On the Optimal Transition Rate Matrix of Markov Process

Ting-Li Chen

Institute of Statistical Science
Academia Sinica

July 14, 2016

Outline

(1) Introduction

(2) Results on Continuous-time Markov chain
(3) Discussion

- Let \mathcal{X} be a finite state space and π be a fixed probability defined on \mathcal{X} with $0 \leq \pi_{1} \leq \pi_{2} \leq \cdots \leq \pi_{N}$.
- Let \mathcal{X} be a finite state space and π be a fixed probability defined on \mathcal{X} with $0 \leq \pi_{1} \leq \pi_{2} \leq \cdots \leq \pi_{N}$.
- For any real-valued function f defined on \mathcal{X}, we are interested in the expectation of f under π, denoted by $\pi(f)=\sum_{x \in \mathcal{X}} f(x) \pi(x)$.
- Let \mathcal{X} be a finite state space and π be a fixed probability defined on \mathcal{X} with $0 \leq \pi_{1} \leq \pi_{2} \leq \cdots \leq \pi_{N}$.
- For any real-valued function f defined on \mathcal{X}, we are interested in the expectation of f under π, denoted by $\pi(f)=\sum_{x \in \mathcal{X}} f(x) \pi(x)$.
- Suppose that $X_{0}, X_{1}, \ldots, X_{n}, \ldots$ is a Markov chain generated by some transition matrix P with stationary distribution π, then the time average $\frac{1}{n} \sum_{k=0}^{n-1} f\left(X_{k}\right)$ is a reasonable approximation to $\pi(f)$.
- Let \mathcal{X} be a finite state space and π be a fixed probability defined on \mathcal{X} with $0 \leq \pi_{1} \leq \pi_{2} \leq \cdots \leq \pi_{N}$.
- For any real-valued function f defined on \mathcal{X}, we are interested in the expectation of f under π, denoted by $\pi(f)=\sum_{x \in \mathcal{X}} f(x) \pi(x)$.
- Suppose that $X_{0}, X_{1}, \ldots, X_{n}, \ldots$ is a Markov chain generated by some transition matrix P with stationary distribution π, then the time average $\frac{1}{n} \sum_{k=0}^{n-1} f\left(X_{k}\right)$ is a reasonable approximation to $\pi(f)$.
- For the continuous-time, it is $\frac{1}{T} \int_{0}^{T} f\left(X_{t}\right) d t$.

Referring to [losifescu 1980] if P is irreducible, then for any initial distribution μ,

$$
\begin{aligned}
\nu(f, P, \pi) & =\lim _{n \rightarrow \infty} \operatorname{Var}_{\mu}\left[\frac{\sum_{k=0}^{n-1} f\left(X_{k}\right)}{\sqrt{n}}\right] \\
& =\left\langle\left(\frac{I+P}{I-P}\right) f, f\right\rangle_{\pi} \\
& =2\left\langle(I-P)^{-1} f, f\right\rangle_{\pi}-\langle f, f\rangle_{\pi},
\end{aligned}
$$

for all f with $\pi(f)=0$, where $\langle f, g\rangle$ is the weighted inner product defined by π. Note that the inverse $(I-P)^{-1}$ is taken over the space $\mathcal{N}=\{f: \pi(f)=0\}$. Regarding P as a theoretical algorithm, we would like to find P such that $\nu(f, P, \pi)$ is small.

Set $\mathcal{P}=\{P: \pi P=\pi\}$ and $\mathcal{R}=\{P: P$ is reversible w.r.t. $\pi\}$. Four

 questions arise naturally:Set $\mathcal{P}=\{P: \pi P=\pi\}$ and $\mathcal{R}=\{P: P$ is reversible w.r.t. $\pi\}$. Four questions arise naturally:

- Worse Case:

$$
\nu(P, \pi)=\sup _{f \in \mathcal{N}, \pi\left(f^{2}\right)=1} \nu(f, P, \pi),
$$

(i) Minimize $\nu(P, \pi)$ over all $P \in \mathcal{R}$.
(ii) Minimize $\nu(P, \pi)$ over all $P \in \mathcal{P}$.

Set $\mathcal{P}=\{P: \pi P=\pi\}$ and $\mathcal{R}=\{P: P$ is reversible w.r.t. $\pi\}$. Four questions arise naturally:

- Worse Case:

$$
\nu(P, \pi)=\sup _{f \in \mathcal{N}, \pi\left(f^{2}\right)=1} \nu(f, P, \pi)
$$

(i) Minimize $\nu(P, \pi)$ over all $P \in \mathcal{R}$.
(ii) Minimize $\nu(P, \pi)$ over all $P \in \mathcal{P}$.

