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1. Main equation

∂u(t , x)

∂t
=

1
2

∆u(t , x) + u(t , x)Ẇ , t > 0, x ∈ Rd ,

∆ =
∑d

i=1
∂2

∂x2
i

is the Laplacian.

initial condition u0,x = u0(x) is continuous and bounded
from above and it is also bounded from below by a positive
constant.
Ẇ = ∂d+1W

∂t∂x1···∂xd
is centered Gaussian with covariance

E(Ẇ (s, x)Ẇ (t , y)) = γ(s − t)Λ(x − y)

Λ(x − y) =

∫
Rd

e−iξ(x−y)µ(dξ)

for some measure µ.
The product uẆ is in the Skorohod senses.
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The product uẆ is in the Skorohod senses.



1. Main equation

∂u(t , x)

∂t
=

1
2

∆u(t , x) + u(t , x)Ẇ , t > 0, x ∈ Rd ,
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The relation of the moments of u(t , x) and mean of exponential
of “local time”:

E
[
uk (t , x)

]
= The expectation of the exponential

of local time of Brownian motions .

Hu, Y. and Nualart, D.

Stochastic heat equation driven by fractional noise and local
time.

Prob. Theory and Related Fields, 143 (2009), 285-328.



Feynman-Kac formula for the solution

u(t , x) = EB
[
u0(x + Bt ) exp

(∫ t

0
Ẇ (t − s,Bs + x)ds

)]
.

Hu, Y.; Nualart, D. and Song, J.

Feynman-Kac formula for heat equation driven by fractional
white noise.

The Annals of Probability 39 (2011), no. 1, 291-326.

Fractional Brownian field of Hurst parameters > 1/2.



Fractional Brownian field of time Hurst parameters < 1/2 but
> 1/4.

Hu, Y.; Nualart, D. and Lu, F.

Feynman-Kac formula for the heat equation driven by fractional
noise with Hurst parameter H < 1/2.

Ann. Probab. 40 (2012), no. 3, 1041-1068.



All parameter H0 > 0.

Chen, L.; Hu, Y.; Kalbasi, K. and Nualart, D.

Intermittency for the stochastic heat equation driven by
time-fractional Gaussian noise with H ∈ (0,1/2).

Submitted.

Hu, Y.; Le, K.

Nonlinear Young integrals and differential systems in Hölder
media.

Transaction of American Mathematical Society. In printing.



We assume the following

Hypothesis (on γ)

There exist constants c0,C0 and 0 ≤ β < 1, such that

c0|t |−β ≤ γ(t) ≤ C0|t |−β.



Hypothesis (on Λ)

Λ satisfies one of the following conditions.

(i) There exist positive constants c1,C1 and 0 < κ < 2 such
that {

d ≥ 2 ,
c1|x |−κ ≤ Λ(x) ≤ C1|x |−κ .

(ii) There exist positive constants c1,C1 and κi such that{
0 < κi < 1 ,

∑d
i=1 κi < 2 ,

c1
∏d

i=1 |xi |−κi ≤ Λ(x) ≤ C1
∏d

i=1 |xi |−κi .

(iii) {
d = 1 ,
Λ(x) = δ(x) (Dirac delta function).
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υ = κ ( Case (i)) ,
d∑

i=1

κi ( Case (ii)) , 1 ( Case (iii)) .

Then we have for all t ≥ 0 , x ∈ Rd , k ≥ 2,

exp
(

Ct
4−2β−υ

2−υ k
4−υ
2−υ
)
≤ E

[
uk

t ,x

]
≤ exp

(
C′t

4−2β−υ
2−υ k

4−υ
2−υ
)

where C,C′ are constants independent of t and k .

If Λ(x) = δ0(x) and Ẇ is time independent, then,

exp
(

Ct3k3
)
≤ E

[
uk

t ,x

]
≤ exp

(
C′t3k3

)
,

where C,C′ > 0 are constants independent of t and k .

