12th workshop on Markov processes and related topics

Minimum average value-at-risk for finite horizon semi-Markov decision processes

Xianping Guo (with Y.H. HUANG) Sun Yat-Sen University

Email: mcsgxp@mail.sysu.edu.cn

13-17 July 2016, Xuzhou

Outline

- The model of SMDPs
- The AVaR-optimality problem
- Expected-positive-deviation problems
- The existence of $A V a R$-optimal policies
- Algorithm Aspects
- Applied examples

1. The model of SMDPs

$$
\{E,(A(x), x \in E), Q(\cdot, \cdot \mid x, a), c(x, a)\}
$$

- E : State space, endowed with the Borel σ-algebras $\mathcal{B}(E)$.
- $A(x)$: The finite set of available actions at state $x \in E$.
- $Q(d t, d y \mid x, a)$: Semi-Markov kernel depending on the current states x and the taken action $a \in A(x)$. According to the Radon-Nikodym theorem, the Q can be partitioned as

$$
\begin{equation*}
Q(d t, d y \mid x, a)=\int_{d y} F(d t \mid x, a, z) p(d z \mid x, a) \tag{1}
\end{equation*}
$$

- $c(x, a)$: Cost function of states x and actions a

SMDPS: The meaning of the model data above: If the system occupies state x_{0} at the initial time $t_{0} \geq 0$, a controller chooses an action $a_{0} \in A\left(x_{0}\right)$ according to some decision rule. As a consequence of this action choice, two things occur:

First, the system jumps to state $x_{1} \in E$ after a sojourn time $\theta_{1} \in(0, \infty)$ in x_{0}, with the distribution $F\left(\cdot \mid x_{0}, a_{0}, x_{1}\right)$;

Second, costs are continuously accumulated at rate $c\left(x_{0}, a_{0}\right)$ for a period of time θ_{1}.
At time $\left(t_{0}+\theta_{1}\right)$, the controller chooses an action $a_{1} \in A\left(x_{1}\right)$ according to some decision rule, and the same sequence of events occur.

From the evolving of a SMDP, we obtain an admissible history $h_{n}:=\left(t_{0}, x_{0}, a_{0}, \theta_{1}, x_{1}, a_{1}, \ldots, \theta_{n}, x_{n}\right)$. Let $t_{n}:=t_{n-1}+\theta_{n}$.

- Randomized history-dependent policy $\pi: \pi:=\left\{\pi_{n}\right\}$ of stochastic kernels $\left\{\pi_{n}\left(d a \mid h_{n}\right)\right\}$ on A s.t. $\pi_{n}\left(A\left(x_{n}\right) \mid h_{n}\right)=1$
- Markov policy $\pi:=\left\{\pi_{n}\right\}: \pi_{n}(d a \mid t, x)$ depending on (n, t, x)
- stationary policy f : Measurable map $f, f(t, x) \in A(x)$
- Π : The class of all randomized history-dependent policies.
- $\Pi_{R M}$: The class of all randomized Markov policies.
- F : The class of all stationary policies.

2. The AVaR-optimality problem

Given the semi-Markov kernel Q, an initial time-state pair $(t, x) \in[0, \infty) \times E$, and a policy $\pi \in \Pi$, the lonescu Tulcea theorem ensures the a unique probability measure space $\left(P_{(t, x)}^{\pi}, \Omega, \mathcal{F}\right)$ and a process $\left\{T_{n}, X_{n}, A_{n}\right\}$ such that $P_{(t, x)}^{\pi}\left(T_{0}=t, X_{0}=x\right)=1$,
$P_{(t, x)}^{\pi}\left(A_{n} \in d a \mid h_{n}\right)=\pi_{n}\left(d a \mid h_{n}\right)$,
$P_{(t, x)}^{\pi}\left(T_{n+1}-T_{n} \in d t, X_{n+1} \in d y \mid h_{n}, a_{n}\right)=Q\left(d t, d y \mid x_{n}, a_{n}\right)$,
$E_{(t, x)}^{\pi}$: the expectation operator with respect to $P_{(t, x)}^{\pi}$.

