Model

The second order limit : Theorems 1 and 2

Proof of Theorem 1 Proof of Theorem 2

Moderate deviations

On the minimum of a branching random walk

Yueyun Hu

Université Paris 13

12th Workshop on Markov Processes and Related Topics Xuzhou, July 2016

・ロト ・ 同ト ・ ヨト ・ ヨト

2 The second order limit : Theorems 1 and 2

- 3 Proof of Theorem 1
- Proof of Theorem 2
- **5** Moderate deviations

(D) (A) (A) (A)

Model The second order limit : Theorems 1 and 2 Proof of Theorem 1

Proof of Theorem 2 Moderate deviations

Branching random walk on $\mathbb R$

- At the beginning, there is a single particle located at the origin 0.
- Its children, who form the first generation, are positioned according to a certain point process Θ = Σ^ν_{i=1} δ_{X_i} on ℝ.

On the minimum of a branching random walk

Branching random walk on $\mathbb R$

- At the beginning, there is a single particle located at the origin 0.
- Its children, who form the first generation, are positioned according to a certain point process Θ = Σ^ν_{i=1} δ_{X_i} on ℝ.

On the minimum of a branching random walk

Branching random walk on $\mathbb R$

- At the beginning, there is a single particle located at the origin 0.
- Its children, who form the first generation, are positioned according to a certain point process Θ = Σ^ν_{i=1} δ_{X_i} on ℝ.

On the minimum of a branching random walk

Model

 Each particle *i* independently gives birth to new particles that are positioned (with respect to X_i) according to a point process with the same law as Θ; they form the second generation.

On the minimum of a branching random walk

Model

The second order limit : Theorems 1 and 2 Proof of Theorem 1 Proof of Theorem 2 Moderate deviations

Model

• And so on.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

æ

Model

The second order limit : Theorems 1 and 2

- Proof of Theorem 1
- Proof of Theorem 2
- Moderate deviations

Notations

Figure: The particles form a rooted Galton-Watson tree ${\cal T}$ of reproduction law ν

On the minimum of a branching random walk

イロン イヨン イヨン イヨン

æ

- We assume that $\mathbb{E}(\nu) > 1$, so that \mathcal{T} is supercritical.
- Denote by $(V(u))_{|u|=n}$ the positions of particles in the *n*-th generation.
- We are interested in the minimal position :

$$\mathcal{M}_n := \min_{|u|=n} V(u).$$

- Then $\Theta = \sum_{|u|=1} \delta_{\{V(u)\}} \equiv \sum_{i=1}^{\nu} \delta_{\{X_i\}}$, and $\mathcal{M}_1 = \min_{1 \le i \le \nu} X_i$.
- Example : $\nu = 2$, X_1, X_2 are i.i.d.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

- We assume that $\mathbb{E}(\nu) > 1$, so that \mathcal{T} is supercritical.
- Denote by $(V(u))_{|u|=n}$ the positions of particles in the *n*-th generation.
- We are interested in the minimal position :

$$\mathcal{M}_n := \min_{|u|=n} V(u).$$

- Then $\Theta = \sum_{|u|=1} \delta_{\{V(u)\}} \equiv \sum_{i=1}^{\nu} \delta_{\{X_i\}}$, and $\mathcal{M}_1 = \min_{1 \le i \le \nu} X_i$.
- Example : $\nu = 2, X_1, X_2$ are i.i.d.

э

- We assume that $\mathbb{E}(\nu) > 1$, so that \mathcal{T} is supercritical.
- Denote by $(V(u))_{|u|=n}$ the positions of particles in the *n*-th generation.
- We are interested in the minimal position :

$$\mathcal{M}_n := \min_{|u|=n} V(u).$$

- Then $\Theta = \sum_{|u|=1} \delta_{\{V(u)\}} \equiv \sum_{i=1}^{\nu} \delta_{\{X_i\}}$, and $\mathcal{M}_1 = \min_{1 \le i \le \nu} X_i$.
- Example : $\nu = 2, X_1, X_2$ are i.i.d.

