Classical and Non-commutative Martingale Inequalities

Jiao Yong
Central South University

The 12th Workshop on Markov Process and Related Topics

July 14, 2016, Jiangsu Normal University

Outline

1. Classical martingale inequalities

- Notations and definitions
- BDG inequalities

2. Vector-valued extensions

- Pisier's Theorem
- The endpoint case of Pisier's Theorem

3. Non-commutative martingale inequalities

- Non-commutative BGD inequalities
- Some new advances

Notations and definitions

Let $(\Omega, \mathcal{F}, \mathcal{P})$ be a probability space, and $\left\{\mathcal{F}_{n}\right\}_{n \geq 1}$ be a nondecreasing sequence of sub- σ-algebras of \mathcal{F} such that $\mathcal{F}=\sigma\left(\bigcup_{n} \mathcal{F}_{n}\right)$.
An adapted sequence $f=\left(f_{n}\right)$ is called a martingale if for any $n \geq 1, f_{n} \in L^{1}\left(\Omega, \mathcal{F}_{n}, P\right)$ and

$$
\mathbb{E}_{n}\left(f_{n+1}\right)=f_{n}
$$

Martingale difference: $d_{n} f=f_{n}-f_{n-1}, n \geq 1$ (with the convention that $f_{0}=0$)

Notations and definitions

the Doob maximal function:

$$
M_{n}(f)=\sup _{1 \leq m \leq n}\left|f_{m}\right|, \quad M(f)=\sup _{n \geq 1}\left|f_{n}\right|
$$

the square function:

$$
S_{n}(f)=\left(\sum_{1 \leq m \leq n}\left|d_{m} f\right|^{2}\right)^{\frac{1}{2}}, \quad S(f)=\left(\sum_{n \geq 1}\left|d_{n} f\right|^{2}\right)^{\frac{1}{2}}
$$

Classical martingale inequalities

Theorem (Doob, [Stochastic Process, 1953])For $1<p \leq \infty$,

$$
\|M(f)\|_{L^{p}} \leq \frac{p}{p-1} \sup _{n}\|f\|_{L^{p}}
$$

Remark. This is not true for $p=1$ and weak $(1,1)$ type inequality holds.

BGD inequalities

Theorem (Burkholder-Gundy, [Acta Math, 1970]) For $1<p<\infty$,

$$
\|M(f)\|_{L^{p}} \approx\|S(f)\|_{L^{p}} \approx \sup _{n}\left\|f_{n}\right\|_{L^{p}}
$$

Theorem (Davis, [Ann. Probab., 1971]) For $p=1$,

$$
\|M(f)\|_{L^{1}} \approx\|S(f)\|_{L^{1}}
$$

These are the most important results in martingale theory. Since then, Doob, Merry, Burkholder, Bourgain, Garsir, Pisier..., Long, Liu....

Vector-valued extensions: the martingale $f=\left(f_{n}\right)$ with value in Banach space X

Theorem (Pisier, [lsreal J. Math., 1983]) Let $2 \leq q<\infty$. Then a Banach space X has an equivalent q-uniformly convex norm iff for every $1<p<\infty$ (or equivalently, for some $1<p<\infty$) there exists a positive constant c such that

$$
\left\|\left(\sum_{n \geq 1}\left\|f_{n}-f_{n-1}\right\|_{X}^{q}\right)^{1 / q}\right\|_{p} \leq c \sup _{n \geq 1}\left\|f_{n}\right\|_{L_{p}(X)}
$$

for all finite L_{p}-martingales f with values in X. Again, the validity of the converse inequality amounts to saying that X has an equivalent q-uniformly smooth norm $(1<q \leq 2)$.
J.M.A.M. van Neerven and L. Weis. Stochastic integration of functions with values in a Banach space. Studia Math, 166, 2005. J.M.A.M. van Neerven, M.C. V eraar, and L. Weis. Stochastic integration in UMD Banach spaces. Ann Probab., 35, 2007. Lutz Weis, Stochastic integration in Banach spaces - a survey, arXiv:1304.7575, 2014

Natural question: What happens for the endpoint case $p=\infty$?