- Average Case:

$$
\int_{f \in \mathcal{N}, \pi\left(f^{2}\right)=1} \nu(f, P, \pi) d S(f)
$$

(iii) Minimize $\int_{f \in \mathcal{N}, \pi\left(f^{2}\right)=1} \nu(f, P, \pi) d S(f)$ over all $P \in \mathcal{R}$.
(iv) Minimize $\int_{f \in \mathcal{N}, \pi\left(f^{2}\right)=1} \nu(f, P, \pi) d S(f)$ over all $P \in \mathcal{P}$.

Set $\mathcal{P}=\{P: \pi P=\pi\}$ and $\mathcal{R}=\{P: P$ is reversible w.r.t. $\pi\}$. Four questions arise naturally:

- Worse Case:

$$
\nu(P, \pi)=\sup _{f \in \mathcal{N}, \pi\left(f^{2}\right)=1} \nu(f, P, \pi)
$$

(i) Minimize $\nu(P, \pi)$ over all $P \in \mathcal{R}$.
(ii) Minimize $\nu(P, \pi)$ over all $P \in \mathcal{P}$.

- Average Case:

$$
\int_{f \in \mathcal{N}, \pi\left(f^{2}\right)=1} \nu(f, P, \pi) d S(f)
$$

(iii) Minimize $\int_{f \in \mathcal{N}, \pi\left(f^{2}\right)=1} \nu(f, P, \pi) d S(f)$ over all $P \in \mathcal{R}$.
(iv) Minimize $\int_{f \in \mathcal{N}, \pi\left(f^{2}\right)=1} \nu(f, P, \pi) d S(f)$ over all $P \in \mathcal{P}$.
(i) is solved by Frigessi et al. (1992), and (iv) is solved by Chen et al. (2012).

Theorem (Hwang 2005)

$$
\begin{equation*}
\int_{f \in \mathcal{N}, \pi\left(f^{2}\right)=1} \nu(f, P) d S(f)=\frac{2}{N-1} \operatorname{Trace}(I-P)^{-1}-1 . \tag{1}
\end{equation*}
$$

Theorem (Hwang 2005)

$$
\begin{equation*}
\int_{f \in \mathcal{N}, \pi\left(f^{2}\right)=1} \nu(f, P) d S(f)=\frac{2}{N-1} \operatorname{Trace}(I-P)^{-1}-1 . \tag{1}
\end{equation*}
$$

Lemma

$$
\operatorname{Trace}(I-P)^{-1}=\sum_{j} \pi_{j} E_{i}\left(T_{j}\right)
$$

where T_{j} is the first hitting time to state j.

Theorem (Chen et al. 2012)

$$
\operatorname{tr}\left(I-P_{N \times N}\right)^{-1} \geq \sum_{i=1}^{N}(i-1) \pi_{i}
$$

Theorem (Chen et al. 2012)

$$
\operatorname{tr}\left(I-P_{N \times N}\right)^{-1} \geq \sum_{i=1}^{N}(i-1) \pi_{i}
$$

Theorem (Chen et al. 2012)

There are 2^{N-2} transition matrices reaching the minimum.
Furthermore, for each transition matrix reaching the minimum,

$$
p_{i, i}=\left\{\begin{array}{ll}
0 & i<N \\
\frac{\pi_{N}-\pi_{N-1}}{\pi_{N}} & i=N
\end{array},\right.
$$

and one of the following holds:
(1) $p_{1,2}=1$ and $p_{i, 1}=\frac{\pi_{1}}{\pi_{i}}$ for some i.
(2) $p_{2,1}=\frac{\pi_{1}}{\pi_{2}}$ and $p_{1, j}=1$ for some j

One of these optimal transition matrices is of the form:

$$
P=\left(\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \tag{2}\\
0 & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1 \\
\frac{\pi_{1}}{\pi_{N}} & \frac{\pi_{2}-\pi_{1}}{\pi_{N}} & \frac{\pi_{3}-\pi_{2}}{\pi_{N}} & \cdots & \frac{\pi_{N}-\pi_{N-1}}{\pi_{N}}
\end{array}\right)
$$

The transition rate $q_{i, j}$ is the rate that X_{t} from i to j.

$$
\operatorname{Pr}\left(X_{t+h}=j \mid X_{t}=i\right)=q_{i, j} h+o(h)
$$

Let $q_{i, i} \equiv-\sum_{j \neq i} q_{i, j}$. Then

$$
\operatorname{Pr}\left(X_{t+h}=i \mid X_{t}=i\right)=1-q_{i, i} h+o(h) .
$$

The goal is to obtain optimal transition rate matrix $Q=\left(q_{i, j}\right)$ which minimize the averaged asymptotic variance.

