Spatial asymptotics for parabolic Anderson equations with white noise

Xia Chen

University of Tennessee/Jilin University

July 13-17, 2016, The 12th International Workshop on Markove processes and Related Topics, Jiangsu Normal University, Xuzhou The Parabolic Anderson Model (PAM) is formulated in the form

$$\begin{cases} \partial_t u(t,x) = \frac{1}{2} \Delta u(t,x) + V(t,x) u(t,x) \\ u(0,x) = u_0(x) \end{cases}$$

where { V(t, x); $x \in \mathbb{R}^d$ } is a random field called potential. In this talk, we are interested in the asymptotic behavior of

$$\max_{|x| \le R} u(t, x) \quad (R \to \infty)$$

in the cases when $V(t, x) = \dot{W}(t, x)$ is a (1 + 1)-white noise.

A recently hot topic is the study of Kardar-Parisi-Zhang (KPZ) equation in the case d = 1:

$$\partial_t h = \frac{1}{2} \left(\frac{\partial h}{\partial x} \right)^2 + \frac{1}{2} \frac{\partial^2 h}{\partial x^2} + \dot{W}(t, x)$$

where $\dot{W}(t, x)$ is the time-space white noise decided by the covariance

$$\operatorname{Cov}\left(\dot{W}(\mathbf{0},\mathbf{0}),\dot{W}(t,x)\right) = \delta_{\mathbf{0}}(t)\delta_{\mathbf{0}}(x)$$

KPZ equation describes the stochastic growth of the interface. An recent important progress is the mathematical treatment by Martin Hairer (Ann. Math. (2013)).

Under the Hopf-Cole transform

 $h(t,x) = \log u(t,x)$

KPZ equation is formally transformed into the parabolic Anderson equation with $V = \dot{W}$ being a (1 + 1)-white noise. In this setting, the solution u(t, x) of the parabolic Anderson equation is mild in the sense that

$$u(t,x) = p_t * u_0(x) + \int_0^t \int_{\mathbb{R}^d} p_{t-s}(y-x)u(s,x)W(dsdx)$$

where $u_0(x)$ is the initial value, p_t is the density of Brownian semi-group.

The parabolic Anderson equation becomes

$$\partial_t u = \frac{1}{2} \frac{\partial^2 u}{\partial x^2} + \dot{W}(t,x) u$$

The solution u(t, x) can be formally written as

$$u(t,x) = \mathbb{E}_{X} \exp \bigg\{ \int_{0}^{t} \dot{W}(t-s,B(s)) ds - \frac{1}{2} t \delta_{0}(0) \bigg\}$$

where B(s) is a 1-dimensional Brownian motion independent of W with B(0) = x.

Theorem (Conus, Joseph and Koshnevisan (2013), Ann. Probab.)

Under the initial condition

$$0 < \inf_{x \in R} u_0(x) \leq \sup_{x \in R} u_0(x) < \infty$$

$$\begin{split} 0 &< \liminf_{R \to \infty} (\log R)^{-2/3} \log \max_{|x| \leq R} u(t,x) \\ &\leq \limsup_{R \to \infty} (\log R)^{-2/3} \log \max_{|x| \leq R} u(t,x) < \infty \quad \text{ a.s.} \end{split}$$

This result shows that for the Hopf-Cole solution h(t, x),

$$\max_{|x|\leq R} h(t,x) \asymp R^{2/3} \quad (R \to \infty)$$

Question. Does the limit exist? If so, what is the value of the limit?

Theorem

Under the same initial condition,

$$\lim_{R\to\infty} (\log R)^{-2/3} \log \max_{|x|\leq R} u(t,x) = \frac{3}{4} \sqrt[3]{\frac{2t}{3}} \quad \text{ a.s.}$$

Thus, the Hopf-Cole solution h(t, x) of KPZ equation satisfies

$$\lim_{R\to\infty} (\log R)^{-2/3} \max_{|x|\leq R} h(t,x) = \frac{3}{4} \sqrt[3]{\frac{2t}{3}} \quad \text{ a.s.}$$

