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Branching random walk on R

At the beginning, there is a single particle located at the origin
0.
Its children, who form the first generation, are positioned
according to a certain point process Θ =

∑ν
i=1 δ{Xi} on R.
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Model

Each particle i independently gives birth to new particles that
are positioned (with respect to Xi ) according to a point process
with the same law as Θ ; they form the second generation.
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And so on.

n

position of particles in generation n
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Notations

u(1) u(2)
· · · u(νu)

u juj generation of u

u0 = root

fu0; u1; :::; ujujg such that

for any i, ui is the ancestor of u at i-th generation

u1

u2

ujuj

V (u) the position of u

Figure: The particles form a rooted Galton-Watson tree T of reproduction law ν
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We assume that E(ν) > 1, so that T is supercritical.
Denote by (V (u))|u|=n the positions of particles in the n-th
generation.
We are interested in the minimal position :

Mn := min
|u|=n

V (u).

Then Θ =
∑
|u|=1 δ{V (u)} ≡

∑ν
i=1 δ{Xi}, and

M1 = min1≤i≤ν Xi .
Example : ν = 2, X1,X2 are i.i.d.

On the minimum of a branching random walk



Model
The second order limit : Theorems 1 and 2

Proof of Theorem 1
Proof of Theorem 2
Moderate deviations

We assume that E(ν) > 1, so that T is supercritical.
Denote by (V (u))|u|=n the positions of particles in the n-th
generation.
We are interested in the minimal position :

Mn := min
|u|=n

V (u).

Then Θ =
∑
|u|=1 δ{V (u)} ≡

∑ν
i=1 δ{Xi}, and

M1 = min1≤i≤ν Xi .
Example : ν = 2, X1,X2 are i.i.d.

On the minimum of a branching random walk



Model
The second order limit : Theorems 1 and 2

Proof of Theorem 1
Proof of Theorem 2
Moderate deviations

We assume that E(ν) > 1, so that T is supercritical.
Denote by (V (u))|u|=n the positions of particles in the n-th
generation.
We are interested in the minimal position :

Mn := min
|u|=n

V (u).

Then Θ =
∑
|u|=1 δ{V (u)} ≡

∑ν
i=1 δ{Xi}, and

M1 = min1≤i≤ν Xi .
Example : ν = 2, X1,X2 are i.i.d.

On the minimum of a branching random walk



Model
The second order limit : Theorems 1 and 2

Proof of Theorem 1
Proof of Theorem 2
Moderate deviations

We assume that E(ν) > 1, so that T is supercritical.
Denote by (V (u))|u|=n the positions of particles in the n-th
generation.
We are interested in the minimal position :

Mn := min
|u|=n

V (u).

Then Θ =
∑
|u|=1 δ{V (u)} ≡

∑ν
i=1 δ{Xi}, and

M1 = min1≤i≤ν Xi .
Example : ν = 2, X1,X2 are i.i.d.

On the minimum of a branching random walk



Model
The second order limit : Theorems 1 and 2

Proof of Theorem 1
Proof of Theorem 2
Moderate deviations

The first order limit :

Theorem of Kingman, Hammersley, Biggins (1974–1976) :

Conditioned on {T =∞},

lim
n→∞

Mn

n
= c , a.s.,

where the limit c ∈ [−∞,∞) is some deterministic constant,
explicitly defined through a variational formula.

Question :
The second order limit ofMn ?
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The boundary case :

0

 (0)

 (t)

t

 (t) := logE
R
e−txΘ(dx) ≡ logE

P
ν

i=1
e−tXi

Linear transformation =)

10

(c > 0) (c = 0)

Figure: Transformation to the "boundary case" : ψ(1) = ψ′(1) = 0
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The boundary case : velocity c = 0

Almost surely,Mn → +∞ [Biggins (1977), Lyons (1997)] ;
RoughlyMn ≈ log n, See Addario-Berry and Reed (2009),
Bramson and Zeitouni (2009) [concentration around its
expectation], H. and Shi (2009) [a.s. limit] ;
Aïdékon’s theorem (2013) :
Mn − 3

2 log n converges in law.
Extremal process :

∑
|u|=n δ{V (u)−Mn} converges in law. See

Madaule (2014+), a (weaker) discrete analogue of Aïdékon,
Berestycki, Brunet and Shi (2013), Arguin, Bovier and Kistler
(2013)’ theorem on the branching Brownian motion.
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Objective

Two problems :
• Precise almost sure limits : Law of the iterated logarithm forMn.