The transition rate $q_{i, j}$ is the rate that X_{t} from i to j.

$$
\operatorname{Pr}\left(X_{t+h}=j \mid X_{t}=i\right)=q_{i, j} h+o(h)
$$

Let $q_{i, i} \equiv-\sum_{j \neq i} q_{i, j}$. Then

$$
\operatorname{Pr}\left(X_{t+h}=i \mid X_{t}=i\right)=1-q_{i, i} h+o(h) .
$$

The goal is to obtain optimal transition rate matrix $Q=\left(q_{i, j}\right)$ which minimize the averaged asymptotic variance.
To minimize the averaged asymptotic variance is equivalent to minimize

$$
\begin{align*}
\text { Mean of the first hitting time } & =\sum_{j} \pi_{j} E_{\pi}\left(T_{j}\right) \tag{3}\\
& =\sum_{j} \pi_{j} E_{i}\left(T_{j}\right) \quad \forall i . \tag{4}
\end{align*}
$$

- We have to impose a condition on transition rate, otherwise increasing the transition rate will lower the asymptotic variance.
- We have to impose a condition on transition rate, otherwise increasing the transition rate will lower the asymptotic variance.
- mean transition rate: $-\sum_{i} \pi_{i} q_{i, i}=1$
- mean waiting time: $-\sum_{i} \pi_{i} / q_{i, i}=1$
- We have to impose a condition on transition rate, otherwise increasing the transition rate will lower the asymptotic variance.
- mean transition rate: $-\sum_{i} \pi_{i} q_{i, i}=1$
- mean waiting time: $-\sum_{i} \pi_{i} / q_{i, i}=1$

For the case $N=2$,

$$
\left(\begin{array}{cc}
-\alpha & \alpha \\
\beta & -\beta
\end{array}\right)
$$

- We have to impose a condition on transition rate, otherwise increasing the transition rate will lower the asymptotic variance.
- mean transition rate: $-\sum_{i} \pi_{i} q_{i, i}=1$
- mean waiting time: $-\sum_{i} \pi_{i} / q_{i, i}=1$

For the case $N=2$,

$$
\left(\begin{array}{cc}
-\alpha & \alpha \\
\beta & -\beta
\end{array}\right)
$$

To satisfy the invariant property and the mean transition rate being 1,

$$
\begin{aligned}
-\pi_{1} \alpha+\pi_{2} \beta & =0 \\
\pi_{1} \alpha+\pi_{2} \beta & =1 .
\end{aligned}
$$

- We have to impose a condition on transition rate, otherwise increasing the transition rate will lower the asymptotic variance.
- mean transition rate: $-\sum_{i} \pi_{i} q_{i, i}=1$
- mean waiting time: $-\sum_{i} \pi_{i} / q_{i, i}=1$

For the case $N=2$,

$$
\left(\begin{array}{cc}
-\alpha & \alpha \\
\beta & -\beta
\end{array}\right)
$$

To satisfy the invariant property and the mean transition rate being 1 ,

$$
\begin{aligned}
-\pi_{1} \alpha+\pi_{2} \beta & =0 \\
\pi_{1} \alpha+\pi_{2} \beta & =1 .
\end{aligned}
$$

Solve the equations above:

$$
\left(\begin{array}{cc}
-\frac{1}{2 \pi_{1}} & \frac{1}{2 \pi_{1}} \\
\frac{1}{2 \pi_{2}} & -\frac{1}{2 \pi_{2}}
\end{array}\right)
$$

On the other hand, to satisfy the invariant property and the mean waiting time being 1 ,

$$
\begin{aligned}
-\pi_{1} \alpha+\pi_{2} \beta & =0 \\
\frac{\pi_{1}}{\alpha}+\frac{\pi_{2}}{\beta} & =1
\end{aligned}
$$

On the other hand, to satisfy the invariant property and the mean waiting time being 1 ,

$$
\begin{aligned}
-\pi_{1} \alpha+\pi_{2} \beta & =0 \\
\frac{\pi_{1}}{\alpha}+\frac{\pi_{2}}{\beta} & =1
\end{aligned}
$$

Solve the equations above:

$$
\left(\begin{array}{cc}
-\frac{\pi_{1}^{2}+\pi_{2}^{2}}{\pi_{1}} & \frac{\pi_{1}^{2}+\pi_{2}^{2}}{\pi_{1}} \\
\frac{\pi_{1}^{2}+\pi_{2}^{2}}{\pi_{2}} & -\frac{\pi_{1}^{2}+\pi_{2}^{2}}{\pi_{2}}
\end{array}\right) .
$$

Conjecture

For any transition rate matrix $Q_{N \times N}=\left(q_{i, j}\right)_{N \times N}$ which π is invariant to, if

$$
\begin{equation*}
-\sum_{i} \pi_{i} q_{i, i}=1 \tag{5}
\end{equation*}
$$

then

$$
\begin{equation*}
\sum_{i=1}^{N} E_{\pi}\left(T_{j}\right) \geq N \sum_{i<j} \pi_{i} \pi_{j} \tag{6}
\end{equation*}
$$

