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1. Grenander estimator and asymptotic properties

Let f be a decreasing density with support [0, 1]. Denote by

Fn(t) =
1

n

n∑
i=1

I{Xi≤t}

the empirical distribution function of a sample X1, ...,Xn from f .

Grenander estimator (NPMLE) f̂n ( Grenander, Skand. Akt.,1956): the
left derivative of F̂n, where F̂n is the concave majorant of Fn on [0, 1], i.e.
the smallest concave function such that

F̂n(t) ≥ Fn(t), F̂n(0) = 0, F̂n(1) = 1, t ∈ [0, 1].
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Asymptotic pointwise properties
Suppose f is differentiable at t ∈ (0, 1) with f (t) > 0, f ′(t) < 0.

Asymptotic distribution (Prakasa Rao, Sankhyā,1969;
Groeneboom, Proc. Berkeley Confer.,1985):∣∣4f (t)f ′(t)

∣∣−1/3 n1/3
(

f̂n(t)− f (t)
)

d−→ V (0),

where V (c) = argmaxt∈R
{

W (t)− (t − c)2
}

and W denotes a
two-sided standard Wiener process originating from zero.

Remark (Groeneboom, PTRF,1989)

For the density fV of the V (0), as |s| → ∞

fV (s) ∼ 1

2Ai ′(a1)
44/3|s| exp

{
−2

3
|s|3 + 21/3a1|s|

}
,

where a1 ≈ −2.3381 is the largest zero of the Airy function Ai
and Ai ′(a1) = 0.7002.
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Using strong approximate theorem (Komlós, Major and Tusnády,
Z.W.Verw.Geb.,1975) and small ball estimate (Li and Shao, Handbook
Stat.,2001), Gao, Zhao and Xiong established the moderate deviations for
f̂n(t):

MDP (Gao, Zhao and Xiong, preprint,2014): for any x > 0

lim
n→∞

1

b3
n

log P

(
n1/3

bn

∣∣∣f̂n(t)− f (t)
∣∣∣ ≥ x

)
= −4f (t)|f ′(t)|

6
x3,

where bn satisfies that as n→∞

bn →∞,
b7
n

n1/3
→ 0.

Hui Jiang () MDP-Grenander estimator near boundaries 7 / 26



LIL (Dümbgen, Wellner and Wolff, SPA,2016): If f is differentiable
at t ∈ (0, 1) with f (t) > 0, f ′(t) < 0, then

lim sup
n→∞

(
n

2 log log n

)1/3 (
f̂n(t)− f (t)

)
=
∣∣3f (t)f ′(t)

∣∣1/3 , a.s.
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Asymptotic global properties (‖f̂n − f ‖Lk , ‖f̂n − f ‖∞)

L1-error (Groeneboom, Hooghiemstra and Lopuhaä, AOS,1999;
Durot, PTRF,2002): Let f is twice continuously differentiable,
satisfying

0 < f (1) ≤ f (0) <∞, inf
t∈(0,1)

|f ′(t)| > 0.

Then, we have

n1/6

(
n1/3

∫ 1

0

∣∣∣f̂n(t)− f (t)
∣∣∣ dt − µ

)
d−→ N(0, σ2),

where µ = 2E |V (0)|
∫ 1
0 |f (t)f ′(t)/2|1/3 dt,

σ2L1 = 8

∫ ∞
0

Cov(|V (0)|, |V (c)− c |)dc ,

and V (c) = argmaxt∈R
{

W (t)− (t − c)2
}

.
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Using the idea in Gao, Zhao and Xiong (preprint,2014), Bernstein type
inequality for weakly dependent sequences (Merlevède, Peligrad and Rio,
PTRF, 2011), we have

MDP of L1-error (Gao, Jiang, preprint, 2015): Let f be twice
continuously differentiable and {λn} be a sequence of positive
numbers, satisfying

0 < f (1) ≤ f (0) <∞, inf
t∈(0,1)

|f ′(t)| > 0,
n

λ13n (log n)16
→∞

Then, for any x > 0

lim
n→∞

1

λn
log P

(
λ
−1/2
n n1/6

∣∣∣∣n1/3

∫ 1

0
|f̂n(t)− f (t)|dt − µ

∣∣∣∣ ≥ x

)
= − x2

2σ2L1
.
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For the boundary points of the support of f , Woodroofe and
Sun (Stat.Sinica,1993) showed that f̂n is not consistent at 0 and 1.

This inconsistency at the boundaries will dominate the convergence, and
then will have an great effect on the global measures of deviation, such
as Lk -error, for k ≥ 2.5, or the L∞-error.
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Lk-error (Kulikov and Lopuhaä, AOS, 2005; Durot, AOS, 2007):
Let f is twice continuously differentiable, satisfying

0 < f (1) ≤ f (0) <∞, inf
t∈(0,1)

|f ′(t)| > 0.