Probability version of Carleson measure

Definition (Jiao, [Probab. Theore. Relat. Feild, 2009]) Let $\mu=d P \otimes d m$ be a nonnegative measure on $\Omega \times \mathbb{N}$, where \mathbb{N} is equipped with the counting measure $d m . \mu$ is called a Carleson measure if

$$
\|\mu\|_{C}=: \sup \frac{\mu(\widehat{\tau})}{P(\tau<\infty)}<\infty
$$

where the supremum runs over all stopping times τ and where $\widehat{\tau}$ denotes the "tent" over τ :

$$
\widehat{\tau}=\{(w, k) \in \Omega \times \mathbb{N}: \tau(w) \leq k, \tau(w)<\infty\}
$$

Positive answer to the endpoint case $p=\infty$

Theorem (Jiao, [Probab. Theore. Relat. Feild, 2009]) Let X be a Banach space and $2 \leq q<\infty$. Then the following statements are equivalent:
(1) There exists a positive constant c such that for any finite X-valued martingale

$$
\sup _{\tau} \frac{1}{P(\tau<\infty)} \int_{\widehat{\tau}}\left\|d f_{k}\right\|^{q} d P \otimes d m \leq c^{q}\|f\|_{B M O}^{q}
$$

(2) X has an equivalent norm which is q-uniformly convex.

Remark. The statement (1) means that $\left\|d f_{k}\right\|^{q} d P \otimes d m$ is a Carleson measure on $\Omega \times \mathbb{N}$ for every $f \in B M O(X)$.

Remark. Pisier, Martingales in Banach spaces, Cambridge Studies in Advanced Mathematics, 2016 .

Noncommutative Martingale inequalities

Let (\mathcal{M}, τ) be a noncommutative probability space, i.e. $\tau(1)=1$.
Example 1. $\mathcal{M}=L_{\infty}(\Omega, P), \tau=\int_{\Omega} ; \quad \tau(1)=P(\Omega)=1$
Example 2. $\mathcal{M}=\mathbb{M}_{n}(\mathbb{C}), \tau=\frac{1}{n} \operatorname{Tr}$
Let $\left(\mathcal{M}_{n}\right)_{n \geq 1}$ be a nondecreasing sequence of von Neumann subalgebras of \mathcal{M}. A measurable sequence $x=\left(x_{n}\right)$ is called a noncommutative martingale if for any $n \geq 1, x_{n} \in L^{1}\left(\mathcal{M}_{n}, \tau\right)$ and

$$
\mathcal{E}_{n}\left(x_{n+1}\right)=x_{n} .
$$

Example. Matrix valued martingales

Main difficulties

- How to define the Doob maximal operator: $\sup _{n}\left|f_{n}\right|$?
- How to define the square function?

$$
\left\|\left(\sum_{n}\left|x_{n}\right|^{2}\right)^{1 / 2}\right\|_{p} \approx\left\|\left(\sum_{n}\left|x_{n}^{*}\right|^{2}\right)^{1 / 2}\right\|_{p} ?
$$

Answer: No!
Example. Let $(\mathcal{M}, \tau)=\left(M_{n}(\mathbb{C}), \frac{1}{n} \operatorname{Tr}\right)$. Set $x_{k}=e_{k, 0}, 0 \leq k<n$. It is immediate that

$$
\left\|\left(\sum_{k=0}^{n-1}\left|x_{k}\right|^{2}\right)^{\frac{1}{2}}\right\|_{L_{p}(\mathcal{M})}=n^{1 / 2-1 / p}, \quad\left\|\left(\sum_{k=0}^{n-1}\left|x_{k}^{*}\right|^{2}\right)^{\frac{1}{2}}\right\|_{L_{p}(\mathcal{M})}=1
$$

- $|x+y| \leq|x|+|y|$? No!
- The stopping time is not available...