By Borel-Cantelli lemma all we need is to show

$$\begin{split} &\sum_k \mathbb{P}\Big\{\log\max_{|x|\leq 2^k} u(t,x) \geq \lambda (\log 2^k)^{2/3}\Big\} < \infty \\ &\text{for } \lambda > \frac{3}{4} \sqrt[3]{\frac{2t}{3}}, \text{ and} \\ &\sum_k \mathbb{P}\Big\{\log\max_{|x|\leq 2^k} u(t,x) \leq \lambda (\log 2^k)^{2/3}\Big\} < \infty \\ &\text{for } \lambda < \frac{3}{4} \sqrt[3]{\frac{2t}{3}}. \end{split}$$

The road map is as follows: First, by comparison we can reduce the problem to the initial condition $u_0(x) = 1$. Consequently, u(t, x) is stationary in x. In a suitable sense

$$\max_{|x|\leq 2^k} u(t,x) \approx \max_{|j|\leq 2^k} u(t,j)$$

By stationarity of u(t, x) in x

$$\begin{split} & \mathbb{P}\Big\{\log\max_{|j|\leq 2^k} u(t,j) \geq \lambda (\log 2^k)^{2/3} \Big\} \\ & \leq 2^{k+1} \mathbb{P}\Big\{\log u(t,0) \geq \lambda (\log 2^k)^{2/3} \Big\} \end{split}$$

On the other hand, u(t,j) $(j=0,\pm 1,\cdots,2^k)$ are "nearly" i.i.d. Hence,

$$\begin{split} & \mathbb{P}\Big\{\log\max_{|j|\leq 2^{k}} u(t,j) \leq \lambda (\log 2^{k})^{2/3} \Big\} \\ & \approx \left(1 - \mathbb{P}\Big\{\log u(t,0) \geq \lambda (\log 2^{k})^{2/3}\Big\}\right)^{2^{k+1}} \end{split}$$

Thus, the problem is to show

$$\begin{split} \mathbb{P}\Big\{\log \mathrm{u}(\mathrm{t},\mathbf{0}) \geq \Big(\frac{3}{4}\sqrt[3]{\frac{2\mathrm{t}}{3}} \pm \epsilon\Big)(\log 2^{\mathrm{k}})^{2/3}\Big\} \\ \approx \exp\big\{-(1\pm\delta)\log 2^{\mathrm{k}}\big\} \end{split}$$

for large k.

So the key estimate needed is the large deviation

$$\mathbb{P}\Big\{\log \mathsf{u}(\mathsf{t},\mathsf{0})\geq\lambda a\Big\}\quad ext{ as }a
ightarrow\infty$$

More precisely, we claim that for any $\lambda > 0$

$$\lim_{a\to\infty} a^{-3/2} \log \mathbb{P}\Big\{\log u(t,0) \geq \lambda a\Big\} = -4\Big(\frac{6}{t}\Big)^{1/2}\Big(\frac{\lambda}{3}\Big)^{3/2}$$

By Gärter-Ellis theorem, this is reduced to the proof of the high moment asymptotics

$$\lim_{n\to\infty} n^{-3}\log \mathbb{E} u(t,0)^n = \frac{t}{24}$$

Our starting point is the moment representation

$$\mathbb{E}\,u(t,0)^n=\mathbb{E}_0\,\text{exp}\,\bigg\{\sum_{1\leq j< k\leq n}\int_0^t \delta_0\big(B_j(s)-B_k(s)\big)ds\bigg\}$$

where $B_k(s)$ are independent Brownian motions starting at 0, and " E_0 " is for the expectation with respect to the Brownian motions. Therefore, the problem is to show for any $\theta > 0$

$$\lim_{n \to \infty} n^{-3} \log \mathbb{E}_0 \exp \left\{ \theta \sum_{1 \le j < k \le n} \int_0^t \delta_0 \big(B_j(s) - B_k(s) \big) ds \right\} = \frac{t \theta^2}{24}$$

The proof we present here is not the one originally given. It adopted from Bertini and Cancrini (1994) where the critical idea is Tanaka's formula.