• Moderate deviations forMn.
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Some a.s. limit theorems

Under some extra integrability conditions, H. & Shi (2009) proved
that

lim sup
n→∞

Mn

log n
=

3
2
, P∗-a.s.,

lim inf
n→∞

Mn

log n
=

1
2
, P∗-a.s.,

where here and in the sequel P∗(·) := P(·| survival).
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How big and how small can the minimumMn be ?

Question 1 :

How doesMn approach its lower limits 1
2 log n ? or How small can

Mn be ?

Question 2 :

How doesMn approach its upper limits 3
2 log n ? or How big can

Mn be ?
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Why should the lower limit be 1
2 log n ?

Many-to-one formula (Chauvin, Rouault and Wakolbinger (1991),
Lyons, Pemantle and Peres (1995), Biggins and Kyprianou (2004))

There exists a centered real-valued random walk {Sn, n ≥ 0} such
that for any n ≥ 1 and f : Rn → R+ measurable,

E
[ ∑
|u|=n

e−V (u)f (V (u1), ...,V (un))
]

= E [f (S1, ...,Sn)] .

Moreover, E(S1) = 0 and Var(S1) = ψ
′′

(1) =: σ2 > 0.
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Why should the lower limit be 1
2 log n ?

Why 1
2 log n ?

Let α > 0. Define V := infu∈T V (u) and V (u) := min∅≤v≤u V (v)
(with inf ∅ =∞). Then for any c > 0,

P
(
Mn ≤ c log n, V ≥ −α

)
≤ E

[ ∑
|u|=n

1(V (u)≤c log n,V (u)≥−α)

]
= E

[
eSn1(Sn≤c log n,min1≤i≤n Si≥− α)

]
≤ nc P

(
Sn ≤ c log n, min

1≤i≤n
Si ≥ − α

)
.
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Excursion probability

0

n

−α

c log n

Sn

Sn

Figure: P
(
Sn ≤ c log n,min1≤i≤n Si ≥ − α

)
= n−3/2+o(1).
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Why should the lower limit be 1
2 log n ?

Why 1
2 log n ?

Then for any fixed α > 0,

P
(
Mn ≤ c log n, V ≥ −α

)
≤ nc−3/2+o(1),

whose sum converges if c < 1/2. The Borel-Cantelli lemma yields
the (a.s.) lower limit 1

2 log n.

Remark

In probability,Mn = 3
2 log n + O(1).
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Question :

CanMn be much smaller than its lower limits 1
2 log n ?

Aïdékon and Shi (2014) : Yes !

Under some mild conditions,

lim inf
n→∞

(Mn −
1
2
log n) = −∞, P∗-a.s..

Moreover, they asked whether there exists a deterministic sequence
(an) such that

−∞ < lim inf
n→∞

1
an

(Mn −
1
2
log n) < 0?
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Response to Question 1 : How small isMn ?

Theorem 1 (H. 2015)

For any function f ↑ ∞,

P∗
(
Mn −

1
2
log n < −f (n), i.o.

)
=

{
0
1

⇐⇒
∫ ∞ dt

t
e−f (t)

{
<∞
=∞ ,

where i.o. means infinitely often as the relevant index n→∞.
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Response to Question 1 : How small isMn ?

Corollary
We can choose an = log log n in the question arised by Aïdékon and
Shi :

lim inf
n→∞

1
log log n

(Mn −
1
2
log n) = −1, P∗-a.s.
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Question 2 : How big isMn ?