Let $T_{\infty}:=\lim _{k \rightarrow \infty} T_{k}$ be the explosive time of the system. Although T_{∞} may be finite, we do not intend to consider the controlled process after the moment T_{∞}. For $t<T_{\infty}$, let

$$
Z(t):=\sum_{n \geq 0} I_{\left\{T_{n} \leq t<T_{n+1}\right\}} X_{n}, U(t):=\sum_{n \geq 0} I_{\left\{T_{n} \leq t<T_{n+1}\right\}} A_{n}
$$

denote the underlying state and action processes, respectively, where I_{D} stands for the indicator function on a set D.

In the following, we consider a T-horizon SMDP (with $T>$ 0). To make the T-horizon SMDP sensible, we need to avoid the possibility of infinitely many jumps during the interval $[0, T]$, and thus the condition below is introduced.

Assumption 1: $P_{(t, x)}^{\pi}\left(\left\{T_{\infty}>T\right\}\right) \equiv 1$.
Assumption 1 above is trivially fulfilled in discrete-time MDPs with $T_{\infty}=\infty$, and also holds under many conditions (Ref., Huang \& Guo, European. J. Oper. Res.,2011; Puterman, John Wiley \& Sons Inc., New York, 1994).
We suppose Assumption 1 is satisfied throughout the paper.

Define the value-at-risk (VaR) of finite horizon total cost at level $\gamma \in(0,1)$ under a policy $\pi \in \Pi$ by

$$
\zeta_{\gamma}^{\pi}(t, x):=\inf \left\{\lambda \mid P_{(t, x)}^{\pi}\left(\int_{t}^{T} c(Z(s), U(s)) d s \leq \lambda\right) \geq \gamma\right\},
$$

which denotes the maximum cost over the time horizon $[t, T]$ that might be incurred with probability at least γ.
$\eta_{\gamma}^{\pi}(t, x)$: The average value-at-risk (AVaR) of finite horizon total cost at level γ under a policy $\pi \in \Pi$ is given

$$
\begin{aligned}
& \eta_{\gamma}^{\pi}(t, x):=\frac{1}{1-\gamma} \int_{\gamma}^{1} \zeta_{s}^{\pi}(t, x) d s \\
& =E_{(t, x)}^{\pi}\left[\int_{t}^{T} c(Z(s), U(s)) d s \mid \int_{t}^{T} c(Z(s), U(s)) d s \geq \zeta_{\gamma}^{\pi}(t, x)\right]
\end{aligned}
$$

Our AVaR minimization problem (Prob-1): minimizing η_{γ}^{π} over $\pi \in \Pi$, that is, we aim to find $\pi^{*} \in \Pi$ such that

$$
\eta_{\gamma}^{\pi^{*}}(t, x)=\inf _{\pi \in \Pi} \eta_{\gamma}^{\pi}(t, x)=: \eta_{\gamma}^{*}(t, x),
$$

which is the value function (or minimum AVaR).
Such a policy π^{*}, when it exists, is called AVaR optimal.
Our goal is to

- prove the existence of an optimal policy,
- present an algorithm for optimal policies, the value function
- give computable examples to show the application.

3. Expected-positive-deviation problems

Lemma 1: Let $\pi \in \Pi$ and $\gamma \in(0,1)$. Then, for every $(t, x) \in[0, T] \times E$, we have:
$\eta_{\gamma}^{\pi}(t, x)=\min _{\lambda}\left\{\lambda+\frac{1}{1-\gamma} E_{(t, x)}^{\pi}\left[\int_{t}^{T} c(Z(s), U(s)) d s-\lambda\right]^{+}\right\}$
and the minimum-point is given by $\lambda^{*}(t, x)=\zeta_{\gamma}^{\pi}(t, x)$.
By Lemma 1, the value function can be rewritten as follows:
$\eta_{\gamma}^{*}(t, x)=\inf _{\lambda}\left\{\lambda+\frac{1}{1-\gamma} \inf _{\pi \in \Pi} E_{(t, x)}^{\pi}\left[\int_{t}^{T} c(Z(s), U(s)) d s-\lambda\right]^{+}\right\}$

Hence, to solve our original problem, we define the expected-positive-deviation (EPD) from a level λ under $\pi \in \Pi$ by

$$
J^{\pi}(t, x, \lambda):=E_{(t, x)}^{\pi}\left[\int_{t}^{T} c(Z(s), U(s)) d s-\lambda\right]^{+}
$$

where, λ can be interpreted as the acceptable cost/loss.
Fixed λ. Our goal now is to minimize $J^{\pi}(\cdot, \cdot, \lambda)$ over $\pi \in \Pi$.
The EPD-minimization problem (Prob-2): An EPD-optimal policy $\pi_{\lambda}^{*} \in \Pi$ (depending on λ) satisfying

$$
J^{\pi_{\lambda}^{*}}(t, x, \lambda)=\inf _{\pi \in \Pi} J^{\pi}(t, x, \lambda)=: J^{*}(t, x, \lambda),
$$

which denotes the value function for the EPD criterion.

