
Spatial asymptotics for parabolic Anderson
equations with white noise

Xia Chen

University of Tennessee/Jilin University

July 13-17, 2016, The 12th International Workshop on
Markove processes and Related Topics, Jiangsu Normal

University, Xuzhou

Chen (Dept of Mathematics, UTK) Spatial asymptotics for Parabolic Anderson models
July 13-17, 2016, The 12th International Workshop on Markove processes and Related Topics, Jiangsu Normal University, Xuzhou 1

/ 35



The main topic

The Parabolic Anderson Model (PAM) is formulated in the
form  ∂tu(t , x) = 1

2∆u(t , x) + V (t , x)u(t , x)

u(0, x) = u0(x)

where {V (t , x); x ∈ Rd} is a random field called potential. In this
talk, we are interested in the asymptotic behavior of

max
|x |≤R

u(t , x) (R →∞)

in the cases when V (t , x) = Ẇ (t , x) is a (1 + 1)-white noise.
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Association to KPZ equation

A recently hot topic is the study of Kardar-Parisi-Zhang
(KPZ) equation in the case d = 1:

∂th =
1
2

(∂h
∂x

)2
+

1
2
∂2h
∂x2 + Ẇ (t , x)

where Ẇ (t , x) is the time-space white noise decided by the
covariance

Cov
(
Ẇ(0,0), Ẇ(t, x)

)
= δ0(t)δ0(x)

KPZ equation describes the stochastic growth of the
interface. An recent important progress is the mathematical
treatment by Martin Hairer (Ann. Math. (2013)).
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PAM with white noise

Under the Hopf-Cole transform

h(t, x) = log u(t, x)

KPZ equation is formally transformed into the parabolic
Anderson equation with V = Ẇ being a (1 + 1)-white noise. In
this setting, the solution u(t, x) of the parabolic Anderson
equation is mild in the sense that

u(t, x) = pt ∗ u0(x) +

∫ t

0

∫
Rd

pt−s(y− x)u(s, x)W(dsdx)

where u0(x) is the initial value, pt is the density of Brownian
semi-group.
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PAM with white noise

The parabolic Anderson equation becomes

∂tu =
1
2
∂2u
∂x2 + Ẇ(t, x)u

The solution u(t, x) can be formally written as

u(t, x) = E X exp
{∫ t

0
Ẇ
(
t− s,B(s)

)
ds− 1

2
tδ0(0)

}
where B(s) is a 1-dimensional Brownian motion independent of
W with B(0) = x.
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PAM with white noise

Theorem (Conus, Joseph and Koshnevisan (2013),
Ann. Probab.)
Under the initial condition

0 < inf
x∈R

u0(x) ≤ sup
x∈R

u0(x) <∞

0 < lim inf
R→∞

(log R)−2/3 log max
|x|≤R

u(t, x)

≤ lim sup
R→∞

(log R)−2/3 log max
|x|≤R

u(t, x) <∞ a.s.
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PAM with white noise

This result shows that for the Hopf-Cole solution h(t, x),

max
|x|≤R

h(t, x) � R2/3 (R→∞)

Question. Does the limit exist? If so, what is the value of the
limit?
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PAM with white noise

Theorem
Under the same initial condition,

lim
R→∞

(log R)−2/3 log max
|x|≤R

u(t, x) =
3
4

3

√
2t
3

a.s.

Thus, the Hopf-Cole solution h(t, x) of KPZ equation satisfies

lim
R→∞

(log R)−2/3 max
|x|≤R

h(t, x) =
3
4

3

√
2t
3

a.s.
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Idea of the proof

By Borel-Cantelli lemma all we need is to show∑
k

P
{

log max
|x|≤2k

u(t, x) ≥ λ(log 2k)2/3
}
<∞

for λ > 3
4

3

√
2t
3 , and

∑
k

P
{

log max
|x|≤2k

u(t, x) ≤ λ(log 2k)2/3
}
<∞

for λ < 3
4

3

√
2t
3 .
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Idea of the proof

The road map is as follows: First, by comparison we can
reduce the problem to the initial condition u0(x) = 1.
Consequently, u(t, x) is stationary in x.