- We assume that $\mathbb{E}(\nu) > 1$, so that \mathcal{T} is supercritical.
- Denote by $(V(u))_{|u|=n}$ the positions of particles in the *n*-th generation.
- We are interested in the minimal position :

$$\mathcal{M}_n := \min_{|u|=n} V(u).$$

• Then $\Theta = \sum_{|u|=1} \delta_{\{V(u)\}} \equiv \sum_{i=1}^{\nu} \delta_{\{X_i\}}$, and $\mathcal{M}_1 = \min_{1 \le i \le \nu} X_i$.

• Example :
$$\nu = 2$$
, X_1, X_2 are i.i.d.

(D) (A) (A) (A) (A)

э

Model

The second order limit : Theorems 1 and 2 Proof of Theorem 1 Proof of Theorem 2 Moderate deviations

The first order limit :

Theorem of Kingman, Hammersley, Biggins (1974–1976) :

Conditioned on $\{\mathcal{T}=\infty\}$,

$$\lim_{n\to\infty}\frac{\mathcal{M}_n}{n}=c,\qquad \text{a.s.},$$

where the limit $c \in [-\infty, \infty)$ is some deterministic constant, explicitly defined through a variational formula.

Question :

The second order limit of \mathcal{M}_n ?

・ロト ・回ト ・ヨト ・ヨト

Model

The second order limit : Theorems 1 and 2 Proof of Theorem 1 Proof of Theorem 2 Moderate deviations

The first order limit :

Theorem of Kingman, Hammersley, Biggins (1974–1976) :

Conditioned on $\{\mathcal{T}=\infty\}$,

$$\lim_{n\to\infty}\frac{\mathcal{M}_n}{n}=c,\qquad \text{a.s.},$$

where the limit $c \in [-\infty, \infty)$ is some deterministic constant, explicitly defined through a variational formula.

Question :

The second order limit of \mathcal{M}_n ?

The boundary case :

 $\psi(t) := \log \mathbf{E} \int e^{-tx} \Theta(dx) \equiv \log \mathbf{E} \sum_{i=1}^{\nu} e^{-tX_i}$

Figure: Transformation to the "boundary case" : $\psi(1) = \psi'(1) = 0$

イロト イヨト イヨト イヨト

æ

The boundary case : velocity c = 0

• Almost surely, $\mathcal{M}_n \to +\infty$ [Biggins (1977), Lyons (1997)];

- Roughly $M_n \approx \log n$, See Addario-Berry and Reed (2009), Bramson and Zeitouni (2009) [concentration around its expectation], H. and Shi (2009) [a.s. limit];
- Aïdékon's theorem (2013) : $\mathcal{M}_n - \frac{3}{2} \log n$ converges in law
- Extremal process : Σ_{|u|=n} δ_{V(u)-M_n} converges in law. See Madaule (2014+), a (weaker) discrete analogue of Aïdékon, Berestycki, Brunet and Shi (2013), Arguin, Bovier and Kistler (2013)' theorem on the branching Brownian motion.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

The boundary case : velocity c = 0

- Almost surely, $\mathcal{M}_n \to +\infty$ [Biggins (1977), Lyons (1997)];
- Roughly M_n ≈ log n, See Addario-Berry and Reed (2009), Bramson and Zeitouni (2009) [concentration around its expectation], H. and Shi (2009) [a.s. limit];
- Aïdékon's theorem (2013) : $\mathcal{M}_n - \frac{3}{2} \log n$ converges in law.
- Extremal process : ∑_{|u|=n} δ_{V(u)-M_n} converges in law. See Madaule (2014+), a (weaker) discrete analogue of Aïdékon, Berestycki, Brunet and Shi (2013), Arguin, Bovier and Kistler (2013)' theorem on the branching Brownian motion.

・ロト ・四ト ・ヨト ・ヨト

The boundary case : velocity c = 0

- Almost surely, $\mathcal{M}_n \to +\infty$ [Biggins (1977), Lyons (1997)];
- Roughly M_n ≈ log n, See Addario-Berry and Reed (2009), Bramson and Zeitouni (2009) [concentration around its expectation], H. and Shi (2009) [a.s. limit];

• Aïdékon's theorem (2013) :
$$\mathcal{M}_n - \frac{3}{2} \log n$$
 converges in law.

