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Motivation: Mathematical Formulation

• Turbulent convection in a fluid layer heated from below and
rotating about a vertical axis was studied by Busse et al, (Science,

1980; Nonl. Dyn., 1980).

• The convection model is formulated by the Navier-Stokes
equations for the velocity vector v and the heat equation for the
deviation θ of the temperature from the static state:
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Motivation: Mathematical Formulation

 P−1( ∂∂t + v · ∇)v +
√
T

2 λ× v = −∇π + λθ +∇2v
∇ · v = 0
( ∂∂t + v · ∇)θ = Rλ · v +∇2θ

, (1.1)

λ: The unit vector in the vertical direction;

R = gγ(T2−T1)d3

κν : the Rayleigh number;

T = 4Ω2d4

ν2 : the Taylor number; P = ν
κ : the Prandtl number.

• Then time-dependent amplitude Cj(t) satisfies L-V equation:

M
dCi
dt

= Ci{(R−Rc)K −
1

2

n∑
j=−n

Tij | Cj |2}.
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Motivation

• It is demonstrated by experiments: when the Rayleigh number R

exceeds the critical value Rc depending on the Taylor number T , the

static state becomes unstable and convective motions set in.

• Let n = 3, seting Si = |Ci|2.

Special case — standard symmetric May-Leonard system:
dS1
dt = S1(1− S1 − αS2 − βS3),
dS2
dt = S2(1− βS1 − S2 − αS3),
dS3
dt = S3(1− αS1 − βS2 − S3),

(1.2)

with α, β > 0.
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The possible equilibrium solutions of (1.2) as points: ♦ O(0, 0, 0); ♥ 3
single-species solutions of the form (1, 0, 0); ♣ 3 two-species solutions of
the form (1− α, 1− β, 0)/(1− αβ); ♠ the three-species equilibrium
(1, 1, 1)/(1 + α+ β).

The eigenvalues λi (i = 1, 2, 3) of the three-species equilibrium’s matrix
can be written down

λ1 = −1− (α+ β), λ2,3 = −1 +
(α+ β)

2
±
√

3

2
(α− β)i.

• This equilibrium is stable if α+ β ≤ 2;
It is asymptotical stable if and only if α+ β < 2.

• It is unstable if α+ β > 2.
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Stability Properties of (1.2) as a Function of α and β

Figure: In the domain (a) the stable equilibrium point is that with all three

populations present; in the domain (b) the 3 single-species equilibrium points

(1, 0, 0), (0, 1, 0) and (0, 0, 1) are all stable, and which one the system

converges to depends on the initial conditions; in the domain (c) there is no

asymptotically stable equilibrium point, and periodic solutions, as well.
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Periodic Orbit: α + β = 2

Figure: The global phase portraits for a system (1.2) with α+ β = 2.
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Statistical Limit Cycle: α + β > 2

• Statistical limit cycle occurs ((1.2) with α+ β > 2):

Figure: 2. The development in time of the three roll orientations in the
absence of a low level noise source.
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Motivation

• Heikes and Busse (Nonl. Dyn., 1980) showed that the
randomness occurs for Rayleigh number R close to the critical
value for the onset of convection, Rc.
• They expected that the transition from one set of rolls
(stationary solutions) to the next becomes nearly periodic, with a
transition time which fluctuates statistically about a mean value.
• This stimulates us to exploit that whether stochastic version of
cyclically fluctuating solution (limit cycle) exists when R−Rc is
perturbed by a white noise ——

(R−Rc) + σBt,

where B is a Brownian motion.
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Stochastic Lotka-Volterra Systems

We consider the perturbed system

(Eσ) : dyi = yi(r +

n∑
j=1

aijyj)dt+ σyi ◦ dBt, i = 1, 2, ..., n

on the positive orthant Rn
+, where r = (R−Rc)K, aij = −Tij

and σ are parameters, ◦ denotes Stratonovich stochastic integral.
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Stochastic Decomposition Formula

• Auxiliary equation (1-D Stochastic Logistic equation)

dg = g(r − rg)dt+ σg ◦ dBt. (2.1)

The following theorem play an important role to analysis the ergodic

properties of equation (Eσ).

