On the minimum of a branching random walk

Yueyun Hu

Université Paris 13
12th Workshop on Markov Processes and Related Topics
Xuzhou, July 2016

Outline

(1) Model
(2) The second order limit: Theorems 1 and 2
(3) Proof of Theorem 1
(4) Proof of Theorem 2
(5) Moderate deviations

Branching random walk on \mathbb{R}

- At the beginning, there is a single particle located at the origin 0 .
- Its children, who form the first generation, are positioned according to a certain point process $\Theta=\sum_{i=1}^{\nu} \delta_{\left\{X_{i}\right\}}$ on \mathbb{R}

On the minimum of a branching random walk

Branching random walk on \mathbb{R}

- At the beginning, there is a single particle located at the origin 0.
- Its children, who form the first generation, are positioned according to a certain point process $\Theta=\sum_{i=1}^{\nu} \delta_{\left\{X_{i}\right\}}$ on \mathbb{R}.

On the minimum of a branching random walk

Branching random walk on \mathbb{R}

- At the beginning, there is a single particle located at the origin 0.
- Its children, who form the first generation, are positioned according to a certain point process $\Theta=\sum_{i=1}^{\nu} \delta_{\left\{X_{i}\right\}}$ on \mathbb{R}.

On the minimum of a branching random walk

Model

- Each particle i independently gives birth to new particles that are positioned (with respect to X_{i}) according to a point process with the same law as Θ; they form the second generation.

The second order limit : Theorems 1 and 2

Model

- And so on.

On the minimum of a branching random walk

Notations

$$
u_{0}=\text { root }
$$

$\left\{u_{0}, u_{1}, \ldots, u_{|u|}\right\}$ such that
for any i, u_{i} is the ancestor of u at i-th generation

Figure: The particles form a rooted Galton-Watson tree \mathcal{T} of reproduction law ν

- We assume that $\mathbb{E}(\nu)>1$, so that \mathcal{T} is supercritical.
- Denote by $(V(u))_{|u|=n}$ the positions of particles in the n-th generation.
- We are interested in the minimal position

On the minimum of a branching random walk

- We assume that $\mathbb{E}(\nu)>1$, so that \mathcal{T} is supercritical.
- Denote by $(V(u))_{|u|=n}$ the positions of particles in the n-th generation.
- We are interested in the minimal position :

$$
\mathcal{M}_{n}:=\min _{|u|=n} V(u) .
$$

- We assume that $\mathbb{E}(\nu)>1$, so that \mathcal{T} is supercritical.
- Denote by $(V(u))_{|u|=n}$ the positions of particles in the n-th generation.
- We are interested in the minimal position :

$$
\mathcal{M}_{n}:=\min _{|u|=n} V(u) .
$$

- Then $\Theta=\sum_{|u|=1} \delta_{\{V(u)\}} \equiv \sum_{i=1}^{\nu} \delta_{\left\{X_{i}\right\}}$, and $\mathcal{M}_{1}=\min _{1 \leq i \leq \nu} X_{i}$.
- Example : $\nu=2, X_{1}, X_{2}$ are i.i.d.
- We assume that $\mathbb{E}(\nu)>1$, so that \mathcal{T} is supercritical.
- Denote by $(V(u))_{|u|=n}$ the positions of particles in the n-th generation.
- We are interested in the minimal position :

$$
\mathcal{M}_{n}:=\min _{|u|=n} V(u)
$$

- Then $\Theta=\sum_{|u|=1} \delta_{\{V(u)\}} \equiv \sum_{i=1}^{\nu} \delta_{\left\{X_{i}\right\}}$, and $\mathcal{M}_{1}=\min _{1 \leq i \leq \nu} X_{i}$.
- Example : $\nu=2, X_{1}, X_{2}$ are i.i.d.

The first order limit :

Theorem of Kingman, Hammersley, Biggins (1974-1976) :
Conditioned on $\{\mathcal{T}=\infty\}$,

$$
\lim _{n \rightarrow \infty} \frac{\mathcal{M}_{n}}{n}=c, \quad \text { a.s. }
$$

where the limit $c \in[-\infty, \infty)$ is some deterministic constant, explicitly defined through a variational formula.

Question
The second order limit of \mathcal{M}_{n} ?