 Extremal process : ∑_{|u|=n}δ_{V(u)-M_n} converges in law. See Madaule (2014+), a (weaker) discrete analogue of Aïdékon, Berestycki, Brunet and Shi (2013), Arguin, Bovier and Kistler (2013)' theorem on the branching Brownian motion.

The boundary case : velocity c = 0

- Almost surely, $\mathcal{M}_n \to +\infty$ [Biggins (1977), Lyons (1997)];
- Roughly M_n ≈ log n, See Addario-Berry and Reed (2009), Bramson and Zeitouni (2009) [concentration around its expectation], H. and Shi (2009) [a.s. limit];

• Aïdékon's theorem (2013) :
$$\mathcal{M}_n - \frac{3}{2} \log n$$
 converges in law.

 Extremal process : ∑_{|u|=n}δ_{V(u)-M_n} converges in law. See Madaule (2014+), a (weaker) discrete analogue of Aïdékon, Berestycki, Brunet and Shi (2013), Arguin, Bovier and Kistler (2013)' theorem on the branching Brownian motion.

イロト 不得下 イヨト イヨト

Two problems :

• Precise almost sure limits : Law of the iterated logarithm for \mathcal{M}_n .

• Moderate deviations for \mathcal{M}_n .

On the minimum of a branching random walk

イロン イヨン イヨン イヨン

Two problems :

- Precise almost sure limits : Law of the iterated logarithm for \mathcal{M}_n .
- Moderate deviations for \mathcal{M}_n .

イロト イヨト イヨト イヨト

æ

Some a.s. limit theorems

Under some extra integrability conditions, H. & Shi (2009) proved that

$$\limsup_{n \to \infty} \frac{\mathcal{M}_n}{\log n} = \frac{3}{2}, \qquad \mathbb{P}^*\text{-a.s.},$$
$$\liminf_{n \to \infty} \frac{\mathcal{M}_n}{\log n} = \frac{1}{2}, \qquad \mathbb{P}^*\text{-a.s.},$$

where here and in the sequel $\mathbb{P}^*(\cdot) := \mathbb{P}(\cdot | \text{ survival}).$

On the minimum of a branching random walk

イロト 不得下 イヨト イヨト

э

How big and how small can the minimum \mathcal{M}_n be?

Question 1 :

How does \mathcal{M}_n approach its lower limits $\frac{1}{2} \log n$? or How small can \mathcal{M}_n be?

Question 2 :

How does \mathcal{M}_n approach its upper limits $\frac{3}{2} \log n$? or How big can \mathcal{M}_n be?

On the minimum of a branching random walk

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

How big and how small can the minimum \mathcal{M}_n be?

Question 1 :

How does \mathcal{M}_n approach its lower limits $\frac{1}{2} \log n$? or How small can \mathcal{M}_n be?

Question 2 :

How does \mathcal{M}_n approach its upper limits $\frac{3}{2} \log n$? or How big can \mathcal{M}_n be?

Why should the lower limit be $\frac{1}{2} \log n$?

Many-to-one formula (Chauvin, Rouault and Wakolbinger (1991), Lyons, Pemantle and Peres (1995), Biggins and Kyprianou (2004))

There exists a centered real-valued random walk $\{S_n, n \ge 0\}$ such that for any $n \ge 1$ and $f : \mathbb{R}^n \to \mathbb{R}_+$ measurable,

$$\mathbb{E}\Big[\sum_{|u|=n}e^{-V(u)}f(V(u_1),...,V(u_n))\Big]=\mathbb{E}\left[f(S_1,...,S_n)\right].$$

Moreover, $\mathbb{E}(S_1) = 0$ and $Var(S_1) = \psi''(1) =: \sigma^2 > 0$.

Why should the lower limit be $\frac{1}{2} \log n$?

