Stationary Measures for Stochastic Lotka-Volterra Systems with Application to Turbulent Convection

Zhao Dong

Academy of Mathematics and Systems Science Chinese Academy of Sciences, Beijing

The 12th Workshop on Markov Processes and Related Topics Jiangsu Normal University July 13-17, 2016

joint works with Lifeng Chen, Jifa Jiang, Lei Niu and Jianliang Zhai

Outline

2 Stochastic Decomposition Formula

The Complete Classification for 3-Dim Stochastic L-V System
 The Classification via Stationary Measures
 Ergodic Properties of Stochastic L-V System

Outline

2 Stochastic Decomposition Formula

The Complete Classification for 3-Dim Stochastic L-V System
 The Classification via Stationary Measures
 Ergodic Properties of Stochastic L-V System

Outline

2 Stochastic Decomposition Formula

The Complete Classification for 3-Dim Stochastic L-V System
 The Classification via Stationary Measures

Ergodic Properties of Stochastic L-V System

Motivation: Mathematical Formulation

• Turbulent convection in a fluid layer heated from below and rotating about a vertical axis was studied by Busse et al, (Science, 1980; Nonl. Dyn., 1980).

• The convection model is formulated by the *Navier-Stokes* equations for the velocity vector \mathbf{v} and the heat equation for the deviation θ of the temperature from the static state:

Motivation: Mathematical Formulation

$$\begin{cases} P^{-1}(\frac{\partial}{\partial t} + \mathbf{v} \cdot \nabla)\mathbf{v} + \frac{\sqrt{T}}{2}\lambda \times \mathbf{v} = -\nabla\pi + \lambda\theta + \nabla^{2}\mathbf{v} \\ \nabla \cdot \mathbf{v} = 0 \\ (\frac{\partial}{\partial t} + \mathbf{v} \cdot \nabla)\theta = R\lambda \cdot \mathbf{v} + \nabla^{2}\theta \end{cases}, \quad (1.1)$$

 $\begin{array}{l} \lambda: \quad \text{The unit vector in the vertical direction;} \\ R = \frac{g\gamma(T_2 - T_1)d^3}{\kappa\nu}: \quad \text{the Rayleigh number;} \\ T = \frac{4\Omega^2 d^4}{\nu^2}: \quad \text{the Taylor number;} \quad P = \frac{\nu}{\kappa}: \quad \text{the Prandtl number.} \\ \bullet \quad \text{Then time-dependent amplitude } C_i(t) \text{ satisfies L-V equation:} \end{array}$

$$M\frac{dC_i}{dt} = C_i \{ (\mathbf{R} - \mathbf{R}_c)\mathbf{K} - \frac{1}{2} \sum_{j=-n}^n T_{ij} \mid C_j \mid^2 \}.$$

Motivation

• It is demonstrated by experiments: when the Rayleigh number R exceeds the critical value R_c depending on the Taylor number T, the static state becomes unstable and convective motions set in.

• Let
$$n = 3$$
, setting $S_i = |C_i|^2$.

Special case — standard symmetric May-Leonard system:

$$\begin{cases} \frac{dS_1}{dt} = S_1(1 - S_1 - \alpha S_2 - \beta S_3), \\ \frac{dS_2}{dt} = S_2(1 - \beta S_1 - S_2 - \alpha S_3), \\ \frac{dS_3}{dt} = S_3(1 - \alpha S_1 - \beta S_2 - S_3), \end{cases}$$
(1.2)

with $\alpha, \beta > 0$.

The possible equilibrium solutions of (1.2) as points: $\diamondsuit O(0,0,0)$; $\heartsuit 3$ single-species solutions of the form (1,0,0); $\clubsuit 3$ two-species solutions of the form $(1-\alpha, 1-\beta, 0)/(1-\alpha\beta)$; \clubsuit the three-species equilibrium $(1,1,1)/(1+\alpha+\beta)$.

The eigenvalues $\lambda_i \ (i=1,2,3)$ of the three-species equilibrium's matrix can be written down

$$\lambda_1 = -1 - (\alpha + \beta), \quad \lambda_{2,3} = -1 + \frac{(\alpha + \beta)}{2} \pm \frac{\sqrt{3}}{2} (\alpha - \beta)i.$$

- This equilibrium is stable if $\alpha + \beta \leq 2$; It is asymptotical stable if and only if $\alpha + \beta < 2$.
- It is unstable if $\alpha + \beta > 2$.

