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1. The model of SMDPs

{E, (A(x), x ∈ E), Q(·, ·|x, a), c(x, a)}

• E: State space, endowed with the Borel σ–algebras B(E).

• A(x): The finite set of available actions at state x ∈ E.

• Q(dt, dy|x, a): Semi-Markov kernel depending on the cur-

rent states x and the taken action a ∈ A(x). According to

the Radon-Nikodym theorem, the Q can be partitioned as

Q(dt, dy|x, a) =

∫
dy

F (dt|x, a, z)p(dz|x, a) (1)

• c(x, a): Cost function of states x and actions a
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SMDPS: The meaning of the model data above: If the

system occupies state x0 at the initial time t0 ≥ 0, a controller

chooses an action a0 ∈ A(x0) according to some decision rule.

As a consequence of this action choice, two things occur:

First, the system jumps to state x1 ∈ E after a sojourn time

θ1 ∈ (0,∞) in x0, with the distribution F (·|x0, a0, x1);

Second, costs are continuously accumulated at rate c(x0, a0)

for a period of time θ1.

At time (t0 +θ1), the controller chooses an action a1 ∈ A(x1)

according to some decision rule, and the same sequence of

events occur.
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From the evolving of a SMDP, we obtain an admissible history

hn := (t0, x0, a0, θ1, x1, a1, . . . , θn, xn). Let tn := tn−1 + θn.

• Randomized history-dependent policy π: π := {πn} of s-

tochastic kernels {πn(da|hn)} on A s.t. πn(A(xn)|hn) = 1

• Markov policy π := {πn}: πn(da|t, x) depending on (n, t, x)

• stationary policy f : Measurable map f , f (t, x) ∈ A(x)

• Π: The class of all randomized history-dependent policies.

• ΠRM : The class of all randomized Markov policies.

• F : The class of all stationary policies.
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2. The AVaR-optimality problem

Given the semi-Markov kernel Q, an initial time-state pair

(t, x) ∈ [0,∞) × E, and a policy π ∈ Π, the Ionescu Tul-

cea theorem ensures the a unique probability measure space

(P π
(t,x),Ω,F) and a process {Tn, Xn, An} such that

P π
(t,x)(T0 = t,X0 = x) = 1,

P π
(t,x)(An ∈ da|hn) = πn(da|hn),

P π
(t,x)(Tn+1 − Tn ∈ dt,Xn+1 ∈ dy|hn, an) = Q(dt, dy|xn, an),

Eπ
(t,x): the expectation operator with respect to P π

(t,x).
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Let T∞ := limk→∞ Tk be the explosive time of the system.

Although T∞ may be finite, we do not intend to consider the

controlled process after the moment T∞. For t < T∞, let

Z(t) :=
∑
n≥0

I{Tn≤t<Tn+1}Xn, U(t) :=
∑
n≥0

I{Tn≤t<Tn+1}An

denote the underlying state and action processes, respectively,

where ID stands for the indicator function on a set D.

In the following, we consider a T -horizon SMDP (with T >

0). To make the T -horizon SMDP sensible, we need to avoid

the possibility of infinitely many jumps during the interval [0, T ],

and thus the condition below is introduced.
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Assumption 1: P π
(t,x)({T∞ > T}) ≡ 1.

Assumption 1 above is trivially fulfilled in discrete-time MDPs

with T∞ = ∞, and also holds under many conditions (Ref.,

Huang & Guo, European. J. Oper. Res.,2011; Puterman, John

Wiley & Sons Inc., New York, 1994).

We suppose Assumption 1 is satisfied throughout the paper.
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Define the value-at-risk (VaR) of finite horizon total cost at

level γ ∈ (0, 1) under a policy π ∈ Π by

ζπγ (t, x) := inf
{
λ | P π

(t,x)

( ∫ T

t

c(Z(s), U(s))ds ≤ λ
)
≥ γ

}
,

which denotes the maximum cost over the time horizon [t, T ]

that might be incurred with probability at least γ.