For 1 ≤ k < 2.5,

n1/6

(
n1/3

∫ 1

0

∣∣∣f̂n(t)− f (t)
∣∣∣k dt − µk

)
d−→ N(0, σ2k),

and for k ≥ 2.5, 1/6 < ε < (k − 1)/(3k − 6)

n1/6

(
n1/3

∫ 1−n−ε

n−ε

∣∣∣f̂n(t)− f (t)
∣∣∣k dt − µk

)
d−→ N(0, σ2k),

where µk , σk can be formulated explicitly by f and

V (c) = argmaxt∈R
{

W (t)− (t − c)2
}
, ξ(c) = V (c)− c .
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L∞-error ( Durot, Kulikov and Lopuhaä, AOS, 2012):
Consider 0 ≤ u < v ≤ 1 fixed. For real numbers (αn)n and (βn)n:

αn → 0, βn → 0, 1− v + βn, u + αn � n−1/3(log n)−2/3,

we have that for any x ∈ R, as n→∞,

P

(
log n

{(
n

log n

)1/3

sup
t∈(u+αn,v−βn]

|f̂n(t)− f (t)|∣∣2f (t)f ′(t)
∣∣1/3 − νn

}
≤ x

)
→ exp

{
−e−x

}
(Gumbel distribution),

where Cf ,L = 2
∫ v
u

(
|f ′(t)|2
f (t)

)1/3
dt, and

νn = 1− κ

21/3(log n)2/3
+

1

log n

(
1

3
log log n + log(λCf ,L)

)
.
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To make the properties of f̂n near boundaries more clear, study the
asymptotic convergence of

nβ
(

f̂n(cn−α)− f (cn−α)
)
, c , β > 0, 0 < α < 1.

Near boundaries (Kulikov and Lopuhaä, AOS,2006): Assume
♦ 0 < f (0) = limt↓0 f (t) <∞;
♦ there exists some positive constant ε0 such that f has k-th order
derivative in (0, ε0] and f (ε0) 6= 0. Moreover 0 < |f (k)(0)| <∞, with
f (k)(0) = limt↓0 f (k)(t) and f (i)(0) = 0 for 1 ≤ i ≤ k − 1,
� as 0 < α < 1/(2k + 1),

n
1
3
+α(k−1)

3

(
f̂n(cn−α)− f (cn−α)

)
d−→ 2 (2(k − 1)!)−1/3

(
f (0)f (k)(0)ck−1

)1/3
V (0),

where V (0) = argmaxt∈R
{

W (t)− t2
}

.
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� as 1/(2k + 1) < α < 1,

n(1−α)/2
(

f̂n(cn−α)− f (cn−α)
)

d−→ (f (0)/c)1/2
√

argmaxt∈[0,∞) {W (t)− t}.

Note that for any t ∈ (0, 1),∣∣4f (t)f ′(t)
∣∣−1/3 n1/3

(
f̂n(t)− f (t)

)
d−→ V (0).

Question: As 1/(2k + 1) < α < 1, consider the asymptotic convergence

rate of n(1−α)/2
(

f̂n(cn−α)− f (cn−α)
)

: for any x > 0,

P
(

n(1−α)/2
(

f̂n(cn−α)− f (cn−α)
)
≥ λnx

)
and P

(
n(1−α)/2

(
f̂n(cn−α)− f (cn−α)

)
≤ b−1n x

)
, where λn, bn →∞.
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2. Inverse process

Un(a) is defined as the last time that the process F (t)− at attains
its maximum:

Un(a) = argmax
t∈[0,1]

{Fn(t)− at} .

Then, with probability 1, (Groeneboom (Proc. Berkeley
Confer.,1985))

f̂n(t) ≤ a⇔ Un(a) ≤ t.

Therefore, {Un(a) : a ∈ [f (1), f (0)]} is called the inverse process

of
{

f̂n(t) : t ∈ [0, 1]
}

, which has become a cornerstone in this field.
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For any x > 0

P
(

n(1−α)/2
(

f̂n(cn−α)− f (cn−α)
)
≥ λnx

)
= P

(
nαUn

(
f (cn−α) + λnn(α−1)/2x

)
≥ c

)
= P

(
τ xn,λn ≥ c

)
,

where τ xn,λn = argmaxt∈[0,∞)Z
x
n,λn

(t) and

Z x
n,λn(t) = n(1+α)/2(Fn − F )(n−αt)

+ n(1−α)/2 (nαF (n−αt)− f (cn−α)t
)
− λnxt.
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Similarly,

P
(

n(1−α)/2
(

f̂n(cn−α)− f (cn−α)
)
≤ b−1n x

)
= P

(
ςxn,bn ≤ c

)
,

where ςxn,bn = argmaxt∈[0,∞)T
x
n,bn

(t), and

T x
n,bn(t) = n(1+α)/2(Fn − F )(n−αt)

+ n(1−α)/2 (nαF (n−αt)− f (cn−α)t
)
− b−1n xt.
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3. Moderate deviations for Grenander estimator near
boundaries

Let {λn}, {bn} satisfy that

λn →∞,
n(1−α)

λ6n
→∞, n(2k+1)α−1

λ2n
→∞

and bn →∞, n(2k+1)α−1

b
4(k+1)
n (log bn)2k+3

→∞.