Stability Properties of (1.2) as a Function of α and β

Figure: In the domain (a) the stable equilibrium point is that with all three populations present; in the domain (b) the 3 single-species equilibrium points (1,0,0), (0,1,0) and (0,0,1) are all stable, and which one the system converges to depends on the initial conditions; in the domain (c) there is no asymptotically stable equilibrium point, and periodic solutions, as well.

Periodic Orbit: $\alpha + \beta = 2$

Figure: The global phase portraits for a system (1.2) with $\alpha + \beta = 2$.

Statistical Limit Cycle: $\alpha + \beta > 2$

• Statistical limit cycle occurs ((1.2) with $\alpha + \beta > 2$):

Figure: 2. The development in time of the three roll orientations in the absence of a low level noise source.

Motivation

• Heikes and Busse (Nonl. Dyn., 1980) showed that the randomness occurs for Rayleigh number R close to the critical value for the onset of convection, R_c .

• They expected that the transition from one set of rolls (stationary solutions) to the next becomes nearly periodic, with a transition time which fluctuates statistically about a mean value.

• This stimulates us to exploit that whether stochastic version of cyclically fluctuating solution (limit cycle) exists when $R - R_c$ is perturbed by a white noise ——

$$(R-R_c)+\sigma B_t,$$

where B is a Brownian motion.

Motivation

- Heikes and Busse (Nonl. Dyn., 1980) showed that the randomness occurs for Rayleigh number R close to the critical value for the onset of convection, R_c .
- They expected that the transition from one set of rolls (stationary solutions) to the next becomes nearly periodic, with a transition time which fluctuates statistically about a mean value.
- This stimulates us to exploit that whether stochastic version of cyclically fluctuating solution (limit cycle) exists when $R R_c$ is perturbed by a white noise —

$$(R-R_c)+\sigma B_t,$$

where B is a Brownian motion.

Stochastic Lotka-Volterra Systems

We consider the perturbed system

$$(\mathbf{E}_{\sigma}): dy_{i} = y_{i}(r + \sum_{j=1}^{n} a_{ij}y_{j})dt + \sigma y_{i} \circ dB_{t}, \ i = 1, 2, ..., n$$

on the positive orthant \mathbf{R}^n_+ , where $r = (R - R_c)K$, $a_{ij} = -T_{ij}$ and σ are parameters, \circ denotes Stratonovich stochastic integral.

Stochastic Decomposition Formula

• Auxiliary equation (1-D Stochastic Logistic equation)

$$dg = g(r - rg)dt + \sigma g \circ dB_t.$$
(2.1)

Image: A mathematical states and a mathem

The following theorem play an important role to analysis the ergodic properties of equation $(E_{\sigma}).$

Theorem 1 (Stochastic Decomposition Formula)

Let $\Phi(t, \omega, y)$ and $\Psi(t, y)$ be the solutions of (E_{σ}) and (E_{0}) , respectively. Then

$$\Phi(t,\omega,y) = g(t,\omega,g_0)\Psi(\int_0^t g(s,\omega,g_0)ds,\frac{y}{g_0}), \ y \in \mathbf{R}^n_+, \ g_0 > 0,$$
(2.2)
where $g(t,\omega,g_0)$ is a positive solution of the Logistic equation
(2.1).

• Of course, the same conclusion (2.2) remains true, if we understand the stochastic equation (E_{σ}) and (2.1) in the *ltô sense*. Also, the result given above remain true for all $a_{ij} \in \mathbf{R}$.

• In following, we only pay attention to Stratonovitch stochastic integral, since Stratonovitch stochastic integral has some simplifications in formulas. Also, there is a simple relation between the Itô and Stratonovich cases.

• (Proof) It can be checked by Itô's extension formula.

• Of course, the same conclusion (2.2) remains true, if we understand the stochastic equation (E_{σ}) and (2.1) in the *ltô sense*. Also, the result given above remain true for all $a_{ij} \in \mathbf{R}$.

• In following, we only pay attention to Stratonovitch stochastic integral, since Stratonovitch stochastic integral has some simplifications in formulas. Also, there is a simple relation between the Itô and Stratonovich cases.

• (Proof) It can be checked by Itô's extension formula.