ηπγ (t, x): The average value-at-risk (AVaR) of finite horizon

total cost at level γ under a policy π ∈ Π is given

ηπγ (t, x) :=
1

1− γ

∫ 1

γ

ζπs (t, x)ds

= Eπ
(t,x)

[ ∫ T

t

c(Z(s), U(s))ds
∣∣∣ ∫ T

t

c(Z(s), U(s))ds ≥ ζπγ (t, x)
]

8



Our AVaR minimization problem (Prob-1): minimizing ηπγ

over π ∈ Π, that is, we aim to find π∗ ∈ Π such that

ηπ
∗

γ (t, x) = inf
π∈Π

ηπγ (t, x) =: η∗γ(t, x),

which is the value function (or minimum AVaR).

Such a policy π∗, when it exists, is called AVaR optimal.

Our goal is to

• prove the existence of an optimal policy,

• present an algorithm for optimal policies, the value function

• give computable examples to show the application.
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3. Expected-positive-deviation problems

Lemma 1: Let π ∈ Π and γ ∈ (0, 1). Then, for every

(t, x) ∈ [0, T ]× E, we have:

ηπγ (t, x) = min
λ

{
λ+

1

1− γ
Eπ

(t,x)

[ ∫ T

t

c(Z(s), U(s))ds−λ
]+}

and the minimum-point is given by λ∗(t, x) = ζπγ (t, x).

By Lemma 1, the value function can be rewritten as follows:

η∗γ(t, x) = inf
λ

{
λ +

1

1− γ
inf
π∈Π

Eπ
(t,x)

[ ∫ T

t

c(Z(s), U(s))ds− λ
]+}
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Hence, to solve our original problem, we define the expected-

positive-deviation (EPD) from a level λ under π ∈ Π by

Jπ(t, x, λ) := Eπ
(t,x)

[∫ T

t

c(Z(s), U(s))ds− λ
]+

where, λ can be interpreted as the acceptable cost/loss.

Fixed λ. Our goal now is to minimize Jπ(·, ·, λ) over π ∈ Π.

The EPD-minimization problem (Prob-2): An EPD-optimal

policy π∗λ ∈ Π (depending on λ) satisfying

Jπ
∗
λ(t, x, λ) = inf

π∈Π
Jπ(t, x, λ) =: J∗(t, x, λ),

which denotes the value function for the EPD criterion.
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To solve Prob-2 depending on the cost level λ, we introduce

some new notation.

• λ0: the initial cost level,

• λm+1 := λm − c(xm, am)(tm+1 − tm): the cost level at

the (m + 1)th jump time. (This is because there is a cost

c(xm, am)(tm+1 − tm) incurred between the two jumps.)

Since the levels {λm} usually affect the behavior of the con-

troller, we imbed them into histories of the form:

h̃n := (t0, x0, λ0, a0, . . . , tn−1, xn−1, λn−1, an−1, tn, xn, λn).
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For the general state space Ẽ := [0,∞)× E × (−∞,∞),

• A randomized history-dependent general policy π̃ = {π̃n}:
stochastic kernels π̃n on A satisfying π̃n(A(xn) | h̃n) ≡ 1.

• Π̃: class of randomized history-dependent general policies

• Π̃RM : class of all randomized general Markov policies

• F̃: class of all stationary general policies.
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Accordingly, for each (t, x, λ) ∈ [0, T ] × E × R, we define

the expected-positive-deviation of finite horizon cost from the

level λ under a policy π̃ ∈ Π̃ by

V π̃(t, x, λ) := E π̃
(t,x,λ)

[∫ T

t

c(Z(s), U(s))ds− λ
]+

Lemma 2. Fix any λ. Then, for each π̃ ∈ Π̃, there exists a

λ-depending policy πλ = {πλ0 , πλ1 , . . .} ∈ Π such that

Jπ
λ
(t, x, λ) = V π̃(t, x, λ)

where πλ0 (·|t0, x0) := π̃0(·|t0, x0, λ), πλ1 (·|t0, x0, a0, t1, x1) =

π̃1(·|t0, x0, λ, a0, t1, x1, λ− c(x0, a0)(t1 − t0)), . . . . . .
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Lemma 2 shows that Prob-2 is equivalent the following one

Prob-3: Find a so called EPD-optimal policy π̃∗ ∈ Π̃ such

that

V π̃∗(t, x, λ) = V ∗(t, x, λ)

where

V ∗(t, x, λ) = inf
π̃∈Π̃

V π̃(t, x, λ),

is also called the value function.
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To analyze Prob-3, we introduce some notation.