Conjecture

For any transition rate matrix $Q_{N \times N}=\left(q_{i, j}\right)_{N \times N}$ which π is invariant to, if

$$
\begin{equation*}
-\sum_{i} \pi_{i} q_{i, i}=1 \tag{5}
\end{equation*}
$$

then

$$
\begin{equation*}
\sum_{i=1}^{N} E_{\pi}\left(T_{j}\right) \geq N \sum_{i<j} \pi_{i} \pi_{j} \tag{6}
\end{equation*}
$$

For the discrete-time

$$
\sum_{i=1}^{N} E_{\pi}\left(T_{j}\right) \geq \sum_{i}(i-1) \pi_{i}
$$

Let T_{i}^{+}be the first return time.

$$
T_{i}^{+}=\min \left\{t>T_{\backslash \backslash i}: X_{t}=i\right\} .
$$

Let T_{i}^{+}be the first return time.

$$
T_{i}^{+}=\min \left\{t>T_{I \backslash i}: X_{t}=i\right\} .
$$

The expected escaping time is $-\frac{1}{q_{i i}}$.

Let T_{i}^{+}be the first return time.

$$
T_{i}^{+}=\min \left\{t>T_{\backslash \backslash i}: X_{t}=i\right\} .
$$

The expected escaping time is $-\frac{1}{q_{i i}}$.

Lemma

$$
E_{i}\left(T_{i}^{+}\right)=-\frac{1}{q_{i i} \pi_{i}} .
$$

Theorem

For any transition rate matrix $Q_{N \times N}=\left(q_{i, j}\right)_{N \times N}$ which π is invariant to, if

$$
\begin{equation*}
-\pi_{i} q_{i, i}=1 / N \tag{7}
\end{equation*}
$$

then

$$
\begin{equation*}
\sum_{i=1}^{N} E_{\pi}\left(T_{j}\right) \geq N \sum_{i<j} \pi_{i} \pi_{j} \tag{8}
\end{equation*}
$$

For the case $N=2$,

$$
\left(\begin{array}{cc}
-\alpha & \alpha \\
\beta & -\beta
\end{array}\right)
$$

For the case $N=2$,

$$
\left(\begin{array}{cc}
-\alpha & \alpha \\
\beta & -\beta
\end{array}\right)
$$

To satisfy the invariant property and the mean transition rate being 1 ,

$$
\begin{aligned}
-\pi_{1} \alpha+\pi_{2} \beta & =0 \\
\pi_{1} \alpha+\pi_{2} \beta & =1 .
\end{aligned}
$$

For the case $N=2$,

$$
\left(\begin{array}{cc}
-\alpha & \alpha \\
\beta & -\beta
\end{array}\right)
$$

To satisfy the invariant property and the mean transition rate being 1,

$$
\begin{aligned}
-\pi_{1} \alpha+\pi_{2} \beta & =0 \\
\pi_{1} \alpha+\pi_{2} \beta & =1 .
\end{aligned}
$$

Solve the equations above:

$$
\left(\begin{array}{cc}
-\frac{1}{2 \pi_{1}} & \frac{1}{2 \pi_{1}} \\
\frac{1}{2 \pi_{2}} & -\frac{1}{2 \pi_{2}}
\end{array}\right)
$$

For the case $N=2$,

$$
\left(\begin{array}{cc}
-\alpha & \alpha \\
\beta & -\beta
\end{array}\right)
$$

To satisfy the invariant property and the mean transition rate being 1 ,

$$
\begin{aligned}
-\pi_{1} \alpha+\pi_{2} \beta & =0 \\
\pi_{1} \alpha+\pi_{2} \beta & =1 .
\end{aligned}
$$

Solve the equations above:

$$
\left(\begin{array}{cc}
-\frac{1}{2 \pi_{1}} & \frac{1}{2 \pi_{1}} \\
\frac{1}{2 \pi_{2}} & -\frac{1}{2 \pi_{2}}
\end{array}\right)
$$

Then $E_{1} T_{2}=2 \pi_{1}$, and

$$
\pi_{1} E_{1}\left(T_{1}\right)+\pi_{2} E_{2}\left(T_{2}\right)=2 \pi_{1} \pi_{2}
$$

Next, we assume that (6) holds for $N=n$. We claim that it also holds for for $N=n+1$.

Next, we assume that (6) holds for $N=n$. We claim that it also holds for for $N=n+1$.

