Adding vorticity matrix to a reversible Markov chain

Huang Lu－Jing

Beijing Normal University
（based on a joint work with professor Mao Y－H）

Contents

(1) "Reversibility" and "non-reversibility"
(2) Comparison criteria
(3) Vorticity matrix
(4) Our main results

- The case of reversibility and non-reversibility
- The case of single parameter
- The case of multiple parameter

1. Reversibility and non-reversibility

- We assume that V is a finite state space. Let $K=(K(i, j))_{i, j \in V}$ be a probability transition matrix(PTM), reversible with respect to a probability measure μ :

$$
\mu(i) K(i, j)=\mu(j) K(j, i), \quad i, j \in V .
$$

- Denote P as a PTM with stationary distribution μ :

$$
\sum_{i} \mu(i) P(i, j)=\mu(j)
$$

In general, P is not reversible, but we can get a reversible part from P :

$$
K(i, j)=\frac{1}{2}[P(i, j)+\mu(j) P(j, i) / \mu(i)] .
$$

At that time,

$$
\lim _{n \rightarrow \infty} K^{n}(i, j)=\lim _{n \rightarrow \infty} P^{n}(i, j)=\mu(j) .
$$

- investigate the properties of chain P and K.

An example: MCMC

- Suppose μ has the form:

$$
\mu(i)=C e^{-\sum_{j} V_{i j}}
$$

where C is unknown and we want to estimate it.

- One method is the Metropolis algorithm. Choose a basic probability matrix J such that

$$
J(i, j)>0 \Leftrightarrow J(j, i)>0, \quad i, j \in V
$$

Set the acceptance ratio (C disappears)

$$
A(i, j)=\frac{\mu(j) J(j, i)}{\mu(i) J(i, j)}, \quad i, j \in V
$$

- A Metropolis chain is formulated as follows:

$$
K(i, j)= \begin{cases}J(i, j), & \text { for } i \neq j, A(i, j) \geq 1 \\ J(i, j) A(i, j), & \text { for } i \neq j, A(i, j) \leq 1 \\ 1-\cdots, & \text { for } i=j\end{cases}
$$

K is reversible w.r.t. μ. Moreover, μ is its unique stationary distribution. Then have $\lim _{n \rightarrow \infty} K^{n}(i, j)=\mu(j)$.
In this case, the better chains is, the faster we will obtain μ.

2. Comparison criteria

- Asymptotic variance related to CLT:
- Spectral gap:
- Mixing times(our comparison criterion).

Asymptotic variance

- Asymptotic variance related to CLT: Let X_{k} is the Markov chain of P and it has stationary distribution μ. Then for any function $f: V \rightarrow \mathbb{R}$,

$$
\frac{1}{\sqrt{n}} \sum_{k=0}^{n-1}\left(f\left(X_{k}\right)-\mu(f)\right) \Rightarrow N(0, \nu(f, P, \mu))
$$

with

$$
\nu(f, P, \mu)=\lim _{n \rightarrow \infty} \operatorname{Var}_{\mu}\left[\sum_{k=0}^{n-1} f\left(X_{k}\right) / \sqrt{n}\right] .
$$

- Thus the smaller $\nu(f, P, \mu)$, the better the chain is. ([Chen, Hwang 2013], [Bierkens 2015]).

Spectral gap

- In $L^{2}(\mu)$:

$$
\lambda(P)=\sup \{\text { real part of } \sigma(P) \backslash\{1\}\} .
$$

- By total variance:

$$
\rho(P)=\inf \left\{\epsilon:\left|P^{n}(i, j)-\mu(j)\right| \leq C_{i j} \epsilon^{n}\right\} .
$$

- Also the smaller $\lambda(P)(\rho(P))$, the better the chain is.
([Hwang, Hwang-Ma, Sheu 1993, 2005])
- In the reversible case, $\lambda(P)=\rho(P)$ and we have Poincaré inequality

$$
1-\lambda(P)=\inf \left\{\langle f,(I-P) f\rangle: \mu(f)=0, \mu\left(f^{2}\right)=1\right\}
$$

Our criterion: mixing times

- Let

$$
\tau_{i}=\inf \left\{n \geq 0: X_{n}=i\right\}
$$

- For any pair of points i, j in V, let

$$
T_{i j}(P)=\mathbb{E}_{i} \tau_{j}+\mathbb{E}_{j} \tau_{i}
$$

be the commute time between i, j of X.