Lower bounds

Indeed, applying Tanaka formula to the Brownian motion $2^{-1/2} \big(B_j(s) - B_k(s) \big)$ leads to

$$\begin{split} & \Big|\frac{B_j(t) - B_k(t)}{\sqrt{2}}\Big| \\ &= \frac{1}{\sqrt{2}}\int_0^t \text{sgn}\left(B_j(s) - B_k(s)\right) d\big(B_j(s) - B_k(s)\big) \\ &+ \sqrt{2}\int_0^t \delta_0\big(B_j(s) - B_k(s)\big) ds. \end{split}$$

So we have

$$\begin{split} &\int_0^t \delta_0 \big(B_j(s) - B_k(s) \big) ds \\ &\geq \frac{1}{2} \int_0^t \text{sgn} \left(B_j(s) - B_k(s) \right) d \big(B_k(s) - B_j(s) \big) \end{split}$$

Summing up, the lower bound follows from

$$\begin{split} &\sum_{1\leq j< k\leq n} \int_0^t \delta_0 \big(B_j(s) - B_k(s) \big) ds \\ &\geq \frac{1}{2} \sum_{1\leq j< k\leq n} \int_0^t \text{sgn} \big(B_j(s) - B_k(s) \big) d \big(B_k(s) - B_j(s) \big) \\ &= \frac{1}{2} \sum_{j=1}^n \int_0^t \bigg(\sum_{k\neq j} \text{sgn} \big(B_j(s) - B_k(s) \Big) dB_j(s) \\ &\stackrel{d}{=} \frac{1}{2} B \bigg(t \frac{n(n^2 - 1)}{3} \bigg) \end{split}$$

where the identity in law follows from the time-change Brownian representation for martingale and the fact that for any distinct real numbers b_1, \cdots, b_n

$$\sum_{j=1}^n \left(\sum_{k\neq j} \text{sgn}\left(b_j - b_k\right)\right)^2 = \frac{1}{3}n^2(n-1)$$

and therefore

$$\sum_{j=1}^n \int_0^t \bigg(\sum_{k\neq j} \text{sgn}\left(B_j(s) - B_k(s)\right)\bigg)^2 ds = \frac{t}{3}n^2(n-1) \quad \text{ a.s.}$$

By Tanaka formula
$$\begin{split} \frac{1}{2}|B_{j}(t) - B_{k}(t)| \\ &= \frac{1}{2}\int_{0}^{t} \text{sgn}\left(B_{j}(s) - B_{k}(s)\right)d(B_{j}(s) - B_{k}(s)) \\ &+ \int_{0}^{t} \delta_{0}(B_{j}(s) - B_{k}(s))ds. \end{split}$$

Applying Skorokhod lemma

$$\begin{split} &\int_0^t \delta_0 \big(B_j(s) - B_k(s) \big) ds \\ &= \frac{1}{2} \sup_{s \leq t} \int_0^t \operatorname{sgn} \big(B_j(s) - B_k(s) \big) d \big(B_k(s) - B_s(s) \big) \\ &= \frac{1}{\sqrt{2}} \sup_{s < t} B_{j,k}(s) \quad \text{(say)}. \end{split}$$

Summing up

$$\begin{split} &\sum_{1\leq j< k\leq n} \int_0^t \delta_0 \big(B_j(s) - B_k(s) \big) ds = \frac{1}{\sqrt{2}} \sum_{1\leq j< k\leq n} \sup_{s\leq t} B_{j,k}(s) \\ &= \frac{1}{\sqrt{2}} \sup_{\boldsymbol{s}\in[0,t]^{\mathcal{A}}} \sum_{1\leq j< k\leq n} B_{j,k}(s_{j,k}) = \frac{1}{\sqrt{2}} \sup_{\boldsymbol{s}\in[0,t]^{\mathcal{A}}} G(\boldsymbol{s}) \quad (\text{say}). \end{split}$$

Here we adopt the notations

$$\mathcal{A} = \big\{ (j,k); \ 1 \leq j < k \leq n \big\}, \quad \textbf{S} = \big(s_{j,k}; \ 1 \leq j < k \leq n \big).$$

Let $m \ge 1$ be an integer and let $0 = t_0 < t_1 < \cdots < t_m = t$ be a uniform partition. Set $\Pi_m = \{1, \cdots, m\}^{\mathcal{A}}$ and partition $[0, t]^{\mathcal{A}}$ into $m^{\#\mathcal{A}}$ small boxes B_{π} labeled by $\pi \in \Pi_m$ such that B_{π} is a \mathcal{A} -product of the intervals of the form $[t_{i-1}, t_i]$ $(i = 1, \cdots, m)$.