In a suitable sense

max
|x|≤2k

u(t, x) ≈ max
|j|≤2k

u(t, j)

By stationarity of u(t, x) in x

P
{

log max
|j|≤2k

u(t, j) ≥ λ(log 2k)2/3
}

≤ 2k+1P
{

log u(t,0) ≥ λ(log 2k)2/3
}
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Idea of the proof

On the other hand, u(t, j) (j = 0,±1, · · · ,2k) are “nearly”
i.i.d. Hence,

P
{

log max
|j|≤2k

u(t, j) ≤ λ(log 2k)2/3
}

≈
(

1− P
{

log u(t,0) ≥ λ(log 2k)2/3
})2k+1

Thus, the problem is to show

P
{

log u(t,0) ≥
(3

4
3

√
2t
3
± ε
)

(log 2k)2/3
}

≈ exp
{
− (1± δ) log 2k}

for large k.
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Idea of the proof

So the key estimate needed is the large deviation

P
{

log u(t,0) ≥ λa
}

as a→∞

More precisely, we claim that for any λ > 0

lim
a→∞

a−3/2 log P
{

log u(t,0) ≥ λa
}

= −4
(6

t

)1/2(λ
3

)3/2

By Gärter-Ellis theorem, this is reduced to the proof of the high
moment asymptotics

lim
n→∞

n−3 logE u(t,0)n =
t

24
.
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Idea of the proof

Our starting point is the moment representation

E u(t,0)n = E 0 exp
{ ∑

1≤j<k≤n

∫ t

0
δ0
(
Bj(s)− Bk(s)

)
ds
}

where Bk(s) are independent Brownian motions starting at 0,
and “E0” is for the expectation with respect to the Brownian
motions. Therefore, the problem is to show for any θ > 0

lim
n→∞

n−3 log E 0 exp
{
θ
∑

1≤j<k≤n

∫ t

0
δ0
(
Bj(s)− Bk(s)

)
ds
}

=
tθ2

24

The proof we present here is not the one originally given. It
adopted from Bertini and Cancrini (1994) where the critical idea
is Tanaka’s formula.
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Lower bounds
Indeed, applying Tanaka formula to the Brownian motion

2−1/2
(
Bj(s)− Bk(s)

)
leads to∣∣∣Bj(t)− Bk(t)√

2

∣∣∣
=

1√
2

∫ t

0
sgn
(
Bj(s)− Bk(s)

)
d
(
Bj(s)− Bk(s)

)
+
√

2
∫ t

0
δ0
(
Bj(s)− Bk(s)

)
ds.

So we have∫ t

0
δ0
(
Bj(s)− Bk(s)

)
ds

≥ 1
2

∫ t

0
sgn
(
Bj(s)− Bk(s)

)
d
(
Bk(s)− Bj(s)

)
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Lower bounds

Summing up, the lower bound follows from∑
1≤j<k≤n

∫ t

0
δ0
(
Bj(s)− Bk(s)

)
ds

≥ 1
2

∑
1≤j<k≤n

∫ t

0
sgn
(
Bj(s)− Bk(s)

)
d
(
Bk(s)− Bj(s)

)
=

1
2

n∑
j=1

∫ t

0

(∑
k6=j

sgn
(
Bj(s)− Bk(s)

)
dBj(s)

d
=

1
2

B
(

t
n(n2 − 1)

3

)
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Lower bounds

where the identity in law follows from the time-change Brownian
representation for martingale and the fact that for any distinct
real numbers b1, · · · , bn

n∑
j=1

(∑
k6=j

sgn (bj − bk)

)2

=
1
3

n2(n− 1)

and therefore
n∑

j=1

∫ t

0

(∑
k6=j

sgn
(
Bj(s)− Bk(s)

))2

ds =
t
3

n2(n− 1) a.s.
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Upper bounds
By Tanaka formula

1
2
|Bj(t)− Bk(t)|

=
1
2

∫ t

0
sgn
(
Bj(s)− Bk(s)

)
d
(
Bj(s)− Bk(s)

)
+

∫ t

0
δ0
(
Bj(s)− Bk(s)

)
ds.