Many-to-one formula (Chauvin, Rouault and Wakolbinger (1991), Lyons, Pemantle and Peres (1995), Biggins and Kyprianou (2004))

There exists a centered real-valued random walk $\{S_n, n \ge 0\}$ such that for any $n \ge 1$ and $f : \mathbb{R}^n \to \mathbb{R}_+$ measurable,

$$\mathbb{E}\Big[\sum_{|u|=n}e^{-V(u)}f(V(u_1),...,V(u_n))\Big]=\mathbb{E}\left[f(S_1,...,S_n)\right].$$

Moreover, $\mathbb{E}(S_1) = 0$ and $Var(S_1) = \psi''(1) =: \sigma^2 > 0$.

(ロ) (同) (三) (三)

Why should the lower limit be $\frac{1}{2} \log n$?

Why $\frac{1}{2} \log n$?

Let $\alpha > 0$. Define $\underline{V} := \inf_{u \in \mathbb{T}} V(u)$ and $\underline{V}(u) := \min_{\emptyset \le v \le u} V(v)$ (with $\inf \emptyset = \infty$). Then for any c > 0,

$$\mathbb{P}\Big(\mathcal{M}_n \leq c \log n, \underline{V} \geq -\alpha\Big)$$

$$\leq \mathbb{E}\Big[\sum_{|u|=n} \mathbb{1}_{\{V(u) \leq c \log n, \underline{V}(u) \geq -\alpha\}}\Big]$$

$$= \mathbb{E}\Big[e^{S_n} \mathbb{1}_{\{S_n \leq c \log n, \min_{1 \leq i \leq n} S_i \geq -\alpha\}}\Big]$$

$$\leq n^c \mathbb{P}\Big(S_n \leq c \log n, \min_{1 \leq i \leq n} S_i \geq -\alpha\Big).$$

臣

Model The second order limit : Theorems 1 and 2 Proof of Theorem 1 Proof of Theorem 2

Moderate deviations

Excursion probability

On the minimum of a branching random walk

イロト イヨト イヨト イヨト

æ

Why should the lower limit be $\frac{1}{2} \log n$?

Why $\frac{1}{2} \log n$?

Then for any fixed $\alpha > 0$,

$$\mathbb{P}\Big(\mathcal{M}_{n} \leq c \log n, \underline{V} \geq -lpha\Big) \leq n^{c-3/2+o(1)}$$

whose sum converges if c < 1/2. The Borel-Cantelli lemma yields the (a.s.) lower limit $\frac{1}{2} \log n$.

Remark

In probability, $\mathcal{M}_n = \frac{3}{2} \log n + O(1)$.

Why should the lower limit be $\frac{1}{2} \log n$?

Why $\frac{1}{2} \log n$?

Then for any fixed $\alpha > 0$,

$$\mathbb{P}\Big(\mathcal{M}_{n} \leq c \log n, \, \underline{V} \geq -lpha\Big) \leq n^{c-3/2+o(1)}$$

whose sum converges if c < 1/2. The Borel-Cantelli lemma yields the (a.s.) lower limit $\frac{1}{2} \log n$.

Remark

In probability,
$$\mathcal{M}_n = \frac{3}{2} \log n + O(1)$$
.

(D) (A) (A) (A)

Question :

Can \mathcal{M}_n be much smaller than its lower limits $\frac{1}{2} \log n$?

Aïdékon and Shi (2014) : Yes

Under some mild conditions,

$$\liminf_{n\to\infty}(\mathcal{M}_n-\frac{1}{2}\log n)=-\infty,\qquad\mathbb{P}^*\text{-a.s.}.$$

Moreover, they asked whether there exists a deterministic sequence (a_n) such that

$$-\infty < \liminf_{n \to \infty} \frac{1}{a_n} (\mathcal{M}_n - \frac{1}{2} \log n) < 0?$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Question :

Can \mathcal{M}_n be much smaller than its lower limits $\frac{1}{2} \log n$?

Aïdékon and Shi (2014) : Yes!

Under some mild conditions,

$$\liminf_{n\to\infty}(\mathcal{M}_n-\frac{1}{2}\log n)=-\infty,\qquad\mathbb{P}^*\text{-a.s.}.$$

Moreover, they asked whether there exists a deterministic sequence (a_n) such that

$$-\infty < \liminf_{n \to \infty} \frac{1}{a_n} (\mathcal{M}_n - \frac{1}{2} \log n) < 0?$$

臣

Response to Question 1 : How small is \mathcal{M}_n ?