• Of course, the same conclusion (2.2) remains true, if we understand the stochastic equation (E_{σ}) and (2.1) in the *ltô sense*. Also, the result given above remain true for all $a_{ij} \in \mathbf{R}$.

• In following, we only pay attention to Stratonovitch stochastic integral, since Stratonovitch stochastic integral has some simplifications in formulas. Also, there is a simple relation between the Itô and Stratonovich cases.

• (Proof) It can be checked by Itô's extension formula.

Intuition

Stochastic Chaos in Trajectory.

From the Stochastic Decomposition Formula it follows that

$$\Phi(t, \theta_{-t}\omega, y) = g(t, \theta_{-t}\omega, 1)\Psi(\int_0^t g(s, \theta_{-t}\omega, 1)ds, y).$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$u(\omega) \qquad \qquad \text{chaos}$$

Here u is an an *equilibrium* (or *stationary solution*) of RDS generated by (2.1).

• Roughly speaking, that *complexity* of the deterministic case which describes the stochastic case.

The Complete Classification for 3-Dim Stochastic L-V System

In this section we focus on three dimensional stochastic $\mbox{L-V}$ system:

$$dy_1 = y_1(r - a_{11}y_1 - a_{12}y_2 - a_{13}y_3)dt + \sigma y_1 \circ dB_t,$$

$$dy_2 = y_2(r - a_{21}y_1 - a_{22}y_2 - a_{23}y_3)dt + \sigma y_2 \circ dB_t, \quad (3.0)_\sigma$$

$$dy_3 = y_3(r - a_{31}y_1 - a_{32}y_2 - a_{33}y_3)dt + \sigma y_3 \circ dB_t.$$

Here $r > 0, a_{ij} > 0, i, j = 1, 2, 3.$

• We deal with $a_{ij} > 0$ only, in this case the system $(3.0)_{\sigma}$ is called *competitive*. However several results given below remain true for all $a_{ij} \in \mathbf{R}$.

• When $\sigma = 0$, the above system $(3.0)_0$ becomes **deterministic** competitive *L-V* system, which can be classified by the parameters a_{ij} .

Theorem 2 (Chen, Jiang and Niu, SIADS, 2015)

There are exactly 37 dynamical classes in 33 stable nullcline classes for deterministic system $(3.0)_0$.

(1) All trajectories tend to equilibria for classes 1-25, 26 a), 26 c), 27 a) and 28-33;

(2) a center on Σ only occurs in 26 b) and 27 b);

(3) the heteroclinic cycle attracts all orbits except ray-L(P) in class 27 c).

All are depicted on Σ (called carrying simplex—see, Hirsch, 1988) and presented in following Figure.

Introduction Stochastic Decomposition Formula The Complete Classification for 3-Dim Stochastic L-V System

The Classification via Stationary Measures Ergodic Properties of Stochastic L-V System

・ロト ・同ト ・ヨト ・ヨト

- $L(P) := \{\lambda P : \lambda \ge 0\}$ for any $P \in \mathbf{R}^3_+ \setminus \{O\}$;
- \mathcal{E} : the equilibrium set for $(3.0)_0$;
- $\mathcal{A}(Q)$: the attracting domain for an equilibrium $Q \in \mathcal{E}$;
- P(t, y, A): the transition probability function is defined by

 $P(t, y, A) := \mathbb{P}(\Phi(t, \omega, y) \in A).$

Theorem 3

Let $Q \in \mathcal{E} \setminus \{O\}$, then $\mu_Q^{\sigma}(A) = \mathbb{P}(U \in A)$ is a stationary measure of semigroup $\{P_t\}_{t \geq 0}$, where $U(\omega) := u(\omega)Q$. Furthermore, (i) for each $y \in \mathcal{A}(Q)$, $P(t, y, \cdot) \xrightarrow{w} \mu_Q^{\sigma}$ as $t \to \infty$, and

$$\lim_{t \to \infty} P(t, y, A) = \mu_Q^{\sigma}(A), \text{ for any } A \in \mathcal{B}(\mathbf{R}^3_+).$$
(3.1)

Hence, it is **ergodic** when the system is restricted on $\mathcal{A}(Q)$. (ii) $\mu_Q^{\sigma}(\cdot) \xrightarrow{w} \delta_Q(\cdot)$ as $\sigma \to 0$. These results are available for classes 1-25, 26 a), 26 c), 27 a) and 28-33 when we restrict the state space in its stable manifold.