Let M := { measurable v ≥ 0 on [0, T ]× E × R}.
Define operators H and H ϕ̃ (ϕ̃(da|t, x, λ)) as follows:

H ϕ̃v(t, x, λ) :=

∫
A(x)

ϕ̃(da|t, x, λ)Hav(t, x, λ)

Hv(t, x, λ) := inf
A(x)

Hav(t, x, λ)

for all v ∈M, where, for each a ∈ A(x),

Hav(t, x, λ) := (1−Q(T − t, E | x, a))(λ− c(x, a)(T − t))−

+

∫
E

∫ T−t

0

Q(ds, dy|x, a)v(t + s, y, λ− c(x, a)s)
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Moreover, define V π̃
−1(t, x, λ) := (0− λ)+ = λ−, and

V π̃
n (t, x, λ) := E π̃

(t,x,λ)

[ n∑
m=0

c(Xm, Am)((T−Tm)+∧Θm+1)−λ
]+

for every(t, x, λ) ∈ [0, T ]× E × R and n ≥ 0.

Lemma 3. lim
n→∞

V π̃
n = V π̃.

Hence, we shall calculate V π̃
n so as to compute V π̃. A basic

lemma is now given.
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Lemma 4: Suppose Assumption 1 holds. For each π̃ =

{π̃0, π̃1, . . .} ∈ Π̃, and n ≥ −1, we have

V π̃
n+1(t, x, λ) =

∫
A(x)

π̃0(da|t, x, λ)HaV
(1)π̃(t,x,λ,a)

n (t, x, λ),

V π̃(t, x, λ) =

∫
A(x)

π̃0(da|t, x, λ)HaV
(1)π̃(t,x,λ,a)

(t, x, λ),

where (1)π̃(t,x,λ,a) = {(1)π̃
(t,x,λ,a)
0 ,(1) π̃

(t,x,λ,a)
1 , . . .} is a shift-policy

defined by

(1)π̃
(t,x,λ,a)
k (·|t1, x1, λ1, a1, . . . , tk+1, xk+1, λk+1)

:= π̃k+1(·|t, x, λ, a, t1, x1, λ1, a1, . . . , tk+1, xk+1, λk+1)
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Assumption 2. 0 ≤ c(x, a) ≤ C̄ for all (x, a) ∈ K, and

some constant C̄ > 0.

Inspired by the definition of V π̃, we denote by M1 the set

M1 := {v ∈M | max{0,−λ} ≤ v(t, x, λ) ≤ (C̄(T−t)−λ)+}

Lemma 5: Suppose Assumptions 1 and 2. hold. Then:

(a) V π̃
n ↑ V π̃ as n→∞, and V π̃ ∈M1 for each π̃.

(b) For any f̃ ∈ F̃, V f̃ is a minimum solution in M1 to the

equation v = H f̃v.
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Theorem 1 (Solvability of Prob-3). Under Assumptions 1

and 2, the following assertions are true.

(a) For each (t, x, λ) ∈ [0, T ]× E × R, let

V ∗−1(t, x, λ) := λ−, V ∗n+1(t, x, λ) := HV ∗n (t, x, λ), n ≥ −1.

Then, the V ∗n increase in n, and lim
n→∞

V ∗n = V ∗ ∈M2.

(b) V ∗ is a minimum solution in M2 to the optimality equation

v = Hv.

(c) There exists an f̃ ∈ F̃ such that V ∗ = H f̃V ∗, and such a

policy is EPD-optimal for Prob-3.

20



Theorem 1 proposes a value iteration algorithm for computing

the value function V ∗ and an optimal policy for Prob-3, which

we discuss in more detail below.

Note that V ∗ is a minimum (rather than the unique) solution

in M2 to the optimality equation v = Hv. To further ensure

the uniqueness for the requirement of the policy improvement

algorithms, we need the following condition.