Applying Skorokhod lemma∫ t

0
δ0
(
Bj(s)− Bk(s)

)
ds

=
1
2

sup
s≤t

∫ t

0
sgn
(
Bj(s)− Bk(s)

)
d
(
Bk(s)− Bs(s)

)
=

1√
2

sup
s≤t

Bj,k(s) (say).
Chen (Dept of Mathematics, UTK) Spatial asymptotics for Parabolic Anderson models

July 13-17, 2016, The 12th International Workshop on Markove processes and Related Topics, Jiangsu Normal University, Xuzhou 17
/ 35



Upper bounds

Summing up∑
1≤j<k≤n

∫ t

0
δ0
(
Bj(s)− Bk(s)

)
ds =

1√
2

∑
1≤j<k≤n

sup
s≤t

Bj,k(s)

=
1√
2

sup
s∈[0,t]A

∑
1≤j<k≤n

Bj,k(sj,k) =
1√
2

sup
s∈[0,t]A

G(s) (say).

Here we adopt the notations

A =
{

(j, k); 1 ≤ j < k ≤ n
}
, s =

(
sj,k; 1 ≤ j < k ≤ n

)
.
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Upper bounds

Let m ≥ 1 be an integer and let 0 = t0 < t1 < · · · < tm = t
be a uniform partition. Set Πm = {1, · · · ,m}A and partition [0, t]A

into m#A small boxes Bπ labeled by π ∈ Πm such that Bπ is a
A-product of the intervals of the form [ti−1, ti] (i = 1, · · · ,m).

E exp
{
θ
∑

1≤j<k≤n

∫ t

0
δ0
(
Bj(s)− Bk(s)

)
ds
}

= E exp
{

θ√
2

max
π∈Πm

sup
s∈Bπ

G(s)

}
≤
∑
π∈Πm

E exp
{

θ√
2

sup
s∈Bπ

G(s)

}
.
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Upper bounds

Let the box Bπ be fixed and write

Bπ =
∏

(j,k)∈A

[sj,k, tj,k] = [sπ, tπ].

By Hölder inequality,

E exp
{

θ√
2

sup
s∈Bπ

G(s)

}
≤

(
E exp

{
pθ√

2
G(sπ)

})1/p

×

(
E exp

{
qθ√

2
sup
s∈Bπ

(
G(s)− G(sπ)

)})1/q

where p, q > 1 are fixed conjugate numbers with p close to 1.
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Upper bounds

Using Hölder inequality again

E exp
{

qθ√
2

sup
s∈Bπ

(
G(s)− G(sπ)

)}

≤
∏

(j,k)∈A

(
E exp

{
qn(n− 1)θ

2
√

2
sup

s∈[sj,k,tj,k]

(
Bj,k(s)− Bj,k(sj,k)

)}) 2
n(n−1)

= E exp
{

qn(n− 1)θ

2
√

2

√
t
m
|B(1)|

}
≤ 2 exp

{ 1
16

(qn(n− 1)θ)2 t
m

}
.

where the second step follows from the fact that Bj,k(s) is a
Brownian motion.
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Upper bounds

In addition, write

G(sπ) =
1√
2

∑
1≤j<k≤n

∫ sj,k

0
sgn
(
Bk(u)− Bj(u)

)
d
(
Bj(u)− Bk(u)

)
=

1√
2

n∑
j=1

∑
k6=j

∫ sj,k

0
sgn
(
Bk(u)− Bj(u)

)
dBj(u)

=
1√
2

n∑
j=1

∫ t

0

(∑
k6=j

sgn
(
Bk(u)− Bj(u)

)
1[0,sj,k](u)

)
dBj(u).

Here we extend the definition of sj,k as sj,k = sk,j for j > k.
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Upper bounds
By Ito’s formula,

E exp
{

pθ√
2

G(sπ)

− (pθ)2

8

n∑
j=1

∫ t

0

(∑
k6=j

sgn
(
Bk(u)− Bj(u)

)
1[0,sj,k](u)

)2

du
}

= 1.

Here we point out that for each 0 ≤ u ≤ t

n∑
j=1

(∑
k6=j

sgn
(
Bk(u)− Bj(u)

)
1[0,sj,k](u)

)2

≤
n∑

j=1

(∑
k6=j

sgn
(
Bk(u)− Bj(u)

))2

=
1
3

n(n2 − 1).
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Upper bounds

Consequently,

E exp
{

pθ√
2

G(sπ)

}
≤ exp

{
(pθ)2

24
n(n2 − 1)t

}
.