Theorem 1 (H. 2015)

For any function $f \uparrow \infty$,

$$\mathbb{P}^*\left(\mathcal{M}_n - \frac{1}{2}\log n < -f(n), \quad \text{ i.o.}\right) = \begin{cases} 0\\ 1 \end{cases}$$
$$\iff \int^{\infty} \frac{dt}{t} e^{-f(t)} \begin{cases} < \infty\\ = \infty \end{cases},$$

where i.o. means infinitely often as the relevant index $n \to \infty$.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Response to Question 1 : How small is \mathcal{M}_n ?

Corollary

We can choose $a_n = \log \log n$ in the question arised by Aïdékon and Shi :

$$\liminf_{n\to\infty}\frac{1}{\log\log n}(\mathcal{M}_n-\frac{1}{2}\log n)=-1,\qquad\mathbb{P}^*\text{-a.s.}$$

On the minimum of a branching random walk

・ロト ・ 同ト ・ ヨト ・ ヨト

Question 2 : How big is \mathcal{M}_n ?

Question 2 :Recalling $\lim_{n \to \infty} \sup_{n \to \infty} \frac{\mathcal{M}_n}{\log n} = \frac{3}{2}, \qquad \mathbb{P}^*\text{-a.s.}$ How can \mathcal{M}_n approach its upper limits $\frac{3}{2} \log n$?

Theorem 2 (H. 2016)

Assume some integrability conditions. We have

$$\limsup_{n \to \infty} \frac{1}{\log \log \log n} (\mathcal{M}_n - \frac{3}{2} \log n) = 1, \qquad \mathbb{P}^*\text{-a.s.}$$

Question 2 : How big is \mathcal{M}_n ?

Question 2 :Recalling $\lim_{n \to \infty} \sup_{n \to \infty} \frac{\mathcal{M}_n}{\log n} = \frac{3}{2}, \qquad \mathbb{P}^*\text{-a.s.}$ How can \mathcal{M}_n approach its upper limits $\frac{3}{2} \log n$?

Theorem 2 (H. 2016)

Assume some integrability conditions. We have

$$\limsup_{n\to\infty}\frac{1}{\log\log\log n}(\mathcal{M}_n-\frac{3}{2}\log n)=1,\qquad \mathbb{P}^*\text{-a.s.}$$

イロト イポト イヨト イヨト

Organization of the rest of the talk :

- Proof of Theorem 1 by introducing the additive martingale.
- **2** Proof of Theorem 2 and the moderate deviations of \mathcal{M}_n .

イロト イポト イヨト イヨト

э

The additive and derivative martingales

Two martingale :

$$W_n := \sum_{|u|=n} e^{-V(u)}, \quad D_n := \sum_{|u|=n} V(u) e^{-V(u)}, \quad n \ge 0.$$

Under the same hypothesis as before

- D_n is a real-valued martingale which converges to $D_{\infty} \ge 0$, a.s., $\{D_{\infty} > 0\} = \{$ survival $\}$ by Biggins and Kyprianou (2004), see also Chen (2013+).
- W_n is a nonnegative martingale which converges to 0 a.s. [Biggins (1976), Lyons (1997)]; What's the Seneta-Heyde norming for W_n? i.e. find constants c_n such that W_n/c_n converges.
- In H. and Shi (2009), we showed that $c_n \approx \frac{1}{\sqrt{n}}$.

The additive and derivative martingales

Two martingale :

$$W_n := \sum_{|u|=n} e^{-V(u)}, \quad D_n := \sum_{|u|=n} V(u) e^{-V(u)}, \quad n \ge 0.$$

Under the same hypothesis as before

- D_n is a real-valued martingale which converges to $D_{\infty} \ge 0$, a.s., $\{D_{\infty} > 0\} = \{$ survival $\}$ by Biggins and Kyprianou (2004), see also Chen (2013+).
- W_n is a nonnegative martingale which converges to 0 a.s. [Biggins (1976), Lyons (1997)]; What's the Seneta-Heyde norming for W_n? i.e. find constants c_n such that W_n/c_n converges.