Question 2 :
Recalling

lim sup
n→∞

Mn

log n
=

3
2
, P∗-a.s.

How canMn approach its upper limits 3
2 log n ?

Theorem 2 (H. 2016)

Assume some integrability conditions. We have

lim sup
n→∞

1
log log log n

(Mn −
3
2
log n) = 1, P∗-a.s.
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Organization of the rest of the talk :

1 Proof of Theorem 1 by introducing the additive martingale.
2 Proof of Theorem 2 and the moderate deviations ofMn.
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The additive and derivative martingales

Two martingale :

Wn :=
∑
|u|=n e

−V (u), Dn :=
∑
|u|=n V (u)e−V (u), n ≥ 0.

Under the same hypothesis as before
Dn is a real-valued martingale which converges to D∞ ≥ 0,
a.s., {D∞ > 0} = {survival} by Biggins and Kyprianou (2004),
see also Chen (2013+).
Wn is a nonnegative martingale which converges to 0 a.s.
[Biggins (1976), Lyons (1997)] ; What’s the Seneta-Heyde
norming for Wn ? i.e. find constants cn such that Wn

cn
converges.
In H. and Shi (2009), we showed that cn � 1√

n
.
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Aïdékon and Shi (2014)’ theorem

Under P∗,
√
nWn

(p)→
√

2
πσ2 D∞.

Moreover
lim sup
n→∞

√
nWn =∞, P∗-a.s.

Remark : Why the above limsup =∞ ? Use the inequality

√
nWn ≥ e−(Mn− 1

2 log n).
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The upper limits on Wn

Proposition 3
For any function f ↑ ∞, P∗-almost surely,

lim sup
n→∞

√
nWn

f (n)
=

{
0
∞ ⇐⇒

∫ ∞ dt

tf (t)

{
<∞
=∞ .
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Proofs of Theorem 1 and Proposition 3

Short version :
Read carefully Aïdékon and Shi (2014).
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Proofs of Theorem 1 and Proposition 3

Long version :
1 By the elementary inequality : Wn ≥ e−Mn , it is enough to

prove the convergence part of the integral test for Wn and the
divergence part forMn ;

2 Find a maximal inequality for P(maxn≤k≤2n Wk > λ) [for the
convergence part on Wn, Proposition 3] ;

3 Use the second moment method for P(minn≤k≤2nMk < λ)
[for the divergence part onMn, Theorem 1].
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Estimate P(minn≤k≤mMk < λ) : Proof of the divergence
part in Theorem 1

Lemma (Aïdékon and Shi)

There exist some K > 1, c(K ) > 0 such that for all n,

P
(1
2
log n ≤ min

n≤k≤2n
Mk ≤

1
2
log n + K

)
≥ c(K ).

Define

A(n, λ) :=
{1
2
log n − λ ≤ min

n≤k≤2n
Mk ≤

1
2
log n − λ+ K

}
∩
{
some truncations

}
.
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A modified version of A&S’ lemma

Lemma (Essentially contained in A&S.)

There exists some constant c > 0 such that for 0 ≤ λ ≤ 1
3 log n,

c e−λ ≤ P
(
A(n, λ)

)
≤ 1

c
e−λ.

Proof : The upper bound by computing the expectation of some
quantity (by many-to-one formula) ; the lower bound follows from
the second moment computations exactly as in A&S.
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Proof of the divergence part in Theorem 1 : The divergence
part forMn

Lemma (Asymptotic independence)

There exists some constant C > 0 such that for any
n ≥ 2, 0 ≤ λ ≤ 1

3 log n and m ≥ 4n, 0 ≤ µ ≤ 1
3 logm,

P
(
A(n, λ) ∩ A(m, µ)

)
≤ C e−λ−µ + C e−µ

log n√
n
.

Proof of Lemma. Notice that A(n, λ) ∩ A(m, µ) is already a form
close to a second moment. Again we use the computations similar
to that in Aïdékon and Shi (2014).
Proof of Theorem 1 : the divergence part. Using the above
asymptotic independence and the Borel-Cantelli lemma.
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Last section : the upper limits ofMn

Recalling

lim sup
1

log log log n
(Mn −

3
2
log n) = 1, P∗ − a.s.