Theorem 1 (Stochastic Decomposition Formula)

Let Φ(t, ω, y) and Ψ(t, y) be the solutions of (Eσ) and (E0),
respectively. Then

Φ(t, ω, y) = g(t, ω, g0)Ψ(

∫ t

0
g(s, ω, g0)ds,

y

g0
), y ∈ Rn

+, g0 > 0,

(2.2)
where g(t, ω, g0) is a positive solution of the Logistic equation
(2.1).
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• Of course, the same conclusion (2.2) remains true, if we
understand the stochastic equation (Eσ) and (2.1) in the Itô sense.
Also, the result given above remain true for all aij ∈ R.

• In following, we only pay attention to Stratonovitch stochastic
integral, since Stratonovitch stochastic integral has some
simplifications in formulas. Also, there is a simple relation between
the Itô and Stratonovich cases.

• (Proof) It can be checked by Itô’s extension formula.
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Intuition

Stochastic Chaos in Trajectory.

From the Stochastic Decomposition Formula it follows that

Φ(t, θ−tω, y) = g(t, θ−tω, 1)Ψ(

∫ t

0

g(s, θ−tω, 1)ds, y).

↓ ↓

u(ω) chaos

Here u is an an equilibrium (or stationary solution) of RDS generated by
(2.1).

• Roughly speaking, that complexity of the deterministic case which

describes the stochastic case.
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The Complete Classification for 3-Dim Stochastic L-V
System

In this section we focus on three dimensional stochastic L-V
system:

dy1 = y1(r − a11y1 − a12y2 − a13y3)dt+ σy1 ◦ dBt,
dy2 = y2(r − a21y1 − a22y2 − a23y3)dt+ σy2 ◦ dBt, (3.0)σ

dy3 = y3(r − a31y1 − a32y2 − a33y3)dt+ σy3 ◦ dBt.

Here r > 0, aij > 0, i, j = 1, 2, 3.
• We deal with aij > 0 only, in this case the system (3.0)σ is
called competitive. However several results given below remain
true for all aij ∈ R.
• When σ = 0, the above system (3.0)0 becomes deterministic
competitive L-V system, which can be classified by the parameters
aij .
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Theorem 2 (Chen, Jiang and Niu, SIADS, 2015)

There are exactly 37 dynamical classes in 33 stable nullcline classes for
deterministic system (3.0)0.
(1) All trajectories tend to equilibria for classes 1-25, 26 a), 26 c), 27 a)
and 28-33;
(2) a center on Σ only occurs in 26 b) and 27 b);
(3) the heteroclinic cycle attracts all orbits except ray-L(P ) in class 27 c).

All are depicted on Σ (called carrying simplex—see, Hirsch, 1988)
and presented in following Figure.
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1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25

28 29 30 31

32 33

26( )a 26( )b 26( )c

27( )a 27( )b 27( )c

Figure: *

The 37 dynamical classes in (3.1)0.
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• L(P ) := {λP : λ ≥ 0} for any P ∈ R3
+ \ {O};

• E : the equilibrium set for (3.0)0;
• A(Q): the attracting domain for an equilibrium Q ∈ E ;
• P (t, y, A): the transition probability function is defined by
P (t, y, A) := P(Φ(t, ω, y) ∈ A).

Theorem 3

Let Q ∈ E \ {O}, then µσQ(A) = P(U ∈ A) is a stationary measure of
semigroup {Pt}t≥0, where U(ω) := u(ω)Q. Furthermore, (i) for each

y ∈ A(Q), P (t, y, ·) w→ µσQ as t→∞, and

lim
t→∞

P (t, y, A) = µσQ(A), for any A ∈ B(R3
+). (3.1)

Hence, it is ergodic when the system is restricted on A(Q). (ii)

µσQ(·) w→ δQ(·) as σ → 0.
These results are available for classes 1-25, 26 a), 26 c), 27 a) and 28-33
when we restrict the state space in its stable manifold.
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The Complete Classification via Stationary Measures

Theorem 4

Suppose that (3.0)0 is one of systems in classes 1-25, 26 a), 26 c),
27 a) and 28-33. Then
(1) all its stationary measures are the convex combinations of
ergodic stationary measures {µσQ : Q ∈ E};
(2) as σ → 0, all their limiting measures are the convex
combinations of the Dirac measures {δQ(·) : Q ∈ E}.
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Recall the following dynamical classes (red—Periodic case and
green—Heterclinic case).
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Theorem 5