To solve Prob-2 depending on the cost level λ, we introduce some new notation.

- λ_{0} : the initial cost level,
- $\lambda_{m+1}:=\lambda_{m}-c\left(x_{m}, a_{m}\right)\left(t_{m+1}-t_{m}\right)$: the cost level at the $(m+1)$ th jump time. (This is because there is a cost $c\left(x_{m}, a_{m}\right)\left(t_{m+1}-t_{m}\right)$ incurred between the two jumps.)

Since the levels $\left\{\lambda_{m}\right\}$ usually affect the behavior of the controller, we imbed them into histories of the form:

$$
\tilde{h}_{n}:=\left(t_{0}, x_{0}, \lambda_{0}, a_{0}, \ldots, t_{n-1}, x_{n-1}, \lambda_{n-1}, a_{n-1}, t_{n}, x_{n}, \lambda_{n}\right)
$$

For the general state space $\widetilde{E}:=[0, \infty) \times E \times(-\infty, \infty)$,

- A randomized history-dependent general policy $\widetilde{\pi}=\left\{\widetilde{\pi}_{n}\right\}$: stochastic kernels $\widetilde{\pi}_{n}$ on A satisfying $\widetilde{\pi}_{n}\left(A\left(x_{n}\right) \mid \widetilde{h}_{n}\right) \equiv 1$.
- $\widetilde{\Pi}$: class of randomized history-dependent general policies
- $\widetilde{\Pi}_{R M}$: class of all randomized general Markov policies
- $\widetilde{\mathbb{F}}$: class of all stationary general policies.

Accordingly, for each $(t, x, \lambda) \in[0, T] \times E \times R$, we define the expected-positive-deviation of finite horizon cost from the level λ under a policy $\tilde{\pi} \in \tilde{\Pi}$ by

$$
V^{\tilde{\pi}}(t, x, \lambda):=E_{(t, x, \lambda)}^{\tilde{\pi}}\left[\int_{t}^{T} c(Z(s), U(s)) d s-\lambda\right]^{+}
$$

Lemma 2. Fix any λ. Then, for each $\tilde{\pi} \in \widetilde{\Pi}$, there exists a λ-depending policy $\pi^{\lambda}=\left\{\pi_{0}^{\lambda}, \pi_{1}^{\lambda}, \ldots\right\} \in \Pi$ such that

$$
J^{\pi^{\lambda}}(t, x, \lambda)=V^{\tilde{\pi}}(t, x, \lambda)
$$

where $\pi_{0}^{\lambda}\left(\cdot \mid t_{0}, x_{0}\right):=\tilde{\pi}_{0}\left(\cdot \mid t_{0}, x_{0}, \lambda\right), \pi_{1}^{\lambda}\left(\cdot \mid t_{0}, x_{0}, a_{0}, t_{1}, x_{1}\right)=$ $\tilde{\pi}_{1}\left(\cdot \mid t_{0}, x_{0}, \lambda, a_{0}, t_{1}, x_{1}, \lambda-c\left(x_{0}, a_{0}\right)\left(t_{1}-t_{0}\right)\right), \ldots \ldots$

Lemma 2 shows that Prob-2 is equivalent the following one Prob-3: Find a so called EPD-optimal policy $\tilde{\pi}^{*} \in \tilde{\Pi}$ such that

$$
V^{\tilde{\pi}^{*}}(t, x, \lambda)=V^{*}(t, x, \lambda)
$$

where

$$
V^{*}(t, x, \lambda)=\inf _{\tilde{\pi} \in \tilde{\Pi}} V^{\tilde{\pi}}(t, x, \lambda)
$$

is also called the value function.