The first order limit :

Theorem of Kingman, Hammersley, Biggins (1974-1976) :

Conditioned on $\{\mathcal{T}=\infty\}$,

$$
\lim _{n \rightarrow \infty} \frac{\mathcal{M}_{n}}{n}=c, \quad \text { a.s. }
$$

where the limit $c \in[-\infty, \infty)$ is some deterministic constant, explicitly defined through a variational formula.

Question :

The second order limit of \mathcal{M}_{n} ?

The second order limit : Theorems 1 and 2

The boundary case :

$$
\psi(t):=\log \mathbf{E} \int e^{-t x} \boldsymbol{\Theta}(d x) \equiv \log \mathbf{E} \sum_{i=1}^{\nu} e^{-t X_{i}}
$$

Linear transformation \Longrightarrow
$(c>0)$

Figure: Transformation to the "boundary case" : $\psi(1)=\psi^{\prime}(1)=0$

The second order limit : Theorems 1 and 2

The boundary case : velocity $c=0$

- Almost surely, $\mathcal{M}_{n} \rightarrow+\infty$ [Biggins (1977), Lyons (1997)] ;
- Roughly $\mathcal{M}_{n} \approx \log n$, See Addario-Berry and Reed (2009), Bramson and Zeitouni (2009) [concentration around its expectation], H. and Shi (2009) [a.s. limit] Aïdékon's theorem (2013)

The second order limit : Theorems 1 and 2

The boundary case : velocity $\mathrm{c}=0$

- Almost surely, $\mathcal{M}_{n} \rightarrow+\infty$ [Biggins (1977), Lyons (1997)];
- Roughly $\mathcal{M}_{n} \approx \log n$, See Addario-Berry and Reed (2009), Bramson and Zeitouni (2009) [concentration around its expectation], H. and Shi (2009) [a.s. limit];
- Aïdékon's theorem (2013)

Extremal process Madaule (2014+) Berestycki, Brunet (2013)' theorem on the branching Brownian motion

The boundary case : velocity $\mathrm{c}=0$

- Almost surely, $\mathcal{M}_{n} \rightarrow+\infty$ [Biggins (1977), Lyons (1997)] ;
- Roughly $\mathcal{M}_{n} \approx \log n$, See Addario-Berry and Reed (2009), Bramson and Zeitouni (2009) [concentration around its expectation], H. and Shi (2009) [a.s. limit];
- Aïdékon's theorem (2013) :
$\mathcal{M}_{n}-\frac{3}{2} \log n \quad$ converges in law.
- Extremal process : $\sum_{|u|=n} \delta_{\left\{V(u)-\mathcal{M}_{n}\right\}}$ converges in law. See Madaule (2014+), a (weaker) discrete analogue of Aïdékon, Berestycki, Brunet and Shi (2013), Arguin, Bovier and Kistler (2013)' theorem on the branching Brownian motion.

The boundary case : velocity $c=0$

- Almost surely, $\mathcal{M}_{n} \rightarrow+\infty$ [Biggins (1977), Lyons (1997)];
- Roughly $\mathcal{M}_{n} \approx \log n$, See Addario-Berry and Reed (2009), Bramson and Zeitouni (2009) [concentration around its expectation], H. and Shi (2009) [a.s. limit];
- Aïdékon's theorem (2013) : $\mathcal{M}_{n}-\frac{3}{2} \log n \quad$ converges in law.
- Extremal process : $\sum_{|u|=n} \delta_{\left\{V(u)-\mathcal{M}_{n}\right\}}$ converges in law. See Madaule (2014+), a (weaker) discrete analogue of Aïdékon, Berestycki, Brunet and Shi (2013), Arguin, Bovier and Kistler (2013)' theorem on the branching Brownian motion.

The second order limit : Theorems 1 and 2

Objective

Two problems :

- Precise almost sure limits: Law of the iterated logarithm for \mathcal{M}_{n}. - Moderate deviations for \mathcal{M}_{n}.

The second order limit : Theorems 1 and 2

Objective

Two problems :

- Precise almost sure limits: Law of the iterated logarithm for \mathcal{M}_{n}.
- Moderate deviations for \mathcal{M}_{n}.