Suppose that (3.0)0 is one of systems in classes 26 b) and 27 b).
(1) Then there exists a unique ergodic nontrivial stationary
measure νσh supporting on the cone

Λ(h) : V (y) := yµ1 y
ν
2y

ω
3 (β2α3y1+α1α3y2+β1β2y3) ≡ h ∈ I, (3.2)

where µ = −β2β3/D, ν = −α1α3/D, ω = −α1β2/D,
D = (β2β3 + β2α1 + α1α3), αi, βi are expressed by aij , I is the
feasible image interval for V and Γ(h) is the closed orbit, with
initial data y0 ∈ Γ(h).
(2) νσh converges weakly to the Haar measure on the closed orbit
Γ(h) as σ → 0.
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Sketch of Proof

Define ψ : Λ(h) \ {O} → R× S by

ψ(y) :=
(

lnλ, ϕ(z)
)
, y ∈ Λ(h) \ {O},

where ϕ(y) = inf{t > 0, Ψ(t, y0) = y}. Obviously, ψ is a
homeomorphism. Set

H(t, ω,H0) = ln(g(t, ω, λ)) and T (t, ω, T0) = ϕ(Ψ(

∫ t

0

g(s, ω, λ)ds, z).

By the definition,

ψ(Φ(t, ω, y)) =
(
H(t, ω,H0), T (t, ω, T0)

)
.

The ergodicity for Φ on Λ(h) \ {O} is equivalent to that (H,T ) is
ergodic on R× S.
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Sketch of Proof

We can prove that (H,T ) is strong Feller(SF) and irreducible(I) on
R× S, this is

(SF) For any t > 0, and F ∈ Bb(R× S),

(H0, T0) ∈ R× S → EF (H(t,H0), T (t, T0)) is continuous;

(I) For any t > 0, (H0, T0) ∈ R×S and open set A ∈ B(R×S),

P
(

(H(t,H0), T (t, T0)) ∈ A
)
> 0.
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Sketch of Proof

This implies that Φ is ergodic on Λ(h) \ {O}. Furthermore, Φ is
also ergodic on Λ(h) and νσh is an ergodic stationary measure for Φ
on R3

+. Finally, νσh converges weakly to the Haar measure on the
closed orbit Γ(h) as σ → 0.
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Theorem 6

Suppose that (3.0)0 is one of systems in classes 26 b) and 27 b).
Let µi := νσ

i

hi
, i = 1, 2, · · · satisfy σi → 0 and µi

w→ µ as i→∞.
Then
(1) if initial data y0 lies in the interior of the heteroclinic cycle H,
then µ is the Haar measure on Γ(y0) for y0 6= P , or the Dirac
measure δP (·) at P for y0 = P ;
(2) if initial data y0 ∈ H, then

µ({E1, E2, E3}) = 1, (3.3)

where E1, E2, E3 are three equilibria of heteroclinic cycle H in
class 26 b) or class 27 b).
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The Complete Classification via Stationary Measures

Theorems 4–6 have given all ergodic stationary measures for all
classes except class 27 c).

Theorem 7

Assume that (3.0)0 is the system of class 27 c). Then (i) νσy will
support on the three nonnegative axes for any νσy with

y ∈ IntR3
+\L(P ); (ii) Let µi := νσ

i

yi0
, i = 1, 2, · · · . If µi

w→ µ as

σi → 0, i→∞. Then

µ({R1, R2, R3}) = 1, (3.4)

where R1, R2, R3 are three axial equilibria for the deterministic
system.
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Conclusion

• Theorem 7 only describes the support of stationary measures.

• The nonergodicity can be found by the stochastic turbulence.
(Why?)

