisson point process} \end{array}$ ロトス団とスヨトスヨトーヨ

Random matrices

• (2) **Discrete Schrödinger** Krichevski-Valko-Virag 2012 If $\alpha = \frac{1}{2}$, then the limit is Sine_{β}-process

Random matrices

• (2) Discrete Schrödinger Krichevski-Valko-Virag 2012 If $\alpha = \frac{1}{2}$, then the limit is Sine_{β}-process • (3) Random matrices Valko-Virag 2009 β -ensembles Λ_n^{β} : $Z^{-1}e^{-\beta\sum_{k=1}^n\lambda_k^2/4}\prod |\lambda_j-\lambda_k|^{\beta}$ i < kLet $\{\mu_n\}_{n\geq 1}$ be a sequence s.t. $n^{1/6} \left(2\sqrt{n} - |\mu_n|\right) \to +\infty$. Then $\sqrt{4n-\mu_n^2}\left(\Lambda_n^\beta-\mu_n\right) \rightarrow \text{Sine}_\beta\text{-process}$

< 個 → < 回 → < 回 → … 回

Random matrices

• (2) Discrete Schrödinger Krichevski-Valko-Virag 2012 If $\alpha = \frac{1}{2}$, then the limit is Sine_{β}-process • (3) Random matrices Valko-Virag 2009 β -ensembles Λ_n^{β} : $Z^{-1}e^{-\beta\sum_{k=1}^n \lambda_k^2/4} \prod |\lambda_j - \lambda_k|^{\beta}$ i < kLet $\{\mu_n\}_{n\geq 1}$ be a sequence s.t. $n^{1/6} \left(2\sqrt{n} - |\mu_n|\right) \to +\infty$. Then $\sqrt{4n-\mu_n^2}\left(\Lambda_n^\beta-\mu_n\right) \rightarrow \text{Sine}_\beta\text{-process}$ • Remark: In case $\alpha = \frac{1}{2}$ and $E_0 = E_c$ we have $\beta = 2$, and $Sine_{\beta} - process$ arises from Gaussian unitary ensemble. □ > 《注 > 《注 > 二注

Thank you for your attention

ヘロト 人間 ト 人 ヨト 人 ヨトー