Some a.s. limit theorems

Under some extra integrability conditions, H. \& Shi (2009) proved that

$$
\begin{aligned}
& \limsup _{n \rightarrow \infty} \frac{\mathcal{M}_{n}}{\log n}=\frac{3}{2}, \quad \mathbb{P}^{*} \text {-a.s. } \\
& \liminf _{n \rightarrow \infty} \frac{\mathcal{M}_{n}}{\log n}=\frac{1}{2}, \quad \mathbb{P}^{*} \text {-a.s. }
\end{aligned}
$$

where here and in the sequel $\mathbb{P}^{*}(\cdot):=\mathbb{P}(\cdot \mid$ survival $)$.

The second order limit : Theorems 1 and 2

How big and how small can the minimum \mathcal{M}_{n} be ?

Question 1 :

How does \mathcal{M}_{n} approach its lower limits $\frac{1}{2} \log n$? or How small can \mathcal{M}_{n} be?

Question 2
How does \mathcal{M}_{n} approach its upper limits $\frac{3}{2} \log n$? or How big can \mathcal{M}_{n} be ?

How big and how small can the minimum \mathcal{M}_{n} be ?

Question 1:

How does \mathcal{M}_{n} approach its lower limits $\frac{1}{2} \log n$? or How small can \mathcal{M}_{n} be?

Question 2 :

How does \mathcal{M}_{n} approach its upper limits $\frac{3}{2} \log n$? or How big can \mathcal{M}_{n} be?

Why should the lower limit be $\frac{1}{2} \log n$?

Many-to-one formula (Chauvin, Rouault and Wakolbinger (1991), Lyons, Pemantle and Peres (1995), Biggins and Kyprianou (2004))
There exists a centered real-valued random walk $\left\{S_{n}, n \geq 0\right\}$ such that for any $n \geq 1$ and $f: \mathbb{R}^{n} \rightarrow \mathbb{R}_{+}$measurable,

$$
\mathbb{E}\left[\sum_{|u|=n} e^{-V(u)} f\left(V\left(u_{1}\right), \ldots, V\left(u_{n}\right)\right)\right]=\mathbb{E}\left[f\left(S_{1}, \ldots, S_{n}\right)\right]
$$

Moreover, $\mathbb{E}\left(S_{1}\right)=0$ and $\operatorname{Var}\left(S_{1}\right)=\psi^{\prime \prime}(1)=: \sigma^{2}>0$.

Why should the lower limit be $\frac{1}{2} \log n$?

Many-to-one formula (Chauvin, Rouault and Wakolbinger (1991), Lyons, Pemantle and Peres (1995), Biggins and Kyprianou (2004))
There exists a centered real-valued random walk $\left\{S_{n}, n \geq 0\right\}$ such that for any $n \geq 1$ and $f: \mathbb{R}^{n} \rightarrow \mathbb{R}_{+}$measurable,

$$
\mathbb{E}\left[\sum_{|u|=n} e^{-V(u)} f\left(V\left(u_{1}\right), \ldots, V\left(u_{n}\right)\right)\right]=\mathbb{E}\left[f\left(S_{1}, \ldots, S_{n}\right)\right]
$$

Moreover, $\mathbb{E}\left(S_{1}\right)=0$ and $\operatorname{Var}\left(S_{1}\right)=\psi^{\prime \prime}(1)=: \sigma^{2}>0$.

Why should the lower limit be $\frac{1}{2} \log n$?

Why $\frac{1}{2} \log n$?

Let $\alpha>0$. Define $\underline{V}:=\inf _{u \in \mathbb{T}} V(u)$ and $\underline{V}(u):=\min _{\varnothing \leq v \leq u} V(v)$ (with $\inf \emptyset=\infty$). Then for any $c>0$,

$$
\begin{aligned}
& \mathbb{P}\left(\mathcal{M}_{n} \leq c \log n, \underline{V} \geq-\alpha\right) \\
\leq & \mathbb{E}\left[\sum_{|u|=n} 1_{(V(u) \leq c \log n, \underline{V}(u) \geq-\alpha)}\right] \\
= & \mathbb{E}\left[e^{S_{n}} 1_{\left(S_{n} \leq c \log n, \min _{1 \leq i \leq n} S_{i} \geq-\alpha\right)}\right] \\
\leq & n^{c} \mathbb{P}\left(S_{n} \leq c \log n, \min _{1 \leq i \leq n} S_{i} \geq-\alpha\right) .
\end{aligned}
$$

The second order limit : Theorems 1 and 2

Excursion probability

Figure: $\mathbb{P}\left(S_{n} \leq c \log n, \min _{1 \leq i \leq n} S_{i} \geq-\alpha\right)=n^{-\mathbf{3} / 2+o(1)}$.