To analyze Prob-3, we introduce some notation.
Let $\mathbb{M}:=\{$ measurable $v \geq 0$ on $[0, T] \times E \times \mathbb{R}\}$.
Define operators H and $H^{\tilde{\varphi}}(\tilde{\varphi}(d a \mid t, x, \lambda))$ as follows:

$$
\begin{aligned}
H^{\tilde{\varphi}} v(t, x, \lambda) & :=\int_{A(x)} \tilde{\varphi}(d a \mid t, x, \lambda) H^{a} v(t, x, \lambda) \\
H v(t, x, \lambda) & :=\inf _{A(x)} H^{a} v(t, x, \lambda)
\end{aligned}
$$

for all $v \in \mathbb{M}$, where, for each $a \in A(x)$,

$$
\begin{aligned}
H^{a} v(t, x, \lambda) & :=(1-Q(T-t, E \mid x, a))(\lambda-c(x, a)(T-t))^{-} \\
& +\int_{E} \int_{0}^{T-t} Q(d s, d y \mid x, a) v(t+s, y, \lambda-c(x, a) s)
\end{aligned}
$$

Moreover, define $V_{-1}^{\tilde{\pi}}(t, x, \lambda):=(0-\lambda)^{+}=\lambda^{-}$, and
$V_{n}^{\tilde{\pi}}(t, x, \lambda):=E_{(t, x, \lambda)}^{\tilde{\pi}}\left[\sum_{m=0}^{n} c\left(X_{m}, A_{m}\right)\left(\left(T-T_{m}\right)^{+} \wedge \Theta_{m+1}\right)-\lambda\right]^{+}$
for every $(t, x, \lambda) \in[0, T] \times E \times \mathbb{R}$ and $n \geq 0$.
Lemma 3. $\lim _{n \rightarrow \infty} V_{n}^{\tilde{n}}=V^{\tilde{\pi}}$.
Hence, we shall calculate $V_{n}^{\tilde{\pi}}$ so as to compute $V^{\tilde{\pi}}$. A basic lemma is now given.

Lemma 4: Suppose Assumption 1 holds. For each $\widetilde{\pi}=$ $\left\{\tilde{\pi}_{0}, \tilde{\pi}_{1}, \ldots\right\} \in \widetilde{\Pi}$, and $n \geq-1$, we have

$$
\begin{aligned}
V_{n+1}^{\tilde{\pi}}(t, x, \lambda) & =\int_{A(x)} \tilde{\pi}_{0}(d a \mid t, x, \lambda) H^{a} V_{n}^{(1) \tilde{\pi}^{(t, t, \lambda, \lambda)}}(t, x, \lambda), \\
V^{\tilde{\pi}}(t, x, \lambda) & =\int_{A(x)} \tilde{\pi}_{0}(d a \mid t, x, \lambda) H^{a} V^{(1) \tilde{\pi}^{(t, x, \lambda, \lambda)}}(t, x, \lambda),
\end{aligned}
$$

where ${ }^{(1)} \tilde{\pi}^{(t, c, \lambda, a)}=\left\{{ }^{(1)} \tilde{\pi}_{0}^{(t, x, \lambda, a)},{ }^{(1)} \tilde{\pi}_{1}^{(t, x, \lambda, a)}, \ldots\right\}$ is a shift-policy defined by

$$
\begin{aligned}
& { }^{(1)} \tilde{\pi}_{k}^{(t, x, \lambda, \lambda)}\left(\cdot \mid t_{1}, x_{1}, \lambda_{1}, a_{1}, \ldots, t_{k+1}, x_{k+1}, \lambda_{k+1}\right) \\
& \quad:=\tilde{\pi}_{k+1}\left(\cdot \mid t, x, \lambda, a, t_{1}, x_{1}, \lambda_{1}, a_{1}, \ldots, t_{k+1}, x_{k+1}, \lambda_{k+1}\right)
\end{aligned}
$$

Assumption 2. $0 \leq c(x, a) \leq \bar{C}$ for all $(x, a) \in K$, and some constant $\bar{C}>0$.

Inspired by the definition of $V^{\tilde{\pi}}$, we denote by \mathbb{M}_{1} the set $\mathbb{M}_{1}:=\left\{v \in \mathbb{M} \mid \max \{0,-\lambda\} \leq v(t, x, \lambda) \leq(\bar{C}(T-t)-\lambda)^{+}\right\}$

Lemma 5: Suppose Assumptions 1 and 2. hold. Then:
(a) $V_{n}^{\tilde{\pi}} \uparrow V^{\tilde{\pi}}$ as $n \rightarrow \infty$, and $V^{\tilde{\pi}} \in \mathbb{M}_{1}$ for each $\tilde{\pi}$.
(b) For any $\tilde{f} \in \widetilde{\mathbb{F}}, V^{\tilde{f}}$ is a minimum solution in \mathbb{M}_{1} to the equation $v=H^{\tilde{f}}$.