$$\begin{split} &\mathbb{E} \, \exp \bigg\{ \theta \, \sum_{1 \leq j < k \leq n} \int_0^t \delta_0 \big(B_j(s) - B_k(s) \big) ds \bigg\} \\ &= \mathbb{E} \, \exp \bigg\{ \frac{\theta}{\sqrt{2}} \max_{\pi \in \Pi_m} \sup_{\mathbf{s} \in B_\pi} G(\mathbf{s}) \bigg\} \\ &\leq \sum_{\pi \in \Pi_m} \mathbb{E} \, \exp \bigg\{ \frac{\theta}{\sqrt{2}} \sup_{\mathbf{s} \in B_\pi} G(\mathbf{s}) \bigg\}. \end{split}$$

Let the box \mathbf{B}_{π} be fixed and write

$$\mathbf{B}_{\pi} = \prod_{(\mathbf{j},\mathbf{k})\in\mathcal{A}} [\mathbf{s}_{\mathbf{j},\mathbf{k}},\mathbf{t}_{\mathbf{j},\mathbf{k}}] = [\mathbf{s}_{\pi},\mathbf{t}_{\pi}].$$

By Hölder inequality,

$$\begin{split} \mathbb{E} \, \exp\left\{\frac{\theta}{\sqrt{2}} \sup_{\mathbf{s}\in B_{\pi}} G(\mathbf{s})\right\} &\leq \left(\mathbb{E} \, \exp\left\{\frac{p\theta}{\sqrt{2}} G(\mathbf{s}_{\pi})\right\}\right)^{1/p} \\ &\times \left(\mathbb{E} \, \exp\left\{\frac{q\theta}{\sqrt{2}} \sup_{\mathbf{s}\in B_{\pi}} \left(G(\mathbf{s}) - G(\mathbf{s}_{\pi})\right)\right\}\right)^{1/q} \end{split}$$

where p, q > 1 are fixed conjugate numbers with p close to 1.

- I

Using Hölder inequality again

$$\begin{split} &\mathbb{E} \, \exp\left\{\frac{q\theta}{\sqrt{2}} \sup_{\mathbf{s}\in B_{\pi}} \left(G(\mathbf{s}) - G(\mathbf{s}_{\pi})\right)\right\} \\ &\leq \prod_{(j,k)\in\mathcal{A}} \left(\mathbb{E} \, \exp\left\{\frac{qn(n-1)\theta}{2\sqrt{2}} \sup_{s\in[s_{j,k},t_{j,k}]} \left(B_{j,k}(s) - B_{j,k}(s_{j,k})\right)\right\}\right)^{\frac{2}{n(n-1)}} \\ &= \mathbb{E} \, \exp\left\{\frac{qn(n-1)\theta}{2\sqrt{2}} \sqrt{\frac{t}{m}} |B(1)|\right\} \leq 2 \exp\left\{\frac{1}{16}(qn(n-1)\theta)^2 \frac{t}{m}\right\} \end{split}$$

where the second step follows from the fact that $B_{j,k}(s)$ is a Brownian motion.

In addition, write

$$\begin{split} G(\boldsymbol{s}_{\pi}) &= \frac{1}{\sqrt{2}} \sum_{1 \leq j < k \leq n} \int_{0}^{s_{j,k}} \text{sgn} \left(B_{k}(u) - B_{j}(u) \right) d \big(B_{j}(u) - B_{k}(u) \big) \\ &= \frac{1}{\sqrt{2}} \sum_{j=1}^{n} \sum_{k \neq j} \int_{0}^{s_{j,k}} \text{sgn} \left(B_{k}(u) - B_{j}(u) \right) d B_{j}(u) \\ &= \frac{1}{\sqrt{2}} \sum_{j=1}^{n} \int_{0}^{t} \bigg(\sum_{k \neq j} \text{sgn} \left(B_{k}(u) - B_{j}(u) \right) \mathbf{1}_{[0,s_{j,k}]}(u) \bigg) d B_{j}(u). \end{split}$$

Here we extend the definition of $s_{j,k}$ as $s_{j,k} = s_{k,j}$ for j > k.