Let $\mathcal{X}=\{1,2, \cdots, n+1\}$ and π be a fixed probability defined on \mathcal{X} with $0<\pi_{1} \leq \pi_{2} \leq \cdots \leq \pi_{n+1}$. Suppose that X_{t} is a Markov process generated by some transition rate matrix Q with invariant distribution π.

Next, we assume that (6) holds for $N=n$. We claim that it also holds for for $N=n+1$.

Let $\mathcal{X}=\{1,2, \cdots, n+1\}$ and π be a fixed probability defined on \mathcal{X} with $0<\pi_{1} \leq \pi_{2} \leq \cdots \leq \pi_{n+1}$. Suppose that X_{t} is a Markov process generated by some transition rate matrix Q with invariant distribution π.

Define

$$
T_{i}=\inf \left\{t \geq 0: X_{t}=i\right\}
$$

Next, we assume that (6) holds for $N=n$. We claim that it also holds for for $N=n+1$.

Let $\mathcal{X}=\{1,2, \cdots, n+1\}$ and π be a fixed probability defined on \mathcal{X} with $0<\pi_{1} \leq \pi_{2} \leq \cdots \leq \pi_{n+1}$. Suppose that X_{t} is a Markov process generated by some transition rate matrix Q with invariant distribution π.

Define

$$
T_{i}=\inf \left\{t \geq 0: X_{t}=i\right\}
$$

To compare the case of $N=n+1$ with $N=n$, we consider a new
process Y_{t} which is essentially X_{t} ignoring all the time staying in state 1.

Let $\tau_{0}=0$. Iteratively, define

$$
\rho_{k+1}=\min _{t \geq \tau_{k}}\left\{t \mid X_{t}=1\right\}
$$

be the first time after τ_{k} that $X_{t}=1$, and

$$
\tau_{k+1}=\min _{t>\rho_{k+1}}\left\{t \mid X_{t} \neq 1\right\}
$$

be the first time after ρ_{k+1} that $X_{t} \neq 1$. That is, $\left[\rho_{k}, \tau_{k}\right.$)'s are the time intervals that $X_{t}=1$. Now define

$$
\sigma_{t}=\max _{k}\left\{k \mid \sum_{i=1}^{k}\left(\rho_{i}-\tau_{i-1}\right)<t\right\}
$$

and

$$
\eta_{t}=t-\sum_{i=1}^{\sigma_{t}}\left(\rho_{i}-\tau_{i-1}\right)
$$

Then the time of $X_{s} \neq 1$ before $\tau_{\sigma_{t}}+\eta_{t}$ is t. Therefore, define $\left\{Y_{t}\right\}$ as

$$
Y_{t}=X_{\tau_{\sigma_{t}}+\eta_{t}} .
$$

Lemma

$\left\{Y_{t}\right\}$ is a Markov process on the state space $\{2,3, \cdots, n+1\}$ with the transition matrix $R=\left(r_{i, j}\right)$

$$
r_{i, j}=q_{i, j}-\frac{q_{i, 1} \cdot q_{1, j}}{q_{1,1}} \quad \forall i, j .
$$

Furthermore,

$$
\mu R=0
$$

with

$$
\mu_{i}=\frac{\pi_{i}}{1-\pi_{1}} \quad 2 \leq i \leq n+1
$$

Similar to T_{i}, define the first hitting time for Y_{t} as

$$
S_{i}=\inf \left\{t \geq 0: Y_{t}=i\right\} .
$$

Similar to T_{i}, define the first hitting time for Y_{t} as

$$
S_{i}=\inf \left\{t \geq 0: Y_{t}=i\right\} .
$$

Lemma

For $i \neq k$ and arbitrary j,

$$
E_{i}\left(\text { time staying in } j \text { before } T_{k}\right)=\pi_{j}\left(E_{i}\left(T_{k}\right)+E_{k}\left(T_{j}\right)-E_{i}\left(T_{j}\right)\right) .
$$

Similar to T_{i}, define the first hitting time for Y_{t} as

$$
S_{i}=\inf \left\{t \geq 0: Y_{t}=i\right\}
$$

Lemma

For $i \neq k$ and arbitrary j,

$$
E_{i}\left(\text { time staying in } j \text { before } T_{k}\right)=\pi_{j}\left(E_{i}\left(T_{k}\right)+E_{k}\left(T_{j}\right)-E_{i}\left(T_{j}\right)\right) .
$$

Lemma

$$
\sum_{i=2}^{n+1} \mu_{i} E_{\mu}\left(S_{i}\right)=\left[\sum_{i=1}^{n+1} \pi_{i} E_{\pi}\left(T_{i}\right)\right]-\frac{\pi_{1}}{1-\pi_{1}} E_{\pi}\left(T_{1}\right)
$$