Theorem 1 (Solvability of Prob-3). Under Assumptions 1 and 2, the following assertions are true.
(a) For each $(t, x, \lambda) \in[0, T] \times E \times \mathbb{R}$, let

$$
V_{-1}^{*}(t, x, \lambda):=\lambda^{-}, V_{n+1}^{*}(t, x, \lambda):=H V_{n}^{*}(t, x, \lambda), n \geq-1 .
$$

Then, the V_{n}^{*} increase in n, and $\lim _{n \rightarrow \infty} V_{n}^{*}=V^{*} \in \mathbb{M}_{2}$.
(b) V^{*} is a minimum solution in \mathbb{M}_{2} to the optimality equation $v=H v$.
(c) There exists an $\tilde{f} \in \widetilde{\mathbb{F}}$ such that $V^{*}=H^{\tilde{f}} V^{*}$, and such a policy is EPD-optimal for Prob-3.

Theorem 1 proposes a value iteration algorithm for computing the value function V^{*} and an optimal policy for Prob-3, which we discuss in more detail below.

Note that V^{*} is a minimum (rather than the unique) solution in \mathbb{M}_{2} to the optimality equation $v=H v$. To further ensure the uniqueness for the requirement of the policy improvement algorithms, we need the following condition.

Assumption 3. There exist constants $\sigma>0$ and $0<\rho<$ 1 such that

$$
F(\sigma \mid x, a, y) \leq 1-\rho
$$

for all (x, a, y), where $F(\cdot \mid x, a, y)$ is as in (1).

Theorem 2. Under Assumptions 1-3, we have the following statements.
(a) $\lim _{n \rightarrow \infty} \sup _{(t, x, \lambda)}\left|V_{n}^{*}(t, x, \lambda)-V^{*}(t, x, \lambda)\right|=0$
(b) V^{*} is the unique solution in \mathbb{M}_{1} to the equation $v=H v$.
(b) There exists an $\tilde{f} \in \widetilde{\mathbb{F}}$ such that $V^{*}=H^{\tilde{f}} V^{*}$, and such a policy is EPD-optimal for the Prob-3.

Remark 1: Theorems 1 and 2, together with Lemma 2, show that Prob-2 is also solvable.
4. The existence of AVaR-optimal policies

We can now solve the original Prob-1. Let $w(t, x, \lambda):=$ $\lambda+\frac{1}{1-\gamma} V^{*}(t, x, \lambda)$, and consider the problem

$$
\begin{equation*}
\inf _{\lambda \in \mathbb{R}} w(t, x, \lambda)=\inf _{\lambda \in \mathbb{R}}\left[\lambda+\frac{1}{1-\gamma} V^{*}(t, x, \lambda)\right] . \tag{2}
\end{equation*}
$$

Theorem 3. Under Assumptions 1-3, there exists a minimum point λ^{*} (depending on (t, x)) in (2), and the policy $f^{*}(\cdot, \cdot):=\widetilde{f^{*}}\left(\cdot, \cdot, \lambda^{*}(\cdot, \cdot)\right) \in \mathbb{F}$ is AVaR-optimal for Prob-1, where $\widetilde{f^{*}} \in \widetilde{\mathbb{F}}$ is an EPD-optimal policy for Prob-3.

5. Algorithm Aspects

Under Assumptions 1 and 2, the algorithm is stated as follows:
Step 1. Choose $\tilde{f}_{0} \in \widetilde{\mathbb{F}}$ arbitrarily, and set $k=0$;
Step 2. Solve $V^{\tilde{f}_{k}}$ from the equation $v=H^{\tilde{f}_{k}} v$;
Step 3. Obtain \tilde{f}_{k+1} such that $H^{\tilde{f}_{k+1}} V^{\tilde{f}_{k}}=H V^{\tilde{f}_{k}}$;
Step 4. If $\tilde{f}_{k+1}=\tilde{f}_{k}$, then \tilde{f}_{k+1} is EPD-optimal, and go to step 5 ; Else, set $k=k+1$ and go to step 2 ;
Step 5. Find a minimum $\lambda^{*}(t, x)$ of $\lambda+\frac{1}{1-\gamma} V^{\tilde{f}_{k+1}}(t, x, \lambda)$, $f_{k+1}(\cdot, \cdot):=\tilde{f}_{k+1}\left(\cdot, \cdot, \lambda^{*}(\cdot, \cdot)\right)$ is AVaR optimal, and stop.