Theorem

For 1/(2k + 1) < α < 1, c > 0, assume condition (C1), (C2) hold. Then
for any x > 0,

limn→∞
1
λ2n

log P
(
n(1−α)/2

λn

(
f̂n(cn−α)− f (cn−α)

)
≥ x

)
= − cx2

2f (0) ;

limn→∞ bnP
(

bnn(1−α)/2
(

f̂n(cn−α)− f (cn−α)
)
≤ x

)
=
√

2c
eπf (0)x .
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Key ingredient

For any x > 0

P

(
n(1−α)/2

λn

(
f̂n(cn−α)− f (cn−α)

)
≥ x

)
= P

(
τ xn,λn ≥ c

)
,

where τ xn,λn = argmaxt∈[0,∞)Z
x
n,λn

(t) and

Z x
n,λn(t) = n(1+α)/2(Fn − F )(n−αt)︸ ︷︷ ︸

nα/2Wn(F (n−αt))−nα/2F (n−αt)Wn(1) KMT strong approximate

+ n(1−α)/2 (nαF (n−αt)− f (cn−α)t
)︸ ︷︷ ︸

0?

−λnxt.
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For any x > 0, we have

lim sup
N→∞

lim sup
n→∞

1

λ2n
log P

(
τ xn,λn ≥ N

)
= −∞.

Define τ̃ xn,λn = argmaxt∈[0,∞)Z̃
x
n,λn

(t), where

Z̃ x
n,λn(t) = nα/2Wn

(
F (n−αt)

)
− λnxt.

Then, we have

(1). lim supN→∞ lim supn→∞
1
λ2n

log P
(
τ̃ xn,λn ≥ N

)
= −∞.

(2). τ xn,λn is exponential equivalent to τ̃ xn,λn : for any ε > 0

lim sup
n→∞

1

λ2n
log P

(∣∣τ xn,λn − τ̃ xn,λn ∣∣ ≥ ε) = −∞.
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By some calculations, we also have τ̃ xn,λn is exponential equivalent

to f (0)
λ2nx

2 τ , where

τ = argmaxu∈[0,∞) {W (u)− u} .

Then

P

(
n(1−α)/2

λn

(
f̂n(cn−α)− f (cn−α)

)
≥ x

)
∼ P

(
τ ≥ cx2

f (0)
λ2n

)
.
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Similarly, we can obtain

P
(

bnn(1−α)/2
(

f̂n(cn−α)− f (cn−α)
)
≤ x

)
= P

(
ςxn,bn ≤ c

)
,

where ςxn,bn = argmaxt∈[0,∞)T
x
n,bn

(t), and

T x
n,bn(t) = n(1+α)/2(Fn − F )(n−αt)

+ n(1−α)/2 (nαF (n−αt)− f (cn−α)t
)
− b−1n xt.

Then, (1). lim supN→∞ lim supn→∞ bnP
(
ςxn,bn ≥ b2

nN log bn

)
= 0.

(2). ςxn,bn is equivalent to f (0)b2n
x2

τ : for any ε > 0

lim sup
n→∞

bnP

(∣∣∣∣ςxn,bn − f (0)b2
n

x2
τ

∣∣∣∣ ≥ ε) = 0.
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Therefore

P
(

bnn(1−α)/2
(

f̂n(cn−α)− f (cn−α)
)
≤ x

)
∼ P

(
τ ≤ cx2

f (0)b2
n

)
.

Lemma (Bhattacharya and Brockwell, Z.W.Verw.Geb.,1976)

Let M = supt∈[0,∞) {W (t)− t}. Then (τ,M) has the joint density

f (u, v) = 2vu−3/2φ(vu−1/2 + u1/2),

where φ(·) is the standard normal density. In particular, the density of τ
satisfies

fτ (t) ∼ Ct−1/2e−t/2, t →∞

and fτ (t) ∼ 1√
2eπ

t−1/2, t → 0, where C is some positive constant.
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Hence, for any x > 0,

P

(
n(1−α)/2

λn

(
f̂n(cn−α)− f (cn−α)

)
≥ x

)
∼ P

(
τ ≥ cx2

f (0)
λ2n

)
∼ exp

(
− cx2

2f (0)
λ2n

)
.

P
(

bnn(1−α)/2
(

f̂n(cn−α)− f (cn−α)
)
≤ x

)
∼ P

(
τ ≤ cx2

f (0)b2
n

)
∼

√
2c

eπf (0)
x .

Hui Jiang () MDP-Grenander estimator near boundaries 25 / 26



Thank you for your attention!
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