By Ito's formula,

$$\begin{split} \mathbb{E} \ & \text{exp} \left\{ \frac{p\theta}{\sqrt{2}} G(\boldsymbol{s}_{\pi}) \right. \\ & - \frac{(p\theta)^2}{8} \sum_{j=1}^n \int_0^t \bigg(\sum_{k \neq j} \text{sgn} \left(B_k(u) - B_j(u) \right) \mathbf{1}_{[0,s_{j,k}]}(u) \bigg)^2 du \bigg\} = 1. \end{split}$$

Here we point out that for each $0 \leq u \leq t$

$$\begin{split} &\sum_{j=1}^n \bigg(\sum_{k\neq j} \text{sgn}\left(B_k(u) - B_j(u)\right) \mathbf{1}_{[0,s_{j,k}]}(u)\bigg)^2 \\ &\leq \sum_{j=1}^n \left(\sum_{k\neq j} \text{sgn}\left(B_k(u) - B_j(u)\right)\right)^2 = \frac{1}{3}n(n^2 - 1). \end{split}$$

Consequently,

$$\mathbb{E} \, \exp\left\{\frac{p\theta}{\sqrt{2}}G(\boldsymbol{s}_{\pi})\right\} \leq \exp\left\{\frac{(p\theta)^2}{24}n(n^2-1)t\right\}.$$

Summarizing our steps,

$$\begin{split} \mathbb{E} \ & \exp\left\{\theta \sum_{1 \leq j < k \leq n} \int_0^t \delta_0 \big(B_j(s) - B_k(s)\big) ds\right\} \\ & \leq 2m^{\frac{n(n-1)}{2}} \exp\left\{\frac{1}{16}q\big(n(n-1)\theta\big)^2\frac{t}{m}\right\} \exp\left\{\frac{p\theta^2}{24}n(n^2-1)t\right\}. \end{split}$$

This leads to the upper bounds with $m=n^2,\,p>1$ is close to 1. $\hfill\square$

By an obvious modification of the above proof, we can have the following moment asymptotics:

$$\lim_{t\to\infty}\frac{1}{t}\log\mathbb{E}\,u(t,x)^n=\frac{1}{24}n(n^2-1)\quad n=2,3,\cdots$$

which, together with the high moment asymptotics established above, appears as the weak version of the false claim of Bertini and Cancrini (1994).

$$\mathbb{E}\,\mathbf{u}(t,x)^n = 2\exp\left\{\lambda^4 t \frac{n(n^2-1)}{24}\right\} \Phi\left(\left(t\lambda^2 \left(\frac{n(n^2-1)}{12}\right)^{1/2}\right)$$

where $\Phi(\cdot)$ is the standard normal distribution function.

Further remark.

As to the time asymptotics for the parabolic Anderson model, Amir, Corwin and Quastel (2011), who claim that under the initial condition $u_0(x) = \delta_0(x)$

$$t^{-1/3}\Big\{\log u(t,x) + rac{t}{24}\Big\} \stackrel{d}{\longrightarrow} 2^{-1/3} \text{GUE} \quad (t \to \infty)$$

where GUE represents Tracy-Widom law. So we expect that

$$\begin{split} &\lim_{t\to\infty} l(t)^{-1} \mathbb{E} \, \exp\left\{\theta\Big(\frac{l(t)}{t}\Big)^{1/3}\Big\{\log u(t,x) + \frac{t}{24}\Big\}\right\} \\ &= \lim_{t\to\infty} l(t)^{-1} \mathbb{E} \, \exp\left\{\theta\Big(\frac{l(t)}{2}\Big)^{1/3} \text{GUE}\right\} = \frac{\theta^3}{24} \quad (\theta > 0) \end{split}$$

for any slow varying function $l(t) \rightarrow \infty.$

In the following, we show how it morally link to our moment asymptotics which can be rewritten into

$$\lim_{t \to \infty} \frac{1}{t} \log \mathbb{E} \, \exp\left\{n\Big(\log u(t,x) + \frac{t}{24}\Big)\right\} = \frac{n^3}{24}$$

Indeed, if n can be replaced by $\theta(l(t)/t)^{1/3}$,

$$\lim_{t\to\infty} l(t)^{-1} \mathbb{E} \, \exp\left\{\theta\Big(\frac{l(t)}{t}\Big)^{1/3} \Big\{\log u(t,x) + \frac{t}{24}\Big\}\right\} = \frac{\theta^3}{24}$$

By Gärtner-Ellis theorem, we expect some thing like

$$\lim_{t\to\infty}\frac{1}{l(t)}\log\mathbb{P}\bigg\{\log u(t,x)+\frac{t}{24}\geq\lambda t^{1/3}l(t)^{2/3}\bigg\}=-\frac{2\sqrt{8}}{3}\lambda^{2/3}$$

for $\lambda > 0$.