• It is essential reason to reveal that solutions concentrate around
R1, R2, R3 very long time (approximately infinite) with probability
nearly one.
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N We reveal the reason for this special case (WLOG, let α = 0.8 and
β = 1.3 for symmetric May-Leonard system).
Let

Ai = {y = (y1, y2, y3) ∈ Σ : ‖y −Ri‖ <
1

2
}

denote the neighborhood of Ri (i = 1, 2, 3). Then Ψ(t, y) will enter and
then depart Ai with infinite times. For n ≥ 2, define

T 1
in = inf{t ≥ 0, Ψ(t, y) ∈ A1}, T 1

out = inf{t ≥ T 1
in, Ψ(t, y) /∈ A1},

Tnin = inf{t ≥ Tn−1
out , Ψ(t, y) ∈ A1}, Tnout = inf{t ≥ Tnin, Ψ(t, y) /∈ A1},

S1
in = inf{t ≥ T 1

out, Ψ(t, y) ∈ A3}, S1
out = inf{t ≥ S1

in, Ψ(t, y) /∈ A3},
Snin = inf{t ≥ Sn−1

out , Ψ(t, y) ∈ A3}, Snout = inf{t ≥ Snin, Ψ(t, y) /∈ A3}.

Similarly, we denote by τnin and τnout the time entering and exiting A2 in
n-th spiral cycle (see Fig. 5).
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Figure: 5. The phase portrait of Ψ
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Deterministic Case

May and Leonard (SIAP, 1975) gave the following estimation:

Tnout−Tnin ' 0.42Tnout, τ
n
out−τnin ' 0.42τnout, S

n
out−Snin ' 0.42Snout. (3.5)

Then

1

Tnout

∫ Tn
out

0

δΨ(t,y)(A1)dt =
1

Tnout

n∑
i=1

(T iout−T iin) ≥ Tnout − Tnin
Tnout

= 0.42 > 0,

1

Snout

∫ Sn
out

0

δΨ(t,y)(A1)dt =
1

Snout

n∑
i=1

(T iout−T iin) ≤ Tnout

Snout

≤ (0.58)2 ≤ 0.34.

This implies that the limit of occupation measure of Ψ(t, y) is not

unique.
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Stochastic Case

For stochastic case, similarly, we analyze{ 1

T

∫ T

0

IA1

(
Ψ(

∫ t

0

g(s, ω, 1)ds, y)
)
dt
}
T>0

as T →∞.

Let ε = 0.0001 and ΩεT = {ω : sup
t∈[T,∞)

|1
t

∫ t

0

g(s, ω, 1)ds− 1| ≤ ε}. Then

ΩεT ↑ with respect to T and limT→∞ P(ΩεT ) = 1. Thus for η = 0.9999,
there exists T0 > 0 such that

P(ΩεT ) ≥ η, ∀T ≥ T0.
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Stochastic Case

Define

tn1 (ω) := τ(ω, Tnin) := inf{t > 0 :

∫ t

0

g(s, ω, g0)ds > Tnin},

tn2 (ω) := τ(ω, Tnout) := inf{t > 0 :

∫ t

0

g(s, ω, g0)ds > Tnout}.

Set ΩnT0
:= {ω : tn1 (ω) ≥ T0}. Then ΩnT0

↑ with respect to n and
limn→∞ P(ΩnT0

) = 1. Thus there exists an N0 such that

P(ΩnT0
) ≥ η, ∀n ≥ N0.
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Stochastic Case

Step 1. Let Tn = Tnout. Consider 1
Tn

∫ Tn

0
IA1

(
Ψ(
∫ t

0
g(s, ω, 1)ds, y)

)
dt.

For any n satisfying n ≥ N0 and Tn ≥ T0, choosing any ω ∈ ΩnT0
∩ ΩεT0

,
we have

• (1−ε)Tnout = (1−ε)Tn ≤
∫ Tn

0
g(s, ω, 1)ds ≤ (1+ε)Tn = (1+ε)Tnout,

• tn2 (ω) ≥ tn1 (ω) ≥ T0,

• (1− ε)tn1 (ω) ≤
∫ tn1 (ω)

0
g(s, ω, 1)ds = Tnin ≤ (1 + ε)tn1 (ω),

• (1− ε)tn2 (ω) ≤
∫ tn2 (ω)

0
g(s, ω, 1)ds = Tnout ≤ (1 + ε)tn2 (ω).