Noncommutative Burkholder-Gundy inequalities

Theorem (Pisier-Xu, 1997, Commun. Math. Phys.)
For $2 \leq p<\infty$,

$$
\|x\|_{L^{p}(\mathcal{M})} \approx \max \left\{\left\|S_{c}(x)\right\|_{L^{p}(\mathcal{M})},\left\|S_{r}(x)\right\|_{L^{p}(\mathcal{M})}\right\}
$$

For $1<p<2$,

$$
\|x\|_{L^{p}(\mathcal{M})} \approx \inf _{x=y+z}\left\{\left\|S_{c}(y)\right\|_{L^{p}(\mathcal{M})}+\left\|S_{r}(z)\right\|_{L^{p}(\mathcal{M})}\right\}
$$

where

$$
S_{c}(x)=\left(\sum_{n}\left|d x_{n}\right|^{2}\right)^{1 / 2}, \quad S_{r}(x)=\left(\sum_{n}\left|d x_{n}^{*}\right|^{2}\right)^{1 / 2}
$$

Noncommutative extensions

Junge (Doob's maximal inequality) [2002; J.Reine Angew. Math.] Randrianantoanina (Square function for noncommutative martingale)[2007, Ann. Prob.]
Junge-Xu (Noncommutative Burkholder/Rosenthal inequalities)[2003, Ann. Prob.; 2008, Isreal J. Math.]
Parcet-Randrianantoanina (Gundy's decomposition) [2006, Proc. Lond.Math. Sco.]
Junge- Xu (Noncommutative maximal ergodic theorems)[2007, J.
Amer. Math. Sco.]
Randrianantoanina (Noncommutative martingale transforms)[2009, J.Funct.Anal.]

Remark. $\mathrm{p}=1$, the Davis inequality fails.

Noncommutative extensions: the Φ-moment case

Notation $\Phi:[0, \infty) \rightarrow[0, \infty)$, increasing, convex, continuous
p_{ϕ}, q_{Φ} : Boyd index of Φ
Example. $\Phi(t)=t^{p}, 1 \leq p<\infty, p_{\Phi}=q_{\Phi}=p$.
Theorem (Bekjan-Chen, 2012, Probab. Theore. Relat. Feild)
For $2<p_{\Phi} \leq q_{\Phi}<\infty$ and any finite noncommutative martingale x,

$$
\tau(\Phi(|x|)) \approx_{\Phi} \max \left\{\tau\left(\Phi\left[\left(\sum_{k \geq 0}\left|d x_{k}\right|^{2}\right)^{1 / 2}\right]\right), \tau\left(\Phi\left[\left(\sum_{k \geq 0}\left|d x_{k}^{*}\right|^{2}\right)^{1 / 2}\right]\right)\right\} ;
$$

For $1<p_{\Phi} \leq q_{\Phi}<2$,
$\tau(\Phi(|x|)) \approx_{\Phi} \inf _{d x_{k}=y_{k}+z_{k}}\left\{\tau\left(\Phi\left[\left(\sum_{k \geq 0}\left|y_{k}\right|^{2}\right)^{1 / 2}\right]\right)+\tau\left(\Phi\left[\left(\sum_{k \geq 0}\left|z_{k}^{*}\right|^{2}\right)^{1 / 2}\right]\right)\right\}$.

Noncommutative extensions: symmetric operator spaces

Symmetric operator space: $E(\mathcal{M}) \ldots$
Boyd index of $E: p_{E}, q_{E}$
Example: $E(\mathcal{M})=L_{p}(\mathcal{M}), p_{E}=q_{E}=p$
Theorem (Dirkson, 2015, Transactions Amer. Math. Sco.)
For $2<p_{E} \leq q_{E}<\infty$ and any finite noncommutative $E(\mathcal{M})$-martingale x,

$$
\|x\|_{E(\mathcal{M})} \approx \max \left\{\left\|S_{c}(x)\right\|_{E(\mathcal{M})},\left\|S_{r}(x)\right\|_{E(\mathcal{M})}\right\}
$$

For $1<p_{E} \leq q_{E}<2$ and any finite noncommutative $E(\mathcal{M})$-martingale x,

$$
\|x\|_{E(\mathcal{M})} \approx \inf _{x=y+z}\left\{\left\|S_{c}(y)\right\|_{E(\mathcal{M})}+\left\|S_{r}(z)\right\|_{E(\mathcal{M})}\right\}
$$