- For a subset A of V, let

$$
T_{A}(P)=\mathbb{E}_{\mu} \tau_{A}
$$

be the first hitting time of A from stationary start. When $A=i$, denote $T_{A}(P)$ as $T_{i}(P)$.

- The average hitting time

$$
\begin{aligned}
T_{0}(P) & :=\sum_{i} \sum_{j} \mu(i) \mu(j) \mathbb{E}_{i} \tau_{j}=\frac{1}{2} \sum_{i} \sum_{j} \mu(i) \mu(j) T_{i j}(P) \\
& =\sum_{j} T_{j}(P) .
\end{aligned}
$$

One reason: strong ergodicity

- In general, if $T_{0}(P)<\infty$, then the chain is strong ergodicity: there exist $C<\infty$ and $\rho<1$ such that

$$
\sup _{i} \sum_{j}\left|P^{n}(i, j)-\mu(j)\right| \leq C \rho^{n} .
$$

Moreover, we have $\rho \leq 1-1 / T_{0}(P)$.

- To see that the smaller average hitting time is, the better the chain is.

another motivation: Aldous-Fill's conjecture

Let P be a ergodic PTM with stationary distribution μ and Z is its fundamental matrix,i.e.

$$
Z(i, j)=\sum_{n=0}^{\infty}\left(P^{n}(i, j)-\mu(j)\right), \quad i, j \in V .
$$

Let

$$
P^{*}(i, j)=\frac{\mu(j) P(j, i)}{\mu(i)} \quad \text { and } \quad K(i, j)=\frac{1}{2}\left[P(i, j)+P^{*}(i, j)\right] .
$$

Aldous-Fill in their book (1995) conjectured that

$$
\operatorname{trace}\left(Z^{2}\left(P^{*}-P\right)\right) \geq 0
$$

And they proved that this conjecture can yield that(in fact we can prove they are equivalent)

$$
T_{0}\left(P_{\lambda}\right) \leq T_{0}(K),
$$

where

$$
\begin{gathered}
P_{\lambda}:=\lambda P+(1-\lambda) P^{*}=K+\left(\lambda-\frac{1}{2}\right) \operatorname{diag}(\mu)^{-1} \Gamma, 0 \leq \lambda \leq 1 . \\
\Gamma(i, j)=\mu(i) P(i, j)-\mu(j) P(j, i)
\end{gathered}
$$

3. Vorticity matrix

- It is easy to see that Γ satisfies:

$$
\begin{gathered}
\Gamma(i, j)=-\Gamma(j, i), \quad i, j \in V \\
\sum_{j} \Gamma(i, j)=0, \quad i \in V .
\end{gathered}
$$

In the following, we call the matrix as vorticity matrix if it satisfies above two conditions .

- Conversely, if we have a reversible(w.r.t μ) probability matrix K, choose a vorticity matrix Γ such that:

$$
\Gamma(i, j) \leq \mu(i) K(i, j), \quad i, j \in V
$$

Then $P:=K+\operatorname{diag}(\mu)^{-1} \Gamma$ be a PTM and it has same stationary distribution μ.
For these two chains, we have following results.

4. Main results-(1) The case of reversibility and non-reversibility

Theorem

Let Γ be a vorticity matrix, such that $P=K+\operatorname{diag}(\mu) \Gamma$ be a PTM. Fix any pair of points $i \neq j$ in V and let $T_{i j}(K), T_{i j}(P)$ respectively be the commute time between i, j of chains K and P. Then

$$
T_{i j}(P) \leq T_{i j}(K)
$$

Consequently, the average hitting times of the chains satisfy

$$
T_{0}(P) \leq T_{0}(K) .
$$

Theorem

Let Γ be a vorticity matrix, such that $P=K+\operatorname{diag}(\mu) \Gamma$ be a PTM. Fix any subset A of V, let $T_{A}(K), T_{A}(P)$ respectively be the first hitting time to A from stationary start of chains K and P. Then

$$
T_{A}(P) \leq T_{A}(K) .
$$

Tools

- Capacity representation for the commute time.
- Dirichlet principle of capacity and the first hitting time.

Capacity representation for the commute time

- For two disjoint $i, j \in V$, the capacity of chain P between i and j is

$$
C_{i j}(P)=\mu(i) \mathbb{P}_{i}\left(\tau_{j}<\tau_{i}^{+}\right),
$$

where $\tau_{i}^{+}=\min \left\{n \geq 1: X_{n}=i\right\}$ is the first return time to i of chain P.