Similar to T_{i}, define the first hitting time for Y_{t} as

$$
S_{i}=\inf \left\{t \geq 0: Y_{t}=i\right\}
$$

Lemma

For $i \neq k$ and arbitrary j,

$$
E_{i}\left(\text { time staying in } j \text { before } T_{k}\right)=\pi_{j}\left(E_{i}\left(T_{k}\right)+E_{k}\left(T_{j}\right)-E_{i}\left(T_{j}\right)\right) .
$$

Lemma

$$
\sum_{i=2}^{n+1} \mu_{i} E_{\mu}\left(S_{i}\right)=\left[\sum_{i=1}^{n+1} \pi_{i} E_{\pi}\left(T_{i}\right)\right]-\frac{\pi_{1}}{1-\pi_{1}} E_{\pi}\left(T_{1}\right)
$$

$$
-\sum_{i=2}^{n+1} \mu_{i} r_{i, i} \neq 1
$$

Lemma

$$
-\sum_{i=2}^{n+1} \mu_{i} r_{i, i} \leq \frac{n}{n+1} \cdot \frac{1}{1-\pi_{1}}
$$

Lemma

$$
-\sum_{i=2}^{n+1} \mu_{i} r_{i, i} \leq \frac{n}{n+1} \cdot \frac{1}{1-\pi_{1}}
$$

$$
\begin{aligned}
-\sum_{i=2}^{n+1} \mu_{i} r_{i, i} & =-\frac{1}{1-\pi_{1}} \sum_{i=2}^{n+1} \pi_{i}\left(q_{i, i}-\frac{q_{i, 1} \cdot q_{1, i}}{q_{1,1}}\right) \\
& \leq-\frac{1}{1-\pi_{1}} \sum_{i=2}^{n+1} \pi_{i} q_{i, i}
\end{aligned}
$$

Lemma

$$
-\sum_{i=2}^{n+1} \mu_{i} r_{i, i} \leq \frac{n}{n+1} \cdot \frac{1}{1-\pi_{1}}
$$

$$
\begin{aligned}
-\sum_{i=2}^{n+1} \mu_{i} r_{i, i} & =-\frac{1}{1-\pi_{1}} \sum_{i=2}^{n+1} \pi_{i}\left(q_{i, i}-\frac{q_{i, 1} \cdot q_{1, i}}{q_{1,1}}\right) \\
& \leq-\frac{1}{1-\pi_{1}} \sum_{i=2}^{n+1} \pi_{i} q_{i, i}
\end{aligned}
$$

With the assumption $\pi_{i} q_{i, i}=-\frac{1}{n+1}$, we have the lemma.

Lemma

$$
-\sum_{i=2}^{n+1} \mu_{i} r_{i, i} \leq \frac{n}{n+1} \cdot \frac{1}{1-\pi_{1}}
$$

$$
\begin{aligned}
-\sum_{i=2}^{n+1} \mu_{i} r_{i, i} & =-\frac{1}{1-\pi_{1}} \sum_{i=2}^{n+1} \pi_{i}\left(q_{i, i}-\frac{q_{i, 1} \cdot q_{1, i}}{q_{1,1}}\right) \\
& \leq-\frac{1}{1-\pi_{1}} \sum_{i=2}^{n+1} \pi_{i} q_{i, i}
\end{aligned}
$$

With the assumption $\pi_{i} q_{i, i}=-\frac{1}{n+1}$, we have the lemma.
$\sum_{i=2}^{n+1} \mu_{i} E_{\mu}\left(S_{i}\right) \geq\left(1-\pi_{1}\right) \frac{n+1}{n} \cdot n \sum_{i<j} \mu_{i} \mu_{j}=\frac{1}{1-\pi_{1}}(n+1) \sum_{i<j \text { and } i, j \neq 1} \pi_{i} \pi_{j}$

$$
\left(1-\pi_{1}\right)\left[\sum_{i=1}^{n+1} \pi_{i} E_{\pi}\left(T_{i}\right)\right]-\pi_{1} E_{\pi}\left(T_{1}\right) \geq(n+1) \sum_{i<j \text { and } i, j \neq 1} \pi_{i} \pi_{j} .
$$

$$
\left(1-\pi_{1}\right)\left[\sum_{i=1}^{n+1} \pi_{i} E_{\pi}\left(T_{i}\right)\right]-\pi_{1} E_{\pi}\left(T_{1}\right) \geq(n+1) \sum_{i<j \text { and } i, j \neq 1} \pi_{i} \pi_{j}
$$

True of ignoring any k.

$$
\left(1-\pi_{1}\right)\left[\sum_{i=1}^{n+1} \pi_{i} E_{\pi}\left(T_{i}\right)\right]-\pi_{1} E_{\pi}\left(T_{1}\right) \geq(n+1) \sum_{i<j \text { and } i, j \neq 1} \pi_{i} \pi_{j} .
$$