The sharp case

Notation: p-convex and q-concave
Remark 2: Let Φ be p-convex and q-concave, then

$$
p \leq p_{\Phi} \leq q_{\Phi} \leq q .
$$

Theorem (Jiao, Sukochev, Xie and Zanin, 2016, JFA) If Φ is 2 -convex and q-concave for some $2<q<\infty$, then

$$
\tau(\Phi(|x|)) \approx_{\Phi} \max \left\{\tau\left(\Phi\left[\left(\sum_{k \geq 0}\left|d x_{k}\right|^{2}\right)^{1 / 2}\right]\right), \tau\left(\Phi\left[\left(\sum_{k \geq 0}\left|d x_{k}^{*}\right|^{2}\right)^{1 / 2}\right]\right)\right\}
$$

If Φ is p-convex for some $1<p<2$ and 2-concave, then,
$\tau(\Phi(|x|)) \approx_{\Phi} \inf _{d x_{k}=y_{k}+z_{k}}\left\{\tau\left(\Phi\left[\left(\sum_{k \geq 0}\left|y_{k}\right|^{2}\right)^{1 / 2}\right]\right)+\tau\left(\Phi\left[\left(\sum_{k \geq 0}\left|z_{k}^{*}\right|^{2}\right)^{1 / 2}\right]\right)\right\}$.

The sharp case

Notation: $E \in \operatorname{Int}\left(L_{p}, L_{q}\right)$
Remark 1: Let $E \in \operatorname{Int}\left(L_{p}, L_{q}\right)$, then

$$
p \leq p_{E} \leq q_{E} \leq q .
$$

Theorem (Jiao, Sukochev, Xie and Zanin, 2016, JFA)
Let x be an arbitrary finite noncommutative martingale.
(i) If $E \in \operatorname{Int}\left(L_{p}(0,1), L_{2}(0,1)\right)$ for some $1<p<2$, then
$\left\|\sum_{k \geq 0} x_{k}\right\|_{E(\mathcal{M})} \approx_{E} \inf _{x_{k}=y_{k}+z_{k}}\left(\left\|\left(\sum_{k \geq 0}\left|y_{k}\right|^{2}\right)^{1 / 2}\right\|_{E(\mathcal{M})}+\left\|\left(\sum_{k \geq 0}\left|z_{k}^{*}\right|^{2}\right)^{1 / 2}\right\|_{E(\mathcal{M})}\right)$.
(ii) If $E \in \operatorname{Int}\left(L_{2}(0,1), L_{q}(0,1)\right)$ for some $2<q<\infty$, then
$\left\|\sum_{k \geq 0} x_{k}\right\|_{E(\mathcal{M})} \approx_{E} \max \left\{\left\|\left(\sum_{k \geq 0}\left|x_{k}\right|^{2}\right)^{1 / 2}\right\|_{E(\mathcal{M})},\left\|\left(\sum_{k \geq 0}\left|x_{k}^{*}\right|^{2}\right)^{1 / 2}\right\|_{E(\mathcal{M})}\right\}$.

Examples

Example Let $\Phi(t)=t^{p} \log \left(1+t^{q}\right)$ with $p>1$ and $q>0$. It is easy to check that Φ is an Orlicz function with $p_{\Phi}=p$ and $q_{\Phi}=p+q$.
(i) Suppose that $p=2$. It is not hard to see that Φ is 2 -convex and $(2+q)$-concave, and hence the corresponding Burkholder-Gundy inequality holds due to the last theorem (ii).
(ii) Suppose that $p+q=2$. Then Φ is 2 -concave and p-convex with $p>1$, and hence the corresponding Burkholder-Gundy inequality holds due to the last theorem (i).

Question

- For general sequence of noncommutative random variables $\left(x_{n}\right)$

$$
\left\|\left(\sum_{n}\left|x_{n}\right|^{2}\right)^{1 / 2}\right\|_{p} \approx\left\|\left(\sum_{n}\left|x_{n}^{*}\right|^{2}\right)^{1 / 2}\right\|_{p} ?
$$

- What condition?

Theorem (Jiao-Sukochev-Zanin, 2016, J. London Math. Soc.)
Let (\mathcal{M}, τ) be a noncommutative probability space and let x_{n}, $n \geq 0$, be mean zero and freely independent random variables.
Then

$$
\left\|\left(\sum_{n}\left|x_{n}\right|^{2}\right)^{1 / 2}\right\|_{p} \approx\left\|\left(\sum_{n}\left|x_{n}^{*}\right|^{2}\right)^{1 / 2}\right\|_{p}, \quad 0<p \leq \infty
$$

Thanks for your attention!