Hu, Y.; Huang, J.; Nualart, D. and Tindel, S.

Stochastic heat equations with general multiplicative Gaussian
noises: Hölder continuity and intermittency.

Electron. J. Probab. 20 (2015), no. 55, 50 pp.



υ = κ ( Case (i)) ,
d∑

i=1

κi ( Case (ii)) , 1 ( Case (iii)) .

Then we have for all t ≥ 0 , x ∈ Rd , k ≥ 2,

exp
(

Ct
4−2β−υ

2−υ k
4−υ
2−υ
)
≤ E

[
uk

t ,x

]
≤ exp

(
C′t

4−2β−υ
2−υ k

4−υ
2−υ
)

where C,C′ are constants independent of t and k .
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Amir, G.; Corwin, I. and Quastel, J.

Probability distribution of the free energy of the continuum
directed random polymer in 1 + 1 dimensions.

Comm. Pure Appl. Math. 64 (2011), no. 4, 466-537.



p(t , x) = 1√
2πt

e−
x2
2t .

F (t , x) = log
(

u(t , x)

p(t , x)

)

FT (s) = P
(

F (T , x) +
T
4!
≤ s

)
.



Ai(x) =
1
π

∫ ∞
0

cos
(

1
3

t3 + xt
)

dt

Kσ(x , y) =

∫ ∞
−∞

σ(t) Ai(x + t) Ai(y + t)dt

FT (s) =

∫
C̃

d µ̃
µ̃

e−µ̃ det
(
I − KσT ,µ̃

)
L2(K−1

T a, ∞)
,

where

σT ,µ̃ =
µ̃

µ̃− e−KT t

a = a(s) = s − log
√

2πT
Kt = 2−1/3T 1/3

C̃ =
{

eiθ
}
π
2≤

3π
2

∪ {x +±i}x>0 .



2. Tail probability

Theorem (Right tail)

Let the initial condition u0(x) be bounded from above and from
below. Then, there are positive constants c1, c2, C1 and C2
(independent of t and a) such that

C1 exp
(
−c1t

2β+υ−4
2 (log a)

4−υ
2

)
≤ P(u(t , x) ≥ a) ≤ C2 exp

(
−c2t

2β+υ−4
2 (log a)

4−υ
2

)
for all sufficiently large a.



Left tail probability

d = 1 and Ẇ is space time white, u0(x) ≥ c > 0,

P(u(t , x) ≤ a) ≤ Ce−c(log a)2
, as a→ 0 .

Moreno Flores, G. R.

On the (strict) positivity of solutions of the stochastic heat
equation.

Ann. Probab. 42 (2014), no. 4, 1635-1643.



Let

|q(t , s, x , y)| ≤ LT |t − s|−α0

d∏
i=1

|xi − yi |−αi ,

We assume the Gaussian noise is given by

Ẇ (t , x) =

∫ t

0

∫
Rd

q(t , s, x , y)W(ds,dy) ,

where W is the space time white noise:

EẆ(t , x)Ẇ(s, y) = δ(t − s)δ(x − y) .

Denote β = 2α0 − 1 and υ = 2
∑d

i=1 αi − d . Then, there are
positive constants C, c1, and c2 such that for any sufficiently
small positive u

P(u(t , x) ≤ u)

≤ C exp
{
−
(
−c1 exp

[
−ρt

4−2β−υ
4−2υ

]
log u − c2t

4−2β−υ
4−2υ

)2
}
.
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3. Tail of density

Theorem

Let the initial condition u0(x) be bounded from above and from
below. Then, the law of the random variable u(t , x) has a
density ρ(t , x ; y) with respect to the Lebesgue measure,
namely, for any Borel set A ⊂ R,

P(u(t , x) ∈ A) =

∫
A
ρ(t , x ; y)dy .