Question : Why log log log n ?
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Proof of Theorem 2 : lim sup 1
log log log n(Mn − 3

2 log n) = 1

Let
Lλ :=

{
u : τλ(u) = |u|

}
,

where τλ(u) := inf{0 ≤ j ≤ |u| : V (uj) ≥ λ}. Nerman (1981) [the
non-lattice case] and Gatzouras (2000) [the lattice case] say :

0

λ

#Lλ ≈ λe
λ

V (u)

generation
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Proof of Theorem 2 : lim sup 1
log log log n(Mn − 3

2 log n) = 1

The strategy to makeMn >
3
2 log n + λ is that every particle in Lλ

(there are λeλ particles), evolves normally up to the generation n ;
hence

P∗
(
Mn >

3
2
log n + λ, good event

)
≈ exp(−cλeλ).
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A curiosity on the moderate deviations

Moderate deviation ofMn

P∗
(
Mn >

3
2
log n + λ

)
,

for 1� λ� log n.
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Multiplicative cascade

Liu (2000)

There is a unique, up to a multiplicative constant, nonnegative
nontrivial solution of the cascade equation :

D
(d)
=

ν∑
i=1

e−Xi D(i),

where (D(i))i≥1 are i.i.d. copies of D, independent of (Xi ) and ν.
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Multiplicative cascade

Liu (2001)

Let D∞ be a solution. Suppose that P(ν = 0) = 0 and
P(ν = 1) ∈ (0, 1). He proved that

E
[
D−a∞

]
<∞⇐⇒ a < γ,

for some positive constant γ.

Remark
We may take D∞ as the almost sure limit of the so-called
derivative martingale in the branching random walk.
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Liu (2001)

Let D∞ be a solution. Suppose that P(ν = 0) = 0 and
P(ν = 1) ∈ (0, 1). He proved that

E
[
D−a∞

]
<∞⇐⇒ a < γ,

for some positive constant γ.

Remark
We may take D∞ as the almost sure limit of the so-called
derivative martingale in the branching random walk.
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Small deviations for D∞

Proposition 4a [in the Schröder case]

Assume P(ν ≤ 1) ∈ (0, 1). We have

P
(
0 < D∞ < ε

)
� εγ .

Proposition 4b [in the Böttcher case]

Assume P(ν ≥ 2) = 1. There exists some β ∈ (0, 1) such that

logP
(
D∞ < ε

)
= −ε−

β
1−β+o(1)

.
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Small deviations for D∞

Proposition 4a [in the Schröder case]

Assume P(ν ≤ 1) ∈ (0, 1). We have

P
(
0 < D∞ < ε

)
� εγ .

Proposition 4b [in the Böttcher case]

Assume P(ν ≥ 2) = 1. There exists some β ∈ (0, 1) such that

logP
(
D∞ < ε

)
= −ε−

β
1−β+o(1)

.
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Moderate deviations forMn

(in the Schröder case)

We have

P∗
(
Mn >

3
2
log n + λ

)
= e−(γ+o(1))λ, 1� λ� log n.

(in the Böttcher case)

We have

P
(
Mn >

3
2
log n + λ

)
= e−e

(β+o(1))λ
, 1� λ� log n.
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Moderate deviations forMn

(in the Schröder case)

We have

P∗
(
Mn >

3
2
log n + λ

)
= e−(γ+o(1))λ, 1� λ� log n.

(in the Böttcher case)

We have

P
(
Mn >

3
2
log n + λ

)
= e−e

(β+o(1))λ
, 1� λ� log n.
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Questions
Integral test for the upper limits ofMn ?
Can we remove the o(1) in the moderate deviation forMn or
in the small deviation for P(0 < D∞ < x) ?
Last minute information : Liu (2016+) is able to get an exact
asymptotic for P(0 < D∞ < x) in the polynomial decay case.
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Thank you very much !
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