The Classification via Stationary Measures Ergodic Properties of Stochastic L-V System

The Complete Classification via Stationary Measures

Theorem 4

Suppose that $(3.0)_0$ is one of systems in classes 1-25, 26 a), 26 c), 27 a) and 28-33. Then (1) all its stationary measures are the convex combinations of ergodic stationary measures $\{\mu_Q^{\sigma} : Q \in \mathcal{E}\};$ (2) as $\sigma \to 0$, all their limiting measures are the convex combinations of the Dirac measures $\{\delta_Q(\cdot) : Q \in \mathcal{E}\}.$

< □ > < 同 >

Recall the following dynamical classes (red—Periodic case and green—Heterclinic case).

(日) (同) (三) (三)

Theorem 5

Suppose that $(3.0)_0$ is one of systems in classes 26 b) and 27 b). (1) Then there exists a unique **ergodic** nontrivial stationary measure ν_h^{σ} supporting on the cone

$$\Lambda(h): V(y) := y_1^{\mu} y_2^{\nu} y_3^{\omega}(\beta_2 \alpha_3 y_1 + \alpha_1 \alpha_3 y_2 + \beta_1 \beta_2 y_3) \equiv h \in I,$$
 (3.2)

where $\mu = -\beta_2\beta_3/D$, $\nu = -\alpha_1\alpha_3/D$, $\omega = -\alpha_1\beta_2/D$, $D = (\beta_2\beta_3 + \beta_2\alpha_1 + \alpha_1\alpha_3)$, α_i, β_i are expressed by a_{ij} , I is the feasible image interval for V and $\Gamma(h)$ is the closed orbit, with initial data $y_0 \in \Gamma(h)$. (2) ν_h^{σ} converges weakly to the Haar measure on the closed orbit $\Gamma(h)$ as $\sigma \to 0$.

▲ 同 ▶ → 三 ▶

Sketch of Proof

Define
$$\psi: \ \Lambda(h) \setminus \{O\} \to \mathbf{R} \times S$$
 by

$$\psi(y) := \left(\ln \lambda, \ \varphi(z) \right), \ y \in \Lambda(h) \setminus \{O\},$$

where $\varphi(y) = \inf\{t > 0, \ \Psi(t, y_0) = y\}$. Obviously, ψ is a homeomorphism. Set

$$H(t, \omega, H_0) = \ln(g(t, \omega, \lambda))$$
 and $T(t, \omega, T_0) = \varphi(\Psi(\int_0^t g(s, \omega, \lambda) ds, z)).$

By the definition,

$$\psi(\Phi(t,\omega,y)) = \Big(H(t,\omega,H_0), \ T(t,\omega,T_0)\Big).$$

The ergodicity for Φ on $\Lambda(h) \setminus \{O\}$ is equivalent to that (H,T) is ergodic on $\mathbf{R} \times S$.

Sketch of Proof

We can prove that (H,T) is strong Feller(SF) and irreducible(I) on $\mathbf{R}\times S,$ this is

(SF) For any
$$t > 0$$
, and $F \in \mathcal{B}_b(\mathbf{R} \times S)$,

 $(H_0, T_0) \in \mathbf{R} \times S \to \mathbb{E}F(H(t, H_0), T(t, T_0))$ is continuous;

(1) For any $t > 0, \ (H_0, T_0) \in \mathbf{R} \times S$ and open set $A \in \mathcal{B}(\mathbf{R} \times S)$,

$$\mathbb{P}\Big((H(t,H_0),T(t,T_0))\in A\Big)>0.$$

Sketch of Proof

This implies that Φ is ergodic on $\Lambda(h) \setminus \{O\}$. Furthermore, Φ is also ergodic on $\Lambda(h)$ and ν_h^{σ} is an ergodic stationary measure for Φ on \mathbf{R}^3_+ . Finally, ν_h^{σ} converges weakly to the Haar measure on the closed orbit $\Gamma(h)$ as $\sigma \to 0$.