Assumption 3. There exist constants σ > 0 and 0 < ρ <

1 such that

F (σ|x, a, y) ≤ 1− ρ

for all (x, a, y), where F (·|x, a, y) is as in (1).
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Theorem 2. Under Assumptions 1-3, we have the following

statements.

(a) lim
n→∞

sup(t,x,λ) |V ∗n (t, x, λ)− V ∗(t, x, λ)| = 0

(b) V ∗ is the unique solution in M1 to the equation v = Hv.

(b) There exists an f̃ ∈ F̃ such that V ∗ = H f̃V ∗, and such a

policy is EPD-optimal for the Prob-3.

Remark 1: Theorems 1 and 2, together with Lemma 2,

show that Prob-2 is also solvable.
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4. The existence of AVaR-optimal policies

We can now solve the original Prob-1. Let w(t, x, λ) :=

λ +
1

1− γ
V ∗(t, x, λ), and consider the problem

inf
λ∈R

w(t, x, λ) = inf
λ∈R

[
λ +

1

1− γ
V ∗(t, x, λ)

]
. (2)

Theorem 3. Under Assumptions 1–3, there exists a min-

imum point λ∗ (depending on (t, x)) in (2), and the policy

f ∗(·, ·) := f̃ ∗(·, ·, λ∗(·, ·)) ∈ F is AVaR-optimal for Prob–1,

where f̃ ∗ ∈ F̃ is an EPD-optimal policy for Prob–3.
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5. Algorithm Aspects

Under Assumptions 1 and 2, the algorithm is stated as follows:

Step 1. Choose f̃0 ∈ F̃ arbitrarily, and set k = 0;

Step 2. Solve V f̃k from the equation v = H f̃kv;

Step 3. Obtain f̃k+1 such that H f̃k+1V f̃k = HV f̃k;

Step 4. If f̃k+1 = f̃k, then f̃k+1 is EPD-optimal, and go to

step 5; Else, set k = k + 1 and go to step 2;

Step 5. Find a minimum λ∗(t, x) of λ+
1

1− γ
V f̃k+1(t, x, λ),

fk+1(·, ·) := f̃k+1(·, ·, λ∗(·, ·)) is AVaR optimal, and stop.
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Value iteration algorithm:

Step 1. Specify an accuracy ε > 0, and set n = 0. Let

v0(t, x, λ) := λ−;

Step 2. Compute vn+1(t, x, λ) by vn+1(t, x, λ) = Hvn(tx, λ

Step 3. If ‖vn+1−vn‖ < ε, go to Step 4. Otherwise, increment

n by 1 and return to Step 2;

Step 4. choose f ∗ε such thatHf∗ε Vn+1(t, x, λ) = HVn+1(t, x, λ)

Step 5. Find the minimum λ∗(t, x) of λ+
1

1− γ
vn+1(t, x, λ),

and stop.
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In the value iteration algorithm, since (t, x, λ) ∈ [0, T ]×E×
R and A(x) are all uncountable variables, for practical imple-

mentation in computers, we assume the state space E and the

action set A are partitioned into n0 and m0 parts with suitable

scales, respectively. Moreover, we choose suitable step-lengths

of the time and level, say, δ1 > 0 and δ2 > 0, respectively.

Theorem 4. Under Assumptions 1–3, the value iteration

algorithm has complexity:

O(m0n
2
0Nρ

−NbT/δ1c2bC̄T/δ2c2 log(C̄T/ε)),

with N := bT/σc + 1.
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Monte Carlo Simulation: As shown in [Boda & Filar,

Math. Methods Oper. Res., 63 (2006)] for multi-period loss,

Monte Carlo simulation is an elegant algorithm for producing

an AVaR optimal control or policy. In the context of finite

horizon SMDPs, we can also develop a Monte Carlo simulation

algorithm for calculating an AVaR optimal policy.

The details are omitted.

27



6. Applied examples

• A repaired system with two states, say 1 and 2.