Combining the fact that Tnout − Tnin ' 0.42Tnout, we have

tn1 (ω) ≤ Tnout = Tn, tn2 (ω) ≥ Tnout

1 + ε
=

Tn
1 + ε

,
Tnin

1− ε
≥ tn1 (ω).
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Stochastic Case

Continued. Therefore

1

Tn

∫ Tn

0

IA1

(
Ψ(

∫ t

0

g(s, ω, 1)ds, y)
)
dt

=
1

Tn

∞∑
i=1

(
ti2(ω)

∧
Tn − ti1(ω)

∧
Tn

)
≥ t

n
2 (ω)

∧
Sn − tn1 (ω)

Sn

≥
Tn
out

1+ε −
Tn
in

1−ε
Tnout

≥ 0.419.

Then

limn→∞
1

Tn

∫ Tn

0

EIA1

(
Ψ(

∫ t

0

g(s, ω, 1)ds, y)
)
dt

≥ 0.419P(ΩN0

T0
∩ ΩεT0

) ≥ 0.419× 0.9998 ≥ 0.41. (3.6)
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Stochastic Case

Step 2. Let Sn = Snout. Consider 1
Sn

∫ Sn

0
IA1

(
Ψ(
∫ t

0
g(s, ω, 1), y)

)
dt.

For any n satisfying n ≥ N0 and Sn ≥ T0, choosing any ω ∈ ΩnT0
∩ ΩεT0

,
we have

• (1−ε)Snout = (1−ε)Sn ≤
∫ Sn

0
g(s, ω, 1)ds ≤ (1+ε)Sn = (1+ε)Snout,

• tn+1
2 (ω) ≥ tn+1

1 (ω) ≥ tn2 (ω) ≥ tn1 (ω) ≥ T0,

• (1−ε)ti1(ω) ≤
∫ ti1(ω)

0
g(s, ω, 1)ds = T iin ≤ (1+ε)ti1(ω), i = n, n+1,

• (1− ε)ti2(ω) ≤
∫ ti2(ω)

0
g(s, ω, 1)ds = T iout ≤ (1 + ε)ti2(ω), i =

n, n+ 1,

• Tn+1
in ' Snout, Snout − Snin ' 0.42Snout, Snin − Tnout ' 0.42Snin.
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Stochastic Case

Continued. Hence

• (1− ε)tn2 (ω) ≤ Tnout ' 0.58Snin ' 0.582Snout = 0.582Sn ⇒ tn2 (ω) ≤
Sn,

•

(1− ε)tn+1
1 (ω) ≤ Tn+1

in ' Snout = Sn

≤ (1 + ε)tn+1
1 (ω) ≤ 1 + ε

1− ε
Tn+1

in ' 0.58
1 + ε

1− ε
Tn+1

out

≤ 0.58
(1 + ε)2

1− ε
tn+1
2 (ω) < tn+1

2 (ω),

that is,

(1− ε)tn+1
1 (ω) ≤ Sn ≤ (1 + ε)tn+1

1 (ω) < tn+1
2 (ω).
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Stochastic Case

Continued. Therefore

1

Sn

∫ Sn

0

IA1

(
Ψ(

∫ t

0

g(s, ω, 1)ds, y)
)
dt

=
1

Sn

∞∑
i=1

(
ti2(ω)

∧
Sn − ti1(ω)

∧
Sn

)
=

1

Sn

[ n∑
i=1

(
ti2(ω)− ti1(ω)

)
+
(
Sn − tn+1

1 (ω)
∧
Sn

)]
≤ tn2 (ω) + Sn − tn+1

1 (ω)
∧
Sn

Sn

≤ 1

Sn

(0.582

1− ε
Sn + Sn −

Sn
1 + ε

)
=

0.582

1− ε
+

ε

1 + ε
< 0.34.
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Stochastic Case

Continued. Then

limn→∞
1

Sn

∫ Sn

0

EIA1

(
Ψ(

∫ t

0

g(s, ω, 1)ds, y)
)
dt

≤0.34P(ΩN0

T0
∩ ΩεT0

) + P
(

(ΩN0

T0
∩ ΩεT0

)c
)
≤ 0.342.

(3.7)

Inequalities (3.6) and (3.7) imply that 1
T

∫ T
0
EIA1

(
Ψ(
∫ t

0
g(s, ω, 1), y)

)
dt

does not have unique limit as T →∞. Equivalently,
1
T

∫ T
0
EIΛ(A1)

(
Φ(t, ω, , y)

)
dt does not have unique limit as T →∞.
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Thank you!
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