The second order limit : Theorems 1 and 2

Why should the lower limit be $\frac{1}{2} \log n$?

Why $\frac{1}{2} \log n$?

Then for any fixed $\alpha>0$,

$$
\mathbb{P}\left(\mathcal{M}_{n} \leq c \log n, \underline{V} \geq-\alpha\right) \leq n^{c-3 / 2+o(1)}
$$

whose sum converges if $c<1 / 2$. The Borel-Cantelli lemma yields the (a.s.) lower limit $\frac{1}{2} \log n$.

Remark

In probability, $\mathcal{M}_{n}=\frac{3}{2} \log n+O(1)$.

Why should the lower limit be $\frac{1}{2} \log n$?

Why $\frac{1}{2} \log n$?

Then for any fixed $\alpha>0$,

$$
\mathbb{P}\left(\mathcal{M}_{n} \leq c \log n, \underline{V} \geq-\alpha\right) \leq n^{c-3 / 2+o(1)}
$$

whose sum converges if $c<1 / 2$. The Borel-Cantelli lemma yields the (a.s.) lower limit $\frac{1}{2} \log n$.

Remark

In probability, $\mathcal{M}_{n}=\frac{3}{2} \log n+O(1)$.

The second order limit : Theorems 1 and 2

Question :

Can \mathcal{M}_{n} be much smaller than its lower limits $\frac{1}{2} \log n$?

Aidékon and Shi (2014) : Yes!

Under some mild conditions,

Moreover, they asked whether there exists a deterministic sequence $\left(a_{n}\right)$ such that

On the minimum of a branching random walk

Question :

Can \mathcal{M}_{n} be much smaller than its lower limits $\frac{1}{2} \log n$?

Aïdékon and Shi (2014) : Yes!

Under some mild conditions,

$$
\liminf _{n \rightarrow \infty}\left(\mathcal{M}_{n}-\frac{1}{2} \log n\right)=-\infty, \quad \mathbb{P}^{*} \text {-a.s.. }
$$

Moreover, they asked whether there exists a deterministic sequence $\left(a_{n}\right)$ such that

$$
-\infty<\liminf _{n \rightarrow \infty} \frac{1}{a_{n}}\left(\mathcal{M}_{n}-\frac{1}{2} \log n\right)<0 ?
$$

Response to Question 1 : How small is \mathcal{M}_{n} ?

Theorem 1 (H. 2015)

For any function $f \uparrow \infty$,

$$
\begin{aligned}
& \mathbb{P}^{*}\left(\mathcal{M}_{n}-\frac{1}{2} \log n<-f(n), \quad \text { i.o. }\right)=\left\{\begin{array}{l}
0 \\
1
\end{array}\right. \\
& \Longleftrightarrow \int^{\infty} \frac{d t}{t} e^{-f(t)}\left\{\begin{array}{l}
<\infty \\
=\infty
\end{array}\right.
\end{aligned}
$$

where i.o. means infinitely often as the relevant index $n \rightarrow \infty$.

Response to Question 1: How small is \mathcal{M}_{n} ?

Corollary

We can choose $a_{n}=\log \log n$ in the question arised by Aïdékon and Shi :

$$
\liminf _{n \rightarrow \infty} \frac{1}{\log \log n}\left(\mathcal{M}_{n}-\frac{1}{2} \log n\right)=-1, \quad \mathbb{P}^{*} \text {-a.s. }
$$

The second order limit : Theorems 1 and 2

Question 2: How big is \mathcal{M}_{n} ?

Question 2 :

Recalling

$$
\limsup _{n \rightarrow \infty} \frac{\mathcal{M}_{n}}{\log n}=\frac{3}{2}, \quad \mathbb{P}^{*} \text {-a.s. }
$$

How can \mathcal{M}_{n} approach its upper limits $\frac{3}{2} \log n$?