True of ignoring any k.

$$
\left(1-\pi_{k}\right)\left[\sum_{i=1}^{n+1} \pi_{i} E_{\pi}\left(T_{k}\right)\right]-\pi_{k} E_{\pi}\left(T_{k}\right) \geq(n+1) \sum_{i<j} \text { and } i, j \neq k
$$

$$
\left(1-\pi_{1}\right)\left[\sum_{i=1}^{n+1} \pi_{i} E_{\pi}\left(T_{i}\right)\right]-\pi_{1} E_{\pi}\left(T_{1}\right) \geq(n+1) \sum_{i<j} \pi_{i} \pi_{j} .
$$

True of ignoring any k.

$$
\left(1-\pi_{k}\right)\left[\sum_{i=1}^{n+1} \pi_{i} E_{\pi}\left(T_{k}\right)\right]-\pi_{k} E_{\pi}\left(T_{k}\right) \geq(n+1) \sum_{i<j \text { and } i, j \neq k} \pi_{i} \pi_{j} .
$$

Now take sum over k :

$$
\sum_{k}\left[\left(1-\pi_{k}\right)\left[\sum_{i=1}^{n+1} \pi_{i} E_{\pi}\left(T_{k}\right)\right]-\pi_{k} E_{\pi}\left(T_{k}\right)\right] \geq(n+1) \sum_{k} \sum_{i<j} \text { and }_{i, j \neq k} \pi_{i} \pi_{j}
$$

$$
Q=\left(\begin{array}{ccccc}
-\frac{1}{N \pi_{1}} & \frac{1}{N \pi_{1}} & 0 & \cdots & 0 \\
0 & -\frac{1}{N \pi_{2}} & \frac{1}{N \pi_{2}} & \cdots & 0 \\
\vdots & 0 & \ddots & \ddots & \vdots \\
0 & \vdots & \ddots & \ddots & \frac{1}{N \pi_{N-1}} \\
\frac{1}{N \pi_{N}} & 0 & \cdots & 0 & -\frac{1}{N \pi_{N}}
\end{array}\right)
$$

$$
Q=\left(\begin{array}{ccccc}
-\frac{1}{N \pi_{1}} & \frac{1}{N \pi_{1}} & 0 & \cdots & 0 \\
0 & -\frac{1}{N \pi_{2}} & \frac{1}{N \pi_{2}} & \cdots & 0 \\
\vdots & 0 & \ddots & \ddots & \vdots \\
0 & \vdots & \ddots & \ddots & \frac{1}{N \pi_{N-1}} \\
\frac{1}{N \pi_{N}} & 0 & \cdots & 0 & -\frac{1}{N \pi_{N}}
\end{array}\right)
$$

Then $E_{i}\left(T_{i+1}\right)=N \pi_{i}$ for $i<N$.

$$
Q=\left(\begin{array}{ccccc}
-\frac{1}{N \pi_{1}} & \frac{1}{N \pi_{1}} & 0 & \cdots & 0 \\
0 & -\frac{1}{N \pi_{2}} & \frac{1}{N \pi_{2}} & \cdots & 0 \\
\vdots & 0 & \ddots & \ddots & \vdots \\
0 & \vdots & \ddots & \ddots & \frac{1}{N \pi_{N-1}} \\
\frac{1}{N \pi_{N}} & 0 & \cdots & 0 & -\frac{1}{N \pi_{N}}
\end{array}\right)
$$

Then $E_{i}\left(T_{i+1}\right)=N \pi_{i}$ for $i<N$.

$$
E_{1}\left(T_{i}\right)=\sum_{j=1}^{i-1} E_{j}\left(T_{j+1}\right)=N \sum_{j=1}^{i-1} \pi_{j}
$$

$$
Q=\left(\begin{array}{ccccc}
-\frac{1}{N \pi_{1}} & \frac{1}{N \pi_{1}} & 0 & \cdots & 0 \\
0 & -\frac{1}{N \pi_{2}} & \frac{1}{N \pi_{2}} & \cdots & 0 \\
\vdots & 0 & \ddots & \ddots & \vdots \\
0 & \vdots & \ddots & \ddots & \frac{1}{N \pi_{N-1}} \\
\frac{1}{N \pi_{N}} & 0 & \cdots & 0 & -\frac{1}{N \pi_{N}}
\end{array}\right)
$$

Then $E_{i}\left(T_{i+1}\right)=N \pi_{i}$ for $i<N$.

$$
E_{1}\left(T_{i}\right)=\sum_{j=1}^{i-1} E_{j}\left(T_{j+1}\right)=N \sum_{j=1}^{i-1} \pi_{j}
$$