• In H. and Shi (2009), we showed that $c_n \simeq \frac{1}{\sqrt{n}}$.

The second order limit : Theorems 1 and 2

Proof of Theorem 1 Proof of Theorem 2

Moderate deviations

Aïdékon and Shi (2014)' theorem

Under \mathbb{P}^* ,

$$\sqrt{n}W_n \stackrel{(p)}{\to} \sqrt{\frac{2}{\pi\sigma^2}} D_{\infty}.$$

Moreover

$$\limsup_{n\to\infty}\sqrt{n}\,W_n=\infty,\qquad \mathbb{P}^*\text{-a.s.}$$

Remark : Why the above limsup = ∞ ? Use the inequality

$$\sqrt{n}W_n \geq e^{-(\mathcal{M}_n - \frac{1}{2}\log n)}.$$

(D) (A) (A) (A)

The second order limit : Theorems 1 and 2

Proof of Theorem 1 Proof of Theorem 2 Moderate deviations

The upper limits on W_n

Proposition 3

For any function $f \uparrow \infty$, \mathbb{P}^* -almost surely,

$$\limsup_{n \to \infty} \frac{\sqrt{n} W_n}{f(n)} = \begin{cases} 0 \\ \infty \end{cases} \iff \int^{\infty} \frac{dt}{tf(t)} \begin{cases} < \infty \\ = \infty \end{cases}$$

On the minimum of a branching random walk

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

.

The second order limit : Theorems 1 and 2

Proof of Theorem 1 Proof of Theorem 2

Moderate deviations

Proofs of Theorem 1 and Proposition 3

Short version :

Read carefully Aïdékon and Shi (2014).

On the minimum of a branching random walk

The second order limit : Theorems 1 and 2

Proof of Theorem 1 Proof of Theorem 2

Moderate deviations

Proofs of Theorem 1 and Proposition 3

Long version :

- By the elementary inequality : W_n ≥ e^{-M_n}, it is enough to prove the convergence part of the integral test for W_n and the divergence part for M_n;
- ② Find a maximal inequality for P(max_{n≤k≤2n} W_k > λ) [for the convergence part on W_n, Proposition 3];
- **③** Use the second moment method for $\mathbb{P}(\min_{n \le k \le 2n} \mathcal{M}_k < \lambda)$ [for the divergence part on \mathcal{M}_n , Theorem 1].

イロト イポト イヨト イヨト

Estimate $\mathbb{P}(\min_{n \le k \le m} \mathcal{M}_k < \lambda)$: Proof of the divergence part in Theorem 1

Lemma (Aïdékon and Shi)

There exist some K > 1, c(K) > 0 such that for all n,

$$\mathbb{P}\Big(rac{1}{2}\log n\leq \min_{n\leq k\leq 2n}\mathcal{M}_k\leq rac{1}{2}\log n+\mathcal{K}\Big)\geq c(\mathcal{K}).$$

Define

$$egin{aligned} \mathcal{A}(n,\lambda) &:= & \Big\{ rac{1}{2} \log n - \lambda \leq \min_{n \leq k \leq 2n} \mathcal{M}_k \leq rac{1}{2} \log n - \lambda + \mathcal{K} \Big\} \ & \cap \Big\{ ext{some truncations} \Big\}. \end{aligned}$$

A modified version of A&S' lemma

Lemma (Essentially contained in A&S.)

There exists some constant c > 0 such that for $0 \le \lambda \le \frac{1}{3} \log n$,

$$c e^{-\lambda} \leq \mathbb{P}\Big(A(n,\lambda)\Big) \leq \frac{1}{c}e^{-\lambda}.$$

Proof : The upper bound by computing the expectation of some quantity (by many-to-one formula); the lower bound follows from the second moment computations exactly as in A&S.