Theorem 2 (H. 2016)

Assume some integrability conditions. We have

The second order limit : Theorems 1 and 2

Question 2: How big is \mathcal{M}_{n} ?

Question 2 :

Recalling

$$
\limsup _{n \rightarrow \infty} \frac{\mathcal{M}_{n}}{\log n}=\frac{3}{2}, \quad \mathbb{P}^{*} \text {-a.s. }
$$

How can \mathcal{M}_{n} approach its upper limits $\frac{3}{2} \log n$?

Theorem 2 (H. 2016)

Assume some integrability conditions. We have

$$
\limsup _{n \rightarrow \infty} \frac{1}{\log \log \log n}\left(\mathcal{M}_{n}-\frac{3}{2} \log n\right)=1, \quad \mathbb{P}^{*} \text {-a.s. }
$$

The second order limit : Theorems 1 and 2

Organization of the rest of the talk :

(1) Proof of Theorem 1 by introducing the additive martingale.
(2) Proof of Theorem 2 and the moderate deviations of \mathcal{M}_{n}.

The additive and derivative martingales

Two martingale :

$$
W_{n}:=\sum_{|u|=n} e^{-V(u)}, \quad D_{n}:=\sum_{|u|=n} V(u) e^{-V(u)}, \quad n \geq 0 .
$$

Under the same hypothesis as before

- D_{n} is a real-valued martingale which converges to $D_{\infty} \geq 0$,

- W_{n} is a nonnegative martingale which converges to 0 a.s. [Biggins (1976), Lyons (1997)] ; What's the Seneta-Heyde norming for W_{n} ? i.e. find constants c_{n} such that $\frac{W_{n}}{C_{n}}$
converges.
- In H. and Shi (2009), we showed that $c_{n} \asymp \frac{1}{\sqrt{n}}$

The additive and derivative martingales

Two martingale :

$$
W_{n}:=\sum_{|u|=n} e^{-V(u)}, \quad D_{n}:=\sum_{|u|=n} V(u) e^{-V(u)}, \quad n \geq 0 .
$$

Under the same hypothesis as before

- D_{n} is a real-valued martingale which converges to $D_{\infty} \geq 0$, a.s., $\left\{D_{\infty}>0\right\}=\{$ survival $\}$ by Biggins and Kyprianou (2004), see also Chen (2013+).
- W_{n} is a nonnegative martingale which converges to 0 a.s. [Biggins (1976), Lyons (1997)] ; What's the Seneta-Heyde norming for W_{n} ? i.e. find constants c_{n} such that $\frac{W_{n}}{c_{n}}$ converges.
- In H. and Shi (2009), we showed that $c_{n} \asymp \frac{1}{\sqrt{n}}$.

Aidékon and Shi (2014)' theorem

Under \mathbb{P}^{*},

$$
\sqrt{n} W_{n} \xrightarrow{(p)} \sqrt{\frac{2}{\pi \sigma^{2}}} D_{\infty} .
$$

Moreover

$$
\limsup _{n \rightarrow \infty} \sqrt{n} W_{n}=\infty, \quad \mathbb{P}^{*} \text {-a.s. }
$$

Remark : Why the above limsup $=\infty$? Use the inequality

$$
\sqrt{n} W_{n} \geq e^{-\left(\mathcal{M}_{n}-\frac{1}{2} \log n\right)}
$$

The upper limits on W_{n}

Proposition 3

For any function $f \uparrow \infty, \mathbb{P}^{*}$-almost surely,

$$
\limsup _{n \rightarrow \infty} \frac{\sqrt{n} W_{n}}{f(n)}=\left\{\begin{array} { l }
{ 0 } \\
{ \infty }
\end{array} \Longleftrightarrow \int ^ { \infty } \frac { d t } { t f (t) } \left\{\begin{array}{l}
<\infty \\
=\infty
\end{array}\right.\right.
$$

Proofs of Theorem 1 and Proposition 3

Short version :

Read carefully Aïdékon and Shi (2014).