The above analysis shows that the precise Lyapunov exponent may suggest the pattern of the quenched long term asymptotics of the system. Consider the Parabolic Anderson equation

$$\left\{ \begin{array}{l} \partial_t u(t,x) = \frac{1}{2}\Delta u(t,x) + V(t,x)u(t,x) \\ \\ u(0,x) = u_0(x) \end{array} \right.$$

and assume that the Gaussian potential V(t, x) is white in time and colored in space. More precisely, it has the covariance function

$$Cov\left(V(t,x),V(s,y)\right)=\delta_0(t-s)\gamma(x-y)\quad (t,x),(s,y)\in \mathbb{R}^+\times \mathbb{R}^d$$

with $\gamma(\cdot) \ge 0$ and the space homogeneity $\gamma(cx) = |c|^{-\alpha}\gamma(x)$ for some $0 < \alpha < 2$.

Further remark.

As a generalization, it has been shown that

$$\lim_{R\to\infty} (\log R)^{-\frac{2}{4-\alpha}} \max_{|x|\leq R} u(t,x) = \frac{4-\alpha}{4} \left(\frac{4t\mathcal{E}}{2-\alpha}\right)^{\frac{2-\alpha}{4-\alpha}} d^{\frac{2}{4-\alpha}} \quad \text{a.s.}$$

where \mathcal{E} is the Hartree energy defined as

$$\mathcal{E} = \sup_{g} \left\{ \int_{\mathbb{R}^{d} \times \mathbb{R}^{d}} \gamma(x - y) g^{2}(x) g^{2}(y) dx dy - \frac{1}{2} \int_{\mathbb{R}^{d}} |\nabla g(x)|^{2} dx \right\}$$

and the supremum is over all $g \in \mathcal{L}^2(\mathbb{R}^d)$ with $\nabla g \in \mathcal{L}^2(\mathbb{R}^d)$ and $\|g\|_2 = 1$.

This result is based on the high moment asymptotics

$$\lim_{n \to \infty} n^{-\frac{4-\alpha}{2-\alpha}} \log \mathbb{E} \, u(t,0)^n = t \Big(\frac{1}{2}\Big)^{\frac{2}{2-\alpha}} \mathcal{E}$$

which follows from a different approach.

As for the Lyapunov exponent, we conjecture that

$$\lim_{t\to\infty}\frac{1}{t}\log\mathbb{E}\,u(t,0)^n=\Big(\frac{1}{2}\Big)^{\frac{2}{2-\alpha}}n\Big(n^{\frac{2}{2-\alpha}}-1\Big)\mathcal{E}$$
 for $n=1,2,\cdots$.

References

- Amir, G. Corwin, I. and Quastel, J. (2011). Probability distribution of the free energy of the continuum directed random polymer in 1 + 1 dimensions. *Comm. Pure Appl. Math.* 64 466-537.
- Bertini, L. and Cancrini, N. (1995). The stochastic heat equation: Feynman-Kac formula and intermittence. *J. Statist. Phys.* **78** 1377-1401.
- Chen, X. Spatial asymptotics for the parabolic Anderson models with generalized time-space Gaussian noise. *Ann. Probab.* (to appear)

- Chen, X. (2015). Precise intermittency for the parabolic Anderson equation with an (1 + 1)-dimensional time-space white noise. Annales de l'Institut Henri Poincare 51 1486-1499.
- Conus, D., Joseph, M., and Khoshnevisan, D. (2013). On the chaotic character of the stochastic heat equation, before the onset of intermittency. *Ann. Probab.* **41** 2225-2260.

- Hairer, M. (2013). Solving the KPZ equation. Ann. Math. 178 559-664.
- Kardar, M., Parisi, G. and Zhang, Y. C. (1986). Dynamic scaling of growing interface. *Phys. Rev. Letters* 56 889-892.

Thank you!