The Complete Classification via Stationary Measures

Theorem 6

Suppose that $(3.0)_0$ is one of systems in classes 26 b) and 27 b). Let $\mu^i := \nu_{h^i}^{\sigma^i}$, $i = 1, 2, \cdots$ satisfy $\sigma^i \to 0$ and $\mu^i \xrightarrow{w} \mu$ as $i \to \infty$. Then (1) if initial data y_0 lies in the interior of the heteroclinic cycle \mathcal{H} , then μ is the Haar measure on $\Gamma(y_0)$ for $y_0 \neq P$, or the Dirac measure $\delta_P(\cdot)$ at P for $y_0 = P$;

(2) if initial data $y_0 \in \mathcal{H}$, then

$$\mu(\{E_1, E_2, E_3\}) = 1, \tag{3.3}$$

where E_1, E_2, E_3 are three equilibria of heteroclinic cycle \mathcal{H} in class 26 b) or class 27 b).

The Complete Classification via Stationary Measures

Theorems 4–6 have given all ergodic stationary measures for all classes except class 27 c).

Theorem 7

Assume that $(3.0)_0$ is the system of class 27 c). Then (i) ν_y^{σ} will support on the three nonnegative axes for any ν_y^{σ} with $y \in \operatorname{Int} \mathbf{R}^3_+ \setminus L(P)$; (ii) Let $\mu^i := \nu_{y_0^i}^{\sigma_i^i}$, $i = 1, 2, \cdots$. If $\mu^i \xrightarrow{w} \mu$ as $\sigma^i \to 0, i \to \infty$. Then

$$\mu(\{R_1, R_2, R_3\}) = 1, \tag{3.4}$$

where R_1, R_2, R_3 are three axial equilibria for the deterministic system.

Conclusion

- Theorem 7 only describes the support of stationary measures.
- \bullet The nonergodicity can be found by the stochastic turbulence. (Why?)
- It is essential reason to reveal that solutions concentrate around R_1, R_2, R_3 very long time (approximately infinite) with probability nearly one.

Conclusion

- Theorem 7 only describes the support of stationary measures.
- The nonergodicity can be found by the stochastic turbulence. (Why?)
- It is essential reason to reveal that solutions concentrate around R_1, R_2, R_3 very long time (approximately infinite) with probability nearly one.

Conclusion

- Theorem 7 only describes the support of stationary measures.
- The nonergodicity can be found by the stochastic turbulence. (Why?)
- It is essential reason to reveal that solutions concentrate around R_1, R_2, R_3 very long time (approximately infinite) with probability nearly one.

▲ We reveal the reason for this special case (WLOG, let $\alpha = 0.8$ and $\beta = 1.3$ for symmetric May-Leonard system). Let

$$A_i = \{y = (y_1, y_2, y_3) \in \Sigma : \|y - R_i\| < \frac{1}{2}\}$$

denote the neighborhood of R_i (i = 1, 2, 3). Then $\Psi(t, y)$ will enter and then depart A_i with infinite times. For $n \ge 2$, define

$$\begin{split} T_{\rm in}^1 &= &\inf\{t\geq 0, \ \Psi(t,y)\in A_1\}, & T_{\rm out}^1 &= &\inf\{t\geq T_{\rm in}^1, \ \Psi(t,y)\notin A_1\}, \\ T_{\rm in}^n &= &\inf\{t\geq T_{\rm out}^{n-1}, \ \Psi(t,y)\in A_1\}, & T_{\rm out}^n &= &\inf\{t\geq T_{\rm in}^n, \ \Psi(t,y)\notin A_1\}, \\ S_{\rm in}^1 &= &\inf\{t\geq T_{\rm out}^1, \ \Psi(t,y)\in A_3\}, & S_{\rm out}^1 &= &\inf\{t\geq S_{\rm in}^1, \ \Psi(t,y)\notin A_3\}, \\ S_{\rm in}^n &= &\inf\{t\geq S_{\rm out}^{n-1}, \ \Psi(t,y)\in A_3\}, & S_{\rm out}^n &= &\inf\{t\geq S_{\rm in}^n, \ \Psi(t,y)\notin A_3\}. \end{split}$$

Similarly, we denote by τ_{in}^n and τ_{out}^n the time entering and exiting A_2 in n-th spiral cycle (see Fig. 5).