Moreover, there are positive constants c,C > 0 such that for
every t ∈ (0,T ) and all sufficiently large y

inf
x∈R

ρ(t , x ; y) ≥ C exp
(
−ct

2β+υ−4
2 (log y)

4−υ
2

)
.
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If the noise is space time white, then

Theorem

Let the initial condition u0(x) be bounded from above and from
below. Then, the law of the random variable u(t , x) has a
density ρ(t , x ; y) with respect to the Lebesgue measure.
Moreover, there are positive constants c1,C1, c2,C2 > 0 such
that for every t ∈ (0,T ) and all sufficiently large y

C1 exp
(
−c1t−1/2(log y)

3
2

)
≤ inf

x∈R
ρ(t , x ; y)

≤ sup
x∈R

ρ(t , x ; y) ≤ C2 exp
(
−c2t−1/2(log y)

3
2

)
.



Theorem

Let υ + 2β < 2. Let the initial condition u0(x) be bounded from
above and from below. Then, the law of the random variable
u(t , x) has a density ρ(t , x ; y) with respect to the Lebesgue
measure. Moreover, for every t ∈ (0,∞) and for any sufficiently
large y

C1 exp
(
−c1t

2β+υ−4
2 (log y)

4−υ
2

)
≤ inf

x∈R
ρ(t , x ; y)

≤ sup
x∈R

ρ(t , x ; y) ≤ C2 exp
(
−c2t

2β+υ−4
2 (log y)

4−υ
2

)
,

for some universal positive constants c1, c2, C1 and C2.



Theorem

Let the initial condition u0(x) be bounded from above and from
below. Assume that υ + 2β < 2. Then, for all 0 < y < 1

sup
x∈R

ρ(t , x ; y) ≤ Ct
β
2 +

υ
4−1 exp

(
−ct

4−2β−υ
2 (− log y)

4−υ
2

)
,

for some universal positive constants c,C.



Theorem

Let
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Denote β = 2α0 − 1 and υ = 2
∑d

i=1 αi − d. Then, there are
positive constants C, c1, and c2 such that for any sufficiently
small positive y

ρ(t , x ; y)

≤ Ct
β
2 +

υ
4−1 exp

{
−
(
−c1 exp

[
−ρt

4−2β−υ
4−2υ

]
log y − c2t

4−2β−υ
4−2υ

)2
}
.



Theorem

Let the noise be the one dimensional space time white noise.
Then, there are positive constants C, c1, and c2 such that for
any sufficiently small positive y

ρ(t , x ; y) ≤ Ct−1/4 exp
{
−
(
−c1 exp

[
−ρt1/2

]
log y − c2t1/2

)2
}
.



The tool to use is Malliavin calculus
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5. Hölder continuity
Theorem

Let the covariance functions of W satisfy |γ(t)| ≤ C|t |−β and
|Λ̂(ξ)| ≤ C|ξ|−ν , where 0 < β < 1, d − ν < 2. Then, for any α
and δ satisfying 4α + 2δ < ν − 2β + 4− d, there is a random
constant C such that

|u(t , y)− u(s, y)− u(t , x) + u(s, x)| ≤ C|t − s|α|x − y |δ a.s. .

Moreover, for any δ an α satisfying

δ < (ν − 2β + 4− d)/2 and α < (ν − 2β + 4− d)/4

there is a random constant C such that

|u(t , x)−u(s, x)|+|u(t , y)−u(t , x)| ≤ C
[
|t − s|α + |x − y |δ

]
a.s. .



When W is a 1-d space time white noise, this corresponds to
the case ν = 0, β = 1. Then the above theorem says if
4α + 2δ < 1, then

|un(t , y)− un(s, y)− un(t , x) + un(s, x)| ≤ C|t − s|α|x − y |δ .

This coincides with the optimal Hölder exponent result. On the
other hand, the corollary also implies in this case that if α < 1/4
and β < 1/2, Then,

|un(t , x)− un(s, x)|+ |un(t , y)− un(t , x)| ≤ C
[
|t − s|α + |x − y |δ

]
.
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