Value iteration algorithm:

Step 1. Specify an accuracy $\epsilon>0$, and set $n=0$. Let $v_{0}(t, x, \lambda):=\lambda^{-} ;$

Step 2. Compute $v_{n+1}(t, x, \lambda)$ by $v_{n+1}(t, x, \lambda)=H v_{n}(t x, \lambda$
Step 3. If $\left\|v_{n+1}-v_{n}\right\|<\epsilon$, go to Step 4. Otherwise, increment n by 1 and return to Step 2;

Step 4. choose f_{ϵ}^{*} such that $H^{f_{\epsilon}^{*}} V_{n+1}(t, x, \lambda)=H V_{n+1}(t, x, \lambda)$ Step 5. Find the minimum $\lambda^{*}(t, x)$ of $\lambda+\frac{1}{1-\gamma} v_{n+1}(t, x, \lambda)$, and stop.

In the value iteration algorithm, since $(t, x, \lambda) \in[0, T] \times E \times$ \mathbb{R} and $A(x)$ are all uncountable variables, for practical implementation in computers, we assume the state space E and the action set A are partitioned into n_{0} and m_{0} parts with suitable scales, respectively. Moreover, we choose suitable step-lengths of the time and level, say, $\delta_{1}>0$ and $\delta_{2}>0$, respectively.

Theorem 4. Under Assumptions 1-3, the value iteration algorithm has complexity:

$$
O\left(m_{0} n_{0}^{2} N \rho^{-N}\left\lfloor T / \delta_{1}\right\rfloor^{2}\left\lfloor\bar{C} T / \delta_{2}\right\rfloor^{2} \log (\bar{C} T / \epsilon)\right)
$$

with $N:=\lfloor T / \sigma\rfloor+1$.

Monte Carlo Simulation: As shown in [Boda \& Filar, Math. Methods Oper. Res., 63 (2006)] for multi-period loss, Monte Carlo simulation is an elegant algorithm for producing an AVaR optimal control or policy. In the context of finite horizon SMDPs, we can also develop a Monte Carlo simulation algorithm for calculating an AVaR optimal policy.

The details are omitted.

6. Applied examples

- A repaired system with two states, say 1 and 2 .
- $A(1):=\left\{a_{11}, a_{12}\right\}, A(2):=\left\{a_{21}, a_{22}\right\}$
- The system remains at state 1 (under action $a_{1 j}$) for a random period of time uniformly-distributed in the region $\left[0, \mu\left(1, a_{1 j}\right)\right]$, and then transitions to state 2 with probability $p\left(2 \mid 1, a_{1 j}\right)$; The system remains at state 2 (under action $a_{2 j}$) for a random period of time exponential-distributed with parameter $\mu\left(2, a_{2 j}\right)>0$; and then transitions to state 1 with probability $p\left(1 \mid 2, a_{2 j}\right)$.

To conduct the computation, we use the following data:

$\begin{gathered} \text { State } \\ x \end{gathered}$	Action a	Parameter for sojourn time$\mu(x, a)$	Transition probability$p(y \mid x, a)$		Cost rate$c(x, a)$	Horizon T	Confidence level γ
			$y=1$	$y=2$			
1	a_{11}	25	0.9	0.1	2	15	0.95
	a_{12}	20	0.7	0.3	1		
2	a_{21}	0.15	0.6	0.4	6		
	a_{22}	0.10	0.4	0.6	5		

Table 4.1. The data of the model
Under the data, Assumptions 1-3 obviously hold. Therefore, the VI algorithm is valid, and an AVaR-optimal policy exists.