э

(日) (同) (三) (三)

Figure: 5. The phase portrait of Ψ

< A >

Deterministic Case

May and Leonard (SIAP, 1975) gave the following estimation:

$$T_{\rm out}^n - T_{\rm in}^n \simeq 0.42 T_{\rm out}^n, \ \tau_{\rm out}^n - \tau_{\rm in}^n \simeq 0.42 \tau_{\rm out}^n, \ S_{\rm out}^n - S_{\rm in}^n \simeq 0.42 S_{\rm out}^n.$$
 (3.5)

Then

$$\frac{1}{T_{\text{out}}^n} \int_0^{T_{\text{out}}^n} \delta_{\Psi(t,y)}(A_1) dt = \frac{1}{T_{\text{out}}^n} \sum_{i=1}^n (T_{\text{out}}^i - T_{\text{in}}^i) \ge \frac{T_{\text{out}}^n - T_{\text{in}}^n}{T_{\text{out}}^n} = 0.42 > 0,$$

$$\frac{1}{S_{\text{out}}^n} \int_0^{S_{\text{out}}} \delta_{\Psi(t,y)}(A_1) dt = \frac{1}{S_{\text{out}}^n} \sum_{i=1}^n (T_{\text{out}}^i - T_{\text{in}}^i) \le \frac{T_{\text{out}}^n}{S_{\text{out}}^n} \le (0.58)^2 \le 0.34.$$

This implies that the limit of occupation measure of $\Psi(t,y)$ is not unique.

Stochastic Case

For stochastic case, similarly, we analyze

$$\left\{\frac{1}{T}\int_0^T I_{A_1}\left(\Psi(\int_0^t g(s,\omega,1)ds,y)\right)dt\right\}_{T>0} \text{ as } T\to\infty.$$

Let $\epsilon = 0.0001$ and $\Omega_T^{\epsilon} = \{\omega : \sup_{t \in [T,\infty)} |\frac{1}{t} \int_0^t g(s,\omega,1)ds - 1| \le \epsilon\}$. Then $\Omega_T^{\epsilon} \uparrow$ with respect to T and $\lim_{T \to \infty} \mathbb{P}(\Omega_T^{\epsilon}) = 1$. Thus for $\eta = 0.9999$,

there exists $T_0 > 0$ such that

$$\mathbb{P}(\Omega_T^{\epsilon}) \ge \eta, \quad \forall T \ge T_0.$$

Image: A = A

Stochastic Case

Define

$$t_1^n(\omega) := \tau(\omega, T_{\text{in}}^n) := \inf\{t > 0 : \int_0^t g(s, \omega, g_0) ds > T_{\text{in}}^n\},$$

$$t_{2}^{n}(\omega) := \tau(\omega, T_{\text{out}}^{n}) := \inf\{t > 0 : \int_{0}^{t} g(s, \omega, g_{0}) ds > T_{\text{out}}^{n}\}.$$

Set $\Omega_{T_0}^n := \{\omega : t_1^n(\omega) \ge T_0\}$. Then $\Omega_{T_0}^n \uparrow$ with respect to n and $\lim_{n \to \infty} \mathbb{P}(\Omega_{T_0}^n) = 1$. Thus there exists an N_0 such that

$$\mathbb{P}(\Omega_{T_0}^n) \ge \eta, \quad \forall n \ge N_0.$$

Stochastic Case

Step 1. Let $T_n = T_{out}^n$. Consider $\frac{1}{T_n} \int_0^{T_n} I_{A_1} \left(\Psi(\int_0^t g(s, \omega, 1) ds, y) \right) dt$. For any n satisfying $n \ge N_0$ and $T_n \ge T_0$, choosing any $\omega \in \Omega_{T_0}^n \cap \Omega_{T_0}^{\epsilon}$, we have

• $(1-\epsilon)T_{\text{out}}^n = (1-\epsilon)T_n \leq \int_0^{T_n} g(s,\omega,1)ds \leq (1+\epsilon)T_n = (1+\epsilon)T_{\text{out}}^n$

•
$$t_2^n(\omega) \ge t_1^n(\omega) \ge T_0$$
,

• $(1-\epsilon)t_1^n(\omega) \leq \int_0^{t_1^n(\omega)} g(s,\omega,1)ds = T_{\mathrm{in}}^n \leq (1+\epsilon)t_1^n(\omega)$,

•
$$(1-\epsilon)t_2^n(\omega) \leq \int_0^{t_2^n(\omega)} g(s,\omega,1)ds = T_{\text{out}}^n \leq (1+\epsilon)t_2^n(\omega).$$