Therefore,

$$
\sum_{i} \pi_{i} E_{1}\left(T_{i}\right)=\sum_{i} \pi_{i} N \sum_{j=1}^{i-1} \pi_{j}=N \sum_{i<j} \pi_{i} \pi_{j}
$$

$$
Q=\left(\begin{array}{ccccc}
-\frac{1}{N \pi_{1}} & \frac{1}{N \pi_{1}} & 0 & \cdots & 0 \\
0 & -\frac{1}{N \pi_{2}} & \frac{1}{N \pi_{2}} & \cdots & 0 \\
\vdots & 0 & \ddots & \ddots & \vdots \\
0 & \vdots & \ddots & \ddots & \frac{1}{N \pi_{N-1}} \\
\frac{1}{N \pi_{N}} & 0 & \cdots & 0 & -\frac{1}{N \pi_{N}}
\end{array}\right)
$$

Then $E_{i}\left(T_{i+1}\right)=N \pi_{i}$ for $i<N$.

$$
E_{1}\left(T_{i}\right)=\sum_{j=1}^{i-1} E_{j}\left(T_{j+1}\right)=N \sum_{j=1}^{i-1} \pi_{j}
$$

Therefore,

$$
\sum_{i} \pi_{i} E_{1}\left(T_{i}\right)=\sum_{i} \pi_{i} N \sum_{j=1}^{i-1} \pi_{j}=N \sum_{i<j} \pi_{i} \pi_{j}
$$

There are ($\mathrm{N}-1$)! optimal transition rate matrices.

- Obtain the lower bound of the asymptotic variance for continuous-time Markov process
- Obtain the lower bound of the asymptotic variance for continuous-time Markov process
- Present the optimal transition rate matrices which reach the lower bound
- Obtain the lower bound of the asymptotic variance for continuous-time Markov process
- Present the optimal transition rate matrices which reach the lower bound
$--\pi_{i} q_{i, i}=1 / N$ is the optimal case?
- Obtain the lower bound of the asymptotic variance for continuous-time Markov process
- Present the optimal transition rate matrices which reach the lower bound
- $-\pi_{i} q_{i, i}=1 / N$ is the optimal case?

Compare the results between Discrete and Continuous:

$$
\begin{aligned}
N \sum_{i<j} \pi_{i} \pi_{j} & =N \sum_{j=1}^{N} \sum_{i=1}^{j-1} \pi_{i} \pi_{j} \\
& =\sum_{j=1}^{N} \pi_{j} N \sum_{i=1}^{j-1} \pi_{i} \\
& \leq \sum_{j=1}^{N} \pi_{j}(j-1)
\end{aligned}
$$

The corresponding transition rate is $\pi_{N-1}+\sum_{k=1}^{N-1} \pi_{k}$.

The corresponding transition rate is $\pi_{N-1}+\sum_{k=1}^{N-1} \pi_{k}$.

$$
\begin{aligned}
\pi_{N-1}+\sum_{k=1}^{N-1} \pi_{k} & =\sum_{k=1}^{j-1} \pi_{k}+\pi_{N-1}+\sum_{k=j}^{N-1} \pi_{k} \\
& \geq \sum_{k=1}^{j-1} \pi_{k}+(N-j+1) \cdot \frac{1}{j-1} \sum_{k=1}^{j-1} \pi_{k}=\frac{N}{j-1} \sum_{k=1}^{j-1} \pi_{k}
\end{aligned}
$$

The corresponding transition rate is $\pi_{N-1}+\sum_{k=1}^{N-1} \pi_{k}$.

$$
\begin{aligned}
& \pi_{N-1}+\sum_{k=1}^{N-1} \pi_{k}=\sum_{k=1}^{j-1} \pi_{k}+\pi_{N-1}+\sum_{k=j}^{N-1} \pi_{k} \\
& \geq \sum_{k=1}^{j-1} \pi_{k}+(N-j+1) \cdot \frac{1}{j-1} \sum_{k=1}^{j-1} \pi_{k}=\frac{N}{j-1} \sum_{k=1}^{j-1} \pi_{k}, \\
& \frac{N}{\pi_{N-1}+\sum_{k=1}^{N-1} \pi_{k}} \sum_{i<j} \pi_{i} \pi_{j}=\sum_{j=1}^{N} \pi_{j} N \sum_{i=1}^{j-1} \pi_{i} \frac{1}{\pi_{N-1}+\sum_{k=1}^{N-1} \pi_{k}} \\
& \leq \sum_{j=1}^{N} \pi_{j} N \sum_{i=1}^{j-1} \pi_{i} \frac{1}{\frac{N}{j-1} \sum_{k=1}^{j-1} \pi_{k}} \\
& =\sum_{j=1}^{N} \pi_{j}(j-1) \text {. }
\end{aligned}
$$

Thank You