Proofs of Theorem 1 and Proposition 3

Long version :

(1) By the elementary inequality: $W_{n} \geq e^{-\mathcal{M}_{n}}$, it is enough to prove the convergence part of the integral test for W_{n} and the divergence part for \mathcal{M}_{n};
(2) Find a maximal inequality for $\mathbb{P}\left(\max _{n \leq k \leq 2 n} W_{k}>\lambda\right)$ [for the convergence part on W_{n}, Proposition 3];
(3) Use the second moment method for $\mathbb{P}\left(\min _{n \leq k \leq 2 n} \mathcal{M}_{k}<\lambda\right)$ [for the divergence part on \mathcal{M}_{n}, Theorem 1].

Estimate $\mathbb{P}\left(\min _{n \leq k \leq m} \mathcal{M}_{k}<\lambda\right)$: Proof of the divergence part in Theorem 1

Lemma (Aïdékon and Shi)

There exist some $K>1, c(K)>0$ such that for all n,

$$
\mathbb{P}\left(\frac{1}{2} \log n \leq \min _{n \leq k \leq 2 n} \mathcal{M}_{k} \leq \frac{1}{2} \log n+K\right) \geq c(K)
$$

Define

$$
\begin{aligned}
A(n, \lambda):= & \left\{\frac{1}{2} \log n-\lambda \leq \min _{n \leq k \leq 2 n} \mathcal{M}_{k} \leq \frac{1}{2} \log n-\lambda+K\right\} \\
& \cap\{\text { some truncations }\} .
\end{aligned}
$$

A modified version of A\&S' lemma

Lemma (Essentially contained in A\&S.)

There exists some constant $c>0$ such that for $0 \leq \lambda \leq \frac{1}{3} \log n$,

$$
c e^{-\lambda} \leq \mathbb{P}(A(n, \lambda)) \leq \frac{1}{c} e^{-\lambda} .
$$

Proof: The upper bound by computing the expectation of some quantity (by many-to-one formula) ; the lower bound follows from the second moment computations exactly as in A\&S.

Proof of the divergence part in Theorem 1: The divergence part for \mathcal{M}_{n}

Lemma (Asymptotic independence)

There exists some constant $C>0$ such that for any
$n \geq 2,0 \leq \lambda \leq \frac{1}{3} \log n$ and $m \geq 4 n, 0 \leq \mu \leq \frac{1}{3} \log m$,

$$
\mathbb{P}(A(n, \lambda) \cap A(m, \mu)) \leq C e^{-\lambda-\mu}+C e^{-\mu} \frac{\log n}{\sqrt{n}} .
$$

Proof of Lemma. Notice that $A(n, \lambda) \cap A(m, \mu)$ is already a form close to a second moment. Again we use the computations similar to that in Aïdékon and Shi (2014).
Proof of Theorem 1: the divergence part. Using the above asymptotic independence and the Borel-Cantelli lemma.

Last section : the upper limits of \mathcal{M}_{n}

Recalling

$$
\lim \sup \frac{1}{\log \log \log n}\left(\mathcal{M}_{n}-\frac{3}{2} \log n\right)=1, \quad \mathbb{P}^{*}-\text { a.s. }
$$

Question: Why $\log \log \log n ?$

Proof of Theorem 2 : $\lim \sup \frac{1}{\log \log \log n}\left(\mathcal{M}_{n}-\frac{3}{2} \log n\right)=1$

Let

$$
L_{\lambda}:=\left\{u: \tau_{\lambda}(u)=|u|\right\}
$$

where $\tau_{\lambda}(u):=\inf \left\{0 \leq j \leq|u|: V\left(u_{j}\right) \geq \lambda\right\}$. Nerman (1981) [the non-lattice case] and Gatzouras (2000) [the lattice case] say :

Proof of Theorem $2: \lim \sup \frac{1}{\log \log \log n}\left(\mathcal{M}_{n}-\frac{3}{2} \log n\right)=1$

The strategy to make $\mathcal{M}_{n}>\frac{3}{2} \log n+\lambda$ is that every particle in L_{λ} (there are λe^{λ} particles), evolves normally up to the generation n; hence

$$
\mathbb{P}^{*}\left(\mathcal{M}_{n}>\frac{3}{2} \log n+\lambda, \text { good event }\right) \approx \exp \left(-c \lambda e^{\lambda}\right)
$$

A curiosity on the moderate deviations

Moderate deviation of \mathcal{M}_{n}

$$
\mathbb{P}^{*}\left(\mathcal{M}_{n}>\frac{3}{2} \log n+\lambda\right)
$$

for $1 \ll \lambda \ll \log n$.