Summarizing our steps,

E exp
{
θ
∑

1≤j<k≤n

∫ t

0
δ0
(
Bj(s)− Bk(s)

)
ds
}

≤ 2m
n(n−1)

2 exp
{ 1

16
q
(
n(n− 1)θ

)2 t
m

}
exp

{
pθ2

24
n(n2 − 1)t

}
.

This leads to the upper bounds with m = n2, p > 1 is close to 1.
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Further remark.

By an obvious modification of the above proof, we can
have the following moment asymptotics:

lim
t→∞

1
t

logE u(t, x)n =
1
24

n(n2 − 1) n = 2,3, · · ·

which, together with the high moment asymptotics established
above, appears as the weak version of the false claim of Bertini
and Cancrini (1994).

E u(t, x)n = 2 exp
{
λ4t

n(n2 − 1)

24

}
Φ

((
tλ2
(

n(n2 − 1)

12

)1/2)
where Φ(·) is the standard normal distribution function.
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Further remark.

As to the time asymptotics for the parabolic Anderson
model, Amir, Corwin and Quastel (2011), who claim that under
the initial condition u0(x) = δ0(x)

t−1/3
{

log u(t, x) +
t

24

}
d−→ 2−1/3GUE (t→∞)

where GUE represents Tracy-Widom law. So we expect that

lim
t→∞

l(t)−1E exp
{
θ
( l(t)

t

)1/3{
log u(t, x) +

t
24

}}
= lim

t→∞
l(t)−1E exp

{
θ
( l(t)

2

)1/3
GUE

}
=
θ3

24
(θ > 0)

for any slow varying function l(t)→∞.
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Further remark.

In the following, we show how it morally link to our moment
asymptotics which can be rewritten into

lim
t→∞

1
t

log E exp
{

n
(

log u(t, x) +
t

24

)}
=

n3

24

Indeed, if n can be replaced by θ(l(t)/t)1/3,

lim
t→∞

l(t)−1E exp
{
θ
( l(t)

t

)1/3{
log u(t, x) +

t
24

}}
=
θ3

24
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Further remark.

By Gärtner-Ellis theorem, we expect some thing like

lim
t→∞

1
l(t)

log P

{
log u(t, x) +

t
24
≥ λt1/3l(t)2/3

}
= −2

√
8

3
λ2/3

for λ > 0.

The above analysis shows that the precise Lyapunov
exponent may suggest the pattern of the quenched long term
asymptotics of the system.
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Further remark.

Consider the Parabolic Anderson equation ∂tu(t, x) = 1
2∆u(t, x) + V(t, x)u(t, x)

u(0, x) = u0(x)

and assume that the Gaussian potential V(t, x) is white in time
and colored in space. More precisely, it has the covariance
function

Cov
(

V(t, x),V(s, y)
)

= δ0(t− s)γ(x− y) (t, x), (s, y) ∈ R+ × Rd

with γ(·) ≥ 0 and the space homogeneity γ(cx) = |c|−αγ(x) for
some 0 < α < 2.
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Further remark.

As a generalization, it has been shown that

lim
R→∞

(log R)−
2

4−α max
|x|≤R

u(t, x) =
4− α

4

(
4tE

2− α

) 2−α
4−α

d
2

4−α a.s.

where E is the Hartree energy defined as

E = sup
g

{∫
Rd×Rd

γ(x− y)g2(x)g2(y)dxdy− 1
2

∫
Rd
|∇g(x)|2dx

}
and the supremum is over all g ∈ L2(Rd) with ∇g ∈ L2(Rd) and
‖g‖2 = 1.
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Further remark.

This result is based on the high moment asymptotics

lim
n→∞

n−
4−α
2−α log E u(t,0)n = t

(1
2

) 2
2−αE

which follows from a different approach.

As for the Lyapunov exponent, we conjecture that

lim
t→∞

1
t

log E u(t,0)n =
(1

2

) 2
2−α

n
(

n
2

2−α − 1
)
E

for n = 1,2, · · · .
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Thank you!
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