Combining the fact that $T_{\rm out}^n-T_{\rm in}^n\simeq 0.42 T_{\rm out}^n$, we have

$$t_1^n(\omega) \le T_{\text{out}}^n = T_n, \ t_2^n(\omega) \ge \frac{T_{\text{out}}^n}{1+\epsilon} = \frac{T_n}{1+\epsilon}, \ \frac{T_{\text{in}}^n}{1-\epsilon} \ge t_1^n(\omega).$$

The Classification via Stationary Measures Ergodic Properties of Stochastic L-V System

Stochastic Case

Continued. Therefore

$$\frac{1}{T_n} \int_0^{T_n} I_{A_1} \Big(\Psi(\int_0^t g(s,\omega,1)ds,y) \Big) dt$$
$$= \frac{1}{T_n} \sum_{i=1}^\infty \Big(t_2^i(\omega) \bigwedge T_n - t_1^i(\omega) \bigwedge T_n \Big)$$
$$\geq \frac{t_2^n(\omega) \bigwedge S_n - t_1^n(\omega)}{S_n}$$
$$\geq \frac{\frac{T_{\text{out}}^n}{1+\epsilon} - \frac{T_{\text{in}}^n}{1-\epsilon}}{T_{\text{out}}^n} \ge 0.419.$$

Then

$$\underline{\lim}_{n \to \infty} \frac{1}{T_n} \int_0^{T_n} \mathbb{E} I_{A_1} \Big(\Psi \Big(\int_0^t g(s, \omega, 1) ds, y \Big) \Big) dt$$

$$\geq 0.419 \mathbb{P} \big(\Omega_{T_0}^{N_0} \cap \Omega_{T_0}^{\epsilon} \big) \geq 0.419 \times 0.9998 \geq 0.41. \tag{3.6}$$

Stochastic Case

Step 2. Let $S_n = S_{out}^n$. Consider $\frac{1}{S_n} \int_0^{S_n} I_{A_1} \left(\Psi(\int_0^t g(s, \omega, 1), y) \right) dt$. For any n satisfying $n \ge N_0$ and $S_n \ge T_0$, choosing any $\omega \in \Omega_{T_0}^n \cap \Omega_{T_0}^{\epsilon}$, we have

•
$$(1-\epsilon)S_{\text{out}}^n = (1-\epsilon)S_n \le \int_0^{S_n} g(s,\omega,1)ds \le (1+\epsilon)S_n = (1+\epsilon)S_{\text{out}}^n$$

•
$$t_2^{n+1}(\omega) \ge t_1^{n+1}(\omega) \ge t_2^n(\omega) \ge t_1^n(\omega) \ge T_0$$
,

•
$$(1-\epsilon)t_1^i(\omega) \leq \int_0^{t_1^i(\omega)} g(s,\omega,1)ds = T_{in}^i \leq (1+\epsilon)t_1^i(\omega), \quad i=n,n+1,$$

•
$$(1-\epsilon)t_2^i(\omega) \leq \int_0^{t_2^i(\omega)} g(s,\omega,1)ds = T_{\text{out}}^i \leq (1+\epsilon)t_2^i(\omega), \quad i=n,n+1,$$

•
$$T_{\text{in}}^{n+1} \simeq S_{\text{out}}^n$$
, $S_{\text{out}}^n - S_{\text{in}}^n \simeq 0.42 S_{\text{out}}^n$, $S_{\text{in}}^n - T_{\text{out}}^n \simeq 0.42 S_{\text{in}}^n$.

The Classification via Stationary Measures Ergodic Properties of Stochastic L-V System

(日) (同) (三) (三)

э

Stochastic Case

Continued. Hence

• $(1-\epsilon)t_2^n(\omega) \leq T_{\text{out}}^n \simeq 0.58S_{\text{in}}^n \simeq 0.58^2 S_{\text{out}}^n = 0.58^2 S_n \Rightarrow t_2^n(\omega) \leq S_n,$

$$\begin{split} (1-\epsilon)t_1^{n+1}(\omega) &\leq T_{\rm in}^{n+1} \simeq S_{\rm out}^n = S_n \\ &\leq \quad (1+\epsilon)t_1^{n+1}(\omega) \leq \frac{1+\epsilon}{1-\epsilon}T_{\rm in}^{n+1} \simeq 0.58\frac{1+\epsilon}{1-\epsilon}T_{\rm out}^{n+1} \\ &\leq \quad 0.58\frac{(1+\epsilon)^2}{1-\epsilon}t_2^{n+1}(\omega) < t_2^{n+1}(\omega), \end{split}$$

that is,

$$(1-\epsilon)t_1^{n+1}(\omega) \le S_n \le (1+\epsilon)t_1^{n+1}(\omega) < t_2^{n+1}(\omega).$$