• A(1) := {a11, a12}, A(2) := {a21, a22}

• The system remains at state 1 (under action a1j) for a

random period of time uniformly-distributed in the region

[0, µ(1, a1j)], and then transitions to state 2 with probabili-

ty p(2|1, a1j); The system remains at state 2 (under action

a2j) for a random period of time exponential-distributed with

parameter µ(2, a2j) > 0; and then transitions to state 1 with

probability p(1|2, a2j).
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To conduct the computation, we use the following data:

State 

x

Action 

a

Parameter for 

sojourn time 

( , )x a 

Transition  probability

( | , )p y x a Cost rate

( , )c x a

Horizon 

T

Confidence

level  
1y  2y  

1

11a 25 0.9 0.1 2 

15 0.95 

12a 20 0.7 0.3 1 

2

21a 0.15 0.6 0.4 6 

22a 0.10 0.4 0.6 5 

Table 4.1. The data of the model

Under the data, Assumptions 1–3 obviously hold. Therefore,

the VI algorithm is valid, and an AVaR-optimal policy exists.
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Set ε = 10−12, and discretize the time interval [0, 15] and

the cost level interval [0, 100] with δ1 = δ2 = 0.05. Then,

we implement Steps 1-3 of the VI algorithm in MATLAB soft-

ware, and obtain data on the functions V ∗ and HaV ∗ (see Fig.

4.1). To execute Step 4 of the VI algorithm, we shall com-

pare the data HaV ∗(t, x, λ) under admissible actions a for ev-

ery (t, x, λ) ∈ [0, 15]× {1, 2} × R. To be specific, we analyze

the data of HaV ∗(0, x, λ), HaV ∗(2.5, x, λ), HaV ∗(5, x, λ), and

HaV ∗(10, x, λ) as examples, which are shown in Fig. 4.1 below.
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Fig. 4.1 The function HaV ∗(t, x, λ)

Comparing the data HaV ∗(t, x, λ) under admissible actions

a for every (t, x, λ) ∈ [0, 15]× {1, 2} × R, one may obtain an

optimal policy f̃ ∗ for the Prob-3. For example, in the light of

Fig. 4.1, we can define f̃ ∗ by

f̃ ∗(0, 1, λ) =

{
a12, λ < 26.4
a11, λ ≥ 26.4

f̃ ∗(0, 2, λ) =

{
a21, λ < 52.3
a22, λ ≥ 52.3

f̃ ∗(2.5, 1, λ) =

{
a12, λ < 22.7
a11, λ ≥ 22.7

f̃ ∗(2.5, 2, λ) =

{
a21, λ < 37.2
a22, λ ≥ 37.2
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f̃ ∗(2.5, 1, λ) =

{
a12, λ < 18.65
a11, λ ≥ 18.65

f̃ ∗(2.5, 2, λ) =

{
a21, λ < 17.1
a22, λ ≥ 17.1

and

f̃ ∗(10, 1, λ) =

{
a12, λ < 9.7
a11, λ ≥ 9.7

f̃ ∗(10, 2, λ) = a22, 0 ≤ λ ≤ 90.

Now, to obtain an AVaR optimal policies, we seek the minimum-

point λ∗(t, x) of the function λ 7→ w(t, x, λ) with γ = 0.95. Fig

4.2 below gives the graphs of w(t, x, λ) with t = 0, 2.5, 5, 10.
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Fig. 4.2 The function w(t, x, λ)

From Fig. 4.2 above, it is easy to see the minimum-points
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λ∗(t, x) with t = 0, 2.5, 5, 10 and x = 1, 2, i.e.,

λ∗(0, 1) = 30, λ∗(0, 2) = 75, λ∗(2.5, 1) = 25, λ∗(2.5, 2) = 62.5,

λ∗(5, 1) = 20, λ∗(5, 2) = 50, λ∗(10, 1) = 10, λ∗(10, 2) = 25.

For other t ∈ [0, 15], the minimum-points λ∗(t, x) can be simi-

larly calculated.

By Theorem 3, the policy f ∗(t, x) := f̃ ∗(t, x, λ∗(t, x)) is

AVaR-optimal. For example,

f ∗(0, 1) = a11, f
∗(0, 2) = a22, f

∗(2.5, 1) = a11, f
∗(2.5, 2) = a22,

f ∗(5, 1) = a11, f
∗(5, 2) = a22, f

∗(10, 1) = a11, f
∗(10, 2) = a22.
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Thank you very much !!!