- The following lemma gives the relation between capacity and the commute time.

Lemma (Aldous-Fill book, chapter 2, corollary 8)

For $i \neq j$ in V,

$$
T_{i j}(P)=\frac{1}{C_{i j}(P)}
$$

Dirichlet principle

- Define $\langle f, g\rangle=\sum_{i \in V} \mu(i) f(i) g(i)$ for $f, g: V \rightarrow \mathbb{R}$.

Lemma (Gaudillière-Landim 2014)

Let P be an irreducible PTM with stationary distribution μ. For every pair of points $i \neq j$ in V,

$$
C_{i j}(P)=\inf \left\{\left\langle f,(I-P)(I-K)^{-1}(I-P)^{*} f\right\rangle: f(i)=1, f(j)=0\right\} .
$$

- Note that if P is reversible, i.e., $P=K$, then

$$
C_{i j}(P)=\inf \{\langle f,(I-P) f\rangle: f(i)=1, f(j)=0\} .
$$

Lemma

Let P be an irreducible PTM with stationary distribution μ. For any subset A of V,

$$
T_{A}(P)=\inf \left\{\left\langle f,(I-P)(I-K)^{-1}(I-P)^{*} f\right\rangle:\left.f\right|_{A}=1,\langle f, 1\rangle=0\right\} .
$$

- Note that if P is reversible, i.e., $P=K$, then

$$
T_{A}(P)=\inf \left\{\langle f,(I-P) f\rangle:\left.f\right|_{A}=1,\langle f, 1\rangle=0\right\} .
$$

Parametrize the vorticity matrix

- Choose a vorticity matrix Γ such that $K+\operatorname{diag}(\mu)^{-1} \Gamma$ be a PTM.
- For $\lambda \in[-1,1]$, let

$$
P_{\lambda}=K+\lambda \operatorname{diag}(\mu)^{-1} \Gamma .
$$

Then P_{λ} also is a PTM and has the same stationary distribution μ.

- For any pair of point $i \neq j$ and subset A, let $T_{i j}(\lambda), T_{A}(\lambda)$ be the commute time between i, j and the first hitting time to A from stationary start of chain P_{λ} respectively. Similarly, we define $T_{0}(\lambda)$ as the average hitting time of P_{λ}.

4. Main results-(2) The case of single parameter

Theorem

For any pair of points $i \neq j$ and subset A, let $S(\lambda)$ be any of $T_{i j}(\lambda), T_{A}(\lambda)$, and $T_{0}(\lambda)$. Then
(a) (symmetry) For every $\lambda \in[-1,1]$,

$$
S(\lambda)=S(-\lambda) .
$$

(b) (monotone) $S(\lambda)$ increases on $[-1,0]$. In particular,

$$
\max _{-1 \leq \lambda \leq 1} S(\lambda)=S(0) \text { and } \min _{-1 \leq \lambda \leq 1} S(\lambda)=S(1) .
$$

Moreover if the matrix Γ exists a row that only has two nonzero elements, then $T_{0}(\lambda)$ is strictly increasing.

- By letting $K=\frac{1}{2}\left(P+P^{*}\right)$ and $\Gamma=(\lambda-1 / 2) \operatorname{diag}(\mu)\left(P-P^{*}\right)$, we can prove Aldous-Fill's conjecture([Aldous-Fill book, chapter 9]).

Circle associated to the vorticity matrix

- For the reversible chain K, let $G=(V, E)$ be the directed graph associated to K, where V is the state space and $E=\{(i, j) \in V \times V: K(i, j)>0\}$ is the set of edges, here we distinguish edges (i, j) and (j, i).
- For different vertices $i_{0}, i_{1}, \ldots, i_{n-1}$ and define $i_{n}=i_{0}$. If $\left(i_{k}, i_{k+1}\right) \in E$, $k=0,1, \ldots, n-1$, then we call $c=\left(i_{0}, i_{1}, \ldots, i_{n-1}, i_{n}\right)$ is a cycle of G, and say that $\left(i_{k}, i_{k+1}\right),\left(i_{k+1}, i_{k}\right), k=0,1, \ldots, n-1$ are the edges of c; $i_{k}, k=0,1, \ldots, n-1$ are the vertices of c.
- Define the unit vorticity matrix $\Gamma^{(c)}=\left(\Gamma^{(c)}(i, j): i, j \in V\right)$ associated with the cycle $c=\left(i_{0}, i_{1}, \ldots, i_{n-1}, i_{n}\right)$ as

$$
\Gamma^{(c)}(i, j)= \begin{cases}1, & i=i_{k}, j=i_{k+1}, k=0,1, \ldots, n-1 \\ -1, & i=i_{k+1}, j=i_{k}, k=0,1, \ldots, n-1 \\ 0, & \text { otherwise }\end{cases}
$$