The Classification via Stationary Measures Ergodic Properties of Stochastic L-V System

< □ > < 同 > < 三 >

Stochastic Case

Continued. Therefore

$$\begin{aligned} \frac{1}{S_n} \int_0^{S_n} I_{A_1} \Big(\Psi \Big(\int_0^t g(s, \omega, 1) ds, y \Big) \Big) dt \\ &= \frac{1}{S_n} \sum_{i=1}^\infty \Big(t_2^i(\omega) \bigwedge S_n - t_1^i(\omega) \bigwedge S_n \Big) \\ &= \frac{1}{S_n} \Big[\sum_{i=1}^n \Big(t_2^i(\omega) - t_1^i(\omega) \Big) + \Big(S_n - t_1^{n+1}(\omega) \bigwedge S_n \Big) \Big] \\ &\leq \frac{t_2^n(\omega) + S_n - t_1^{n+1}(\omega) \bigwedge S_n}{S_n} \\ &\leq \frac{1}{S_n} \Big(\frac{0.58^2}{1 - \epsilon} S_n + S_n - \frac{S_n}{1 + \epsilon} \Big) \\ &= \frac{0.58^2}{1 - \epsilon} + \frac{\epsilon}{1 + \epsilon} < 0.34. \end{aligned}$$

Stochastic Case

Continued. Then

$$\overline{\lim}_{n\to\infty} \frac{1}{S_n} \int_0^{S_n} \mathbb{E}I_{A_1} \Big(\Psi(\int_0^t g(s,\omega,1)ds,y) \Big) dt$$

$$\leq 0.34 \mathbb{P}(\Omega_{T_0}^{N_0} \cap \Omega_{T_0}^{\epsilon}) + \mathbb{P}\Big((\Omega_{T_0}^{N_0} \cap \Omega_{T_0}^{\epsilon})^c \Big) \leq 0.342.$$
(3.7)

Inequalities (3.6) and (3.7) imply that $\frac{1}{T} \int_0^T \mathbb{E} I_{A_1} \Big(\Psi(\int_0^t g(s, \omega, 1), y) \Big) dt$ does not have unique limit as $T \to \infty$. Equivalently, $\frac{1}{T} \int_0^T \mathbb{E} I_{\Lambda(A_1)} \Big(\Phi(t, \omega, , y) \Big) dt$ does not have unique limit as $T \to \infty$.

(日) (同) (三) (三)

Selected References

- Busse, F.H., Heikes, K.E.: Convection in a rotating layer: a simple case of turbulence. Science 208, 173 - 175 (1980)
- Heikes, K.E., Busse, F.H.: Weakly nonlinear turbulence in a rotating convection layer. Nonlinear Dynamics, Annals of the New York Academy of Sciences 357, 28 - 36 (1980)
- May, R.M., Leonard, W.J.: Nonlinear aspect of competition between three species. SIAM J. Appl. Math. 29(2), 243 – 253 (1975)
- Hirsch, M.W.: Systems of differential equations that are competitive or cooperative. III: Competing species. Nonlinearity 1, 51 - 71 (1988)
- Dong, Z., Peng, X.: Malliavin matrix of degenerate sde and gradient estimate. Electron. J. Probab. 19, 1 - 26 (2014)
- Chen, X., Jiang, J., Niu, L.: On Lotka-Volterra equations with identical minimal intrinsic growth rate. SIAM J. Applied Dynamical Systems 14, 1558 - 1599 (2015)

The Classification via Stationary Measures Ergodic Properties of Stochastic L-V System

Selected References

- Chen, L., Dong, Z, Jiang, J., Niu, L., Zhai, J.: The decompositition formula and stationary measures for stochastic Lotka-Volterra systems with applications to turbulent convection, arXiv:1603.00340v1.
- Chen, L., Dong, Z., Jiang, J., Zhai, J.: On limiting behavior of stationary measures for stochastic evolution systems with small noise intensity. In Preprint

Image: A image: A

Thank you!