Set $\epsilon=10^{-12}$, and discretize the time interval $[0,15]$ and the cost level interval $[0,100]$ with $\delta_{1}=\delta_{2}=0.05$. Then, we implement Steps 1-3 of the VI algorithm in MATLAB software, and obtain data on the functions V^{*} and $H^{a} V^{*}$ (see Fig. 4.1). To execute Step 4 of the VI algorithm, we shall compare the data $H^{a} V^{*}(t, x, \lambda)$ under admissible actions a for every $(t, x, \lambda) \in[0,15] \times\{1,2\} \times \mathbb{R}$. To be specific, we analyze the data of $H^{a} V^{*}(0, x, \lambda), H^{a} V^{*}(2.5, x, \lambda), H^{a} V^{*}(5, x, \lambda)$, and $H^{a} V^{*}(10, x, \lambda)$ as examples, which are shown in Fig. 4.1 below.

Fig. 4.1 The function $H^{a} V^{*}(t, x, \lambda)$
Comparing the data $H^{a} V^{*}(t, x, \lambda)$ under admissible actions a for every $(t, x, \lambda) \in[0,15] \times\{1,2\} \times \mathbb{R}$, one may obtain an optimal policy \tilde{f}^{*} for the Prob-3. For example, in the light of
Fig. 4.1, we can define \tilde{f}^{*} by
$\tilde{f}^{*}(0,1, \lambda)=\left\{\begin{array}{l}a_{12}, \lambda<26.4 \\ a_{11}, \lambda \geq 26.4\end{array} \quad \tilde{f}^{*}(0,2, \lambda)=\left\{\begin{array}{l}a_{21}, \lambda<52.3 \\ a_{22}, \lambda \geq 52.3\end{array}\right.\right.$
$\tilde{f}^{*}(2.5,1, \lambda)=\left\{\begin{array}{l}a_{12}, \quad \lambda<22.7 \\ a_{11}, \lambda \geq 22.7\end{array} \quad \tilde{f}^{*}(2.5,2, \lambda)=\left\{\begin{array}{l}a_{21}, \quad \lambda<37.2 \\ a_{22}, \quad \lambda \geq 37.2\end{array}\right.\right.$

$$
\tilde{f}^{*}(2.5,1, \lambda)=\left\{\begin{array}{l}
a_{12}, \lambda<18.65 \\
a_{11}, \lambda \geq 18.65
\end{array} \tilde{f}^{*}(2.5,2, \lambda)= \begin{cases}a_{21}, & \lambda<17.1 \\
a_{22}, & \lambda \geq 17.1\end{cases}\right.
$$

and
$\tilde{f}^{*}(10,1, \lambda)=\left\{\begin{array}{l}a_{12}, \lambda<9.7 \\ a_{11}, \lambda \geq 9.7\end{array} \quad \tilde{f}^{*}(10,2, \lambda)=a_{22}, 0 \leq \lambda \leq 90\right.$.
Now, to obtain an AVaR optimal policies, we seek the minimumpoint $\lambda^{*}(t, x)$ of the function $\lambda \mapsto w(t, x, \lambda)$ with $\gamma=0.95$. Fig
4.2 below gives the graphs of $w(t, x, \lambda)$ with $t=0,2.5,5,10$.

Fig. 4.2 The function $w(t, x, \lambda)$
From Fig. 4.2 above, it is easy to see the minimum-points
$\lambda^{*}(t, x)$ with $t=0,2.5,5,10$ and $x=1,2$, i.e.,

$$
\begin{aligned}
& \lambda^{*}(0,1)=30, \lambda^{*}(0,2)=75, \lambda^{*}(2.5,1)=25, \lambda^{*}(2.5,2)=62.5 \\
& \lambda^{*}(5,1)=20, \lambda^{*}(5,2)=50, \lambda^{*}(10,1)=10, \lambda^{*}(10,2)=25
\end{aligned}
$$

For other $t \in[0,15]$, the minimum-points $\lambda^{*}(t, x)$ can be similarly calculated.

By Theorem 3, the policy $f^{*}(t, x):=\tilde{f}^{*}\left(t, x, \lambda^{*}(t, x)\right)$ is AVaR-optimal. For example,

$$
\begin{aligned}
& f^{*}(0,1)=a_{11}, f^{*}(0,2)=a_{22}, f^{*}(2.5,1)=a_{11}, f^{*}(2.5,2)=a_{22} \\
& f^{*}(5,1)=a_{11}, f^{*}(5,2)=a_{22}, f^{*}(10,1)=a_{11}, f^{*}(10,2)=a_{22}
\end{aligned}
$$

Thank you very much !!!