Decomposition of the vorticity matrix

Proposition

Assume that Γ is a vorticity matrix such that $P=K+\operatorname{diag}(\mu)^{-1} \Gamma$ is a transition matrix. Then there exist cycles $c_{1}, c_{2}, \ldots, c_{m}$ on G and positive $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}(m \geq 1)$ such that

$$
\Gamma=\lambda_{1} \Gamma^{\left(c_{1}\right)}+\lambda_{2} \Gamma^{\left(c_{2}\right)}+\ldots+\lambda_{m} \Gamma^{\left(c_{m}\right)} .
$$

Furthermore, $\Gamma^{\left(c_{1}\right)}, \Gamma^{\left(c_{2}\right)}, \ldots, \Gamma^{\left(c_{m}\right)}$ can choose be linearly independent in the sense that if there exist $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m} \in \mathbb{R}$ such that

$$
\alpha_{1} \Gamma^{\left(c_{1}\right)}+\alpha_{2} \Gamma^{\left(c_{2}\right)}+\ldots+\alpha_{m} \Gamma^{\left(c_{m}\right)}=0
$$

then $\alpha_{1}=\alpha_{2}=\ldots=\alpha_{m}=0$.

- Unfortunately, this decomposition is not unique, and the circles may intersect.

Multiple parameter

Assume that the graph G associated with chain K has the cycles c_{1}, \ldots, c_{r}. For $\lambda=\left(\lambda_{1}, \cdots, \lambda_{r}\right)$, denote

$$
P(\lambda)=K+\sum_{k} \lambda_{k} \operatorname{diag}(\mu)^{-1} \Gamma^{\left(c_{k}\right)}
$$

where λ such that $P(\lambda)$ be PTM. Then for any λ, let $T_{i j}(\lambda)$ be the commute time between i and j of $P(\lambda)$. Similarly, $T_{A}(\lambda)$ be the first time to A from stationary start and $T_{0}(\lambda)$ be the average hitting time respectively.

4. Main results-(3) The case of multiple parameter

Theorem

Assume that G has cycles c_{1}, \ldots, c_{r} with not common edges. Fix any pair of points $i \neq j$ in V, let $S(\lambda)$ be any of the mixing times above. Then (a) (symmetry)

$$
S\left(\lambda_{1}, \cdots, \lambda_{r}\right)=S\left(\left|\lambda_{1}\right|, \ldots,\left|\lambda_{r}\right|\right) .
$$

(b) (monotone) $S(\lambda)$ increases for $\lambda \leq 0$. That is,

$$
S(\lambda) \leq S(\hat{\lambda}), \quad \lambda_{k} \leq \hat{\lambda}_{k} \leq 0
$$

Reference

- Aldous D.J., Fill J.A. Reversible Markov chains and random walks on graphs. URL www.berkeley.edu/users/aldous/book.html, 1994-2012.
- Bierkens J. Non-reversible Metropolis-Hastings. http://arxiv.org/abs/1401.8087, 2015.
- Chen T.-L., Hwang C.-R. Accelerating reversible Markov chains. Statistics and Probability Letters, 2013, 83(9), 1956-1962.
- Gaudillière A., Landim C. A Dirichlet principle for non reversible Markov chains and some recurrence theorems. Probab. Theory Relat. Fields, 2014, 158, 55-89.
- Hwang C.-R., Hwang-Ma S.-Y., Sheu S.-J. Accelerating diffusions. The Annals of Applied Probability, 2005, 15(2), 1433-1444.
- Hwang C.-R., Hwang-Ma S.-Y., Sheu S.-J. Accelerating Gaussian diffusions. The Annals of Applied Probability, 1993, 3(3), 897-913.
- Huang L.-J., Mao Y.-H. On some mixing times for non-reversible finite Markov chains.

Thank you!