(D) (A) (A) (A)

Proof of the divergence part in Theorem 1 : The divergence part for \mathcal{M}_n

Lemma (Asymptotic independence)

There exists some constant C > 0 such that for any $n \ge 2, 0 \le \lambda \le \frac{1}{3} \log n$ and $m \ge 4n, 0 \le \mu \le \frac{1}{3} \log m$,

$$\mathbb{P}\Big(A(n,\lambda)\cap A(m,\mu)\Big)\leq C\,e^{-\lambda-\mu}+C\,e^{-\mu}rac{\log n}{\sqrt{n}}.$$

Proof of Lemma. Notice that $A(n, \lambda) \cap A(m, \mu)$ is already a form close to a second moment. Again we use the computations similar to that in Aïdékon and Shi (2014). Proof of Theorem 1 : the divergence part. Using the above asymptotic independence and the Borel-Cantelli lemma.

(日) (日) (日)

The second order limit : Theorems 1 and 2

Proof of Theorem 1

Proof of Theorem 2 Moderate deviations

Last section : the upper limits of \mathcal{M}_n

Recalling

$$\limsup \frac{1}{\log \log \log n} (\mathcal{M}_n - \frac{3}{2} \log n) = 1, \qquad \mathbb{P}^* - \text{a.s.}$$

Question : Why $\log \log \log n$?

The second order limit : Theorems 1 and 2

Proof of Theorem 1

Proof of Theorem 2

Moderate deviations

Proof of Theorem 2 : $\limsup \frac{1}{\log \log \log n} (\mathcal{M}_n - \frac{3}{2} \log n) = 1$

Let

$$L_{\lambda} := \Big\{ u : \tau_{\lambda}(u) = |u| \Big\},$$

where $\tau_{\lambda}(u) := \inf\{0 \le j \le |u| : V(u_j) \ge \lambda\}$. Nerman (1981) [the non-lattice case] and Gatzouras (2000) [the lattice case] say :

On the minimum of a branching random walk

Proof of Theorem 2 : $\limsup \frac{1}{\log \log \log n} (\mathcal{M}_n - \frac{3}{2} \log n) = 1$

The strategy to make $M_n > \frac{3}{2} \log n + \lambda$ is that every particle in L_{λ} (there are λe^{λ} particles), evolves normally up to the generation n; hence

$$\mathbb{P}^*\left(\mathcal{M}_n > \frac{3}{2}\log n + \lambda, \text{ good event}\right) \approx \exp(-c\lambda e^{\lambda}).$$

The second order limit : Theorems 1 and 2

Proof of Theorem 1

Proof of Theorem 2 Moderate deviations

A curiosity on the moderate deviations

Moderate deviation of \mathcal{M}_n

$$\mathbb{P}^*\Big(\mathcal{M}_n > \frac{3}{2}\log n + \lambda\Big),$$

for $1 \ll \lambda \ll \log n$.

The second order limit : Theorems 1 and 2

Proof of Theorem 1

Proof of Theorem 2

Moderate deviations

Multiplicative cascade

Liu (2000)

There is a unique, up to a multiplicative constant, nonnegative nontrivial solution of the cascade equation :

$$D \stackrel{\text{(d)}}{=} \sum_{i=1}^{\nu} e^{-X_i} D^{(i)},$$

where $(D^{(i)})_{i\geq 1}$ are i.i.d. copies of D, independent of (X_i) and ν .

・ロト ・四ト ・ヨト ・ヨト

э

The second order limit : Theorems 1 and 2

Proof of Theorem 1

Proof of Theorem 2

Moderate deviations

Multiplicative cascade

Liu (2001)

Let D_∞ be a solution. Suppose that $\mathbb{P}(
u=0)=0$ and $\mathbb{P}(
u=1)\in(0,1).$ He proved that

$$\mathbb{E}\Big[D_{\infty}^{-\mathbf{a}}\Big]<\infty \Longleftrightarrow \mathbf{a}<\gamma,$$

for some positive constant γ .

Remark

We may take D_{∞} as the almost sure limit of the so-called derivative martingale in the branching random walk.