Multiplicative cascade

Liu (2000)

There is a unique, up to a multiplicative constant, nonnegative nontrivial solution of the cascade equation :

$$
D \stackrel{(\mathrm{~d})}{=} \sum_{i=1}^{\nu} e^{-X_{i}} D^{(i)}
$$

where $\left(D^{(i)}\right)_{i \geq 1}$ are i.i.d. copies of D, independent of $\left(X_{i}\right)$ and ν.

Multiplicative cascade

Liu (2001)

Let D_{∞} be a solution. Suppose that $\mathbb{P}(\nu=0)=0$ and $\mathbb{P}(\nu=1) \in(0,1)$. He proved that

$$
\mathbb{E}\left[D_{\infty}^{-a}\right]<\infty \Longleftrightarrow a<\gamma
$$

for some positive constant γ.

Remark
 We may take D_{∞} as the almost sure limit of the so-called derivative martingale in the branching random walk

Multiplicative cascade

Liu (2001)

Let D_{∞} be a solution. Suppose that $\mathbb{P}(\nu=0)=0$ and $\mathbb{P}(\nu=1) \in(0,1)$. He proved that

$$
\mathbb{E}\left[D_{\infty}^{-a}\right]<\infty \Longleftrightarrow a<\gamma
$$

for some positive constant γ.

Remark

We may take D_{∞} as the almost sure limit of the so-called derivative martingale in the branching random walk.

Small deviations for D_{∞}

Proposition 4a [in the Schröder case]

Assume $\mathbb{P}(\nu \leq 1) \in(0,1)$. We have

$$
\mathbb{P}\left(0<D_{\infty}<\varepsilon\right) \asymp \varepsilon^{\gamma}
$$

Proposition 4b [in the Böttcher case]

Assume $\mathbb{P}(\nu \geq 2)=1$. There exists some $\beta \in(0,1)$ such that

Small deviations for D_{∞}

Proposition 4a [in the Schröder case]

Assume $\mathbb{P}(\nu \leq 1) \in(0,1)$. We have

$$
\mathbb{P}\left(0<D_{\infty}<\varepsilon\right) \asymp \varepsilon^{\gamma} .
$$

Proposition 4b [in the Böttcher case]
Assume $\mathbb{P}(\nu \geq 2)=1$. There exists some $\beta \in(0,1)$ such that

$$
\log \mathbb{P}\left(D_{\infty}<\varepsilon\right)=-\varepsilon^{-\frac{\beta}{1-\beta}+o(1)}
$$

Moderate deviations for \mathcal{M}_{n}

(in the Schröder case)

We have

$$
\mathbb{P}^{*}\left(\mathcal{M}_{n}>\frac{3}{2} \log n+\lambda\right)=e^{-(\gamma+o(1)) \lambda}, \quad 1 \ll \lambda \ll \log n .
$$

(in the Böttcher case)
We have

Moderate deviations for \mathcal{M}_{n}

(in the Schröder case)

We have

$$
\mathbb{P}^{*}\left(\mathcal{M}_{n}>\frac{3}{2} \log n+\lambda\right)=e^{-(\gamma+o(1)) \lambda}, \quad 1 \ll \lambda \ll \log n
$$

(in the Böttcher case)

We have

$$
\mathbb{P}\left(\mathcal{M}_{n}>\frac{3}{2} \log n+\lambda\right)=e^{-e^{(\beta+o(1)) \lambda}}, \quad 1 \ll \lambda \ll \log n
$$

Questions

- Integral test for the upper limits of \mathcal{M}_{n} ?
- Can we remove the $o(1)$ in the moderate deviation for \mathcal{M}_{n} or in the small deviation for $\mathbb{P}\left(0<D_{\infty}<x\right)$?
- Last minute information : Liu (2016+) is able to get an exact asymptotic for $\mathbb{P}\left(0<D_{\infty}<x\right)$ in the polynomial decay case.

Thank you very much!