The second order limit : Theorems 1 and 2

Proof of Theorem 1

Proof of Theorem 2 Moderate deviations

Multiplicative cascade

Liu (2001)

Let D_∞ be a solution. Suppose that $\mathbb{P}(
u=0)=0$ and $\mathbb{P}(
u=1)\in(0,1).$ He proved that

$$\mathbb{E}\Big[D_{\infty}^{-\mathbf{a}}\Big]<\infty \Longleftrightarrow \mathbf{a}<\gamma,$$

for some positive constant γ .

Remark

We may take D_{∞} as the almost sure limit of the so-called derivative martingale in the branching random walk.

・ロト ・ 同ト ・ ヨト ・ ヨト

Model The second order limit : Theorems 1 and 2 Proof of Theorem 1

> Proof of Theorem 2 Moderate deviations

Small deviations for D_{∞}

Proposition 4a [in the Schröder case]

Assume $\mathbb{P}(
u \leq 1) \in (0,1).$ We have

$$\mathbb{P}\Big(0 < D_{\infty} < \varepsilon\Big) \asymp \varepsilon^{\gamma}.$$

Proposition 4b [in the Böttcher case]

Assume $\mathbb{P}(\nu \geq 2) = 1$. There exists some $\beta \in (0,1)$ such that

$$\log \mathbb{P}\Big(D_{\infty} < \varepsilon\Big) = -\varepsilon^{-\frac{\beta}{1-\beta} + o(1)}.$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Model The second order limit : Theorems 1 and 2

Proof of Theorem 1 Proof of Theorem 2

Moderate deviations

Small deviations for D_∞

Proposition 4a [in the Schröder case]

Assume $\mathbb{P}(
u \leq 1) \in (0,1).$ We have

$$\mathbb{P}\Big(0 < D_{\infty} < \varepsilon\Big) \asymp \varepsilon^{\gamma}.$$

Proposition 4b [in the Böttcher case]

Assume $\mathbb{P}(\nu \geq 2) = 1$. There exists some $\beta \in (0,1)$ such that

$$\log \mathbb{P}\Big(D_{\infty} < \varepsilon\Big) = -\varepsilon^{-\frac{\beta}{1-\beta} + o(1)}.$$

The second order limit : Theorems 1 and 2

Proof of Theorem 1

Proof of Theorem 2 Moderate deviations

Moderate deviations for \mathcal{M}_n

(in the Schröder case)

We have

$$\mathbb{P}^*\left(\mathcal{M}_n > \frac{3}{2}\log n + \lambda\right) = e^{-(\gamma + o(1))\lambda}, \quad 1 \ll \lambda \ll \log n.$$

(in the Böttcher case)

We have

$$\mathbb{P}\Big(\mathcal{M}_n > \frac{3}{2}\log n + \lambda\Big) = e^{-e^{(\beta + o(1))\lambda}}, \quad 1 \ll \lambda \ll \log n.$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

The second order limit : Theorems 1 and 2

Proof of Theorem 1 Proof of Theorem 2

Moderate deviations

Moderate deviations for \mathcal{M}_n

(in the Schröder case)

We have

$$\mathbb{P}^*\left(\mathcal{M}_n > \frac{3}{2}\log n + \lambda\right) = e^{-(\gamma + o(1))\lambda}, \quad 1 \ll \lambda \ll \log n.$$

(in the Böttcher case)

We have

$$\mathbb{P}\Big(\mathcal{M}_n > \frac{3}{2}\log n + \lambda\Big) = e^{-e^{(\beta + o(1))\lambda}}, \quad 1 \ll \lambda \ll \log n.$$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

The second order limit : Theorems 1 and 2

Proof of Theorem 1 Proof of Theorem 2

Moderate deviations

Questions

- Integral test for the upper limits of \mathcal{M}_n ?
- Can we remove the o(1) in the moderate deviation for M_n or in the small deviation for P(0 < D_∞ < x)?
- Last minute information : Liu (2016+) is able to get an exact asymptotic for P(0 < D_∞ < x) in the polynomial decay case.

The second order limit : Theorems 1 and 2

Proof of Theorem 1

Proof of Theorem 2

Moderate deviations

Thank you very much !

On the minimum of a branching random walk

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

æ