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The directed percolation (1957) on square lattice.
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Domany-Kinzel model (1981)
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Given any α ∈ R, let Nα = bαNc = sup{m ∈ Z : m ≤ αN} with
N ∈ Z+.

Define the two point correlation function

τ(Nα,N) = Pp

(
(0, 0)→ (Nα,N)

)
.

Theorem (Domany and Kinzel (1981)) Given any α > 0, there is
αc = q/p := (1− p)/p such that

lim
N→∞

τ(Nα,N) =


1 α > αc

1
2 α = αc

0 α < αc

.
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More precisely, for α < αc and α close to αc , the scaling theory of
critical behavior asserts that the singular part of τ(Nα,N) varies
asymptotically as

τ(Nα,N)≈ exp(
−BN

(αc − α)−ν
) ,

where f1,α(N) ≈ f2,α(N) means that
limN→∞ log f1,α(N)/ log f2,α(N) = 1. The constants B depending
on p and critical exponent ν ∈ (0,∞) is universal constant.

Theorem (Wu and Stanley (1982)) ν = 2 and (Chen (2011))
B = q/p2.
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In this talk we consider generalized Domany-Kinzel model as
follows:

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1 1 1 1 1 1

1

1

1 1 1 1 1 1

p1 p2 p1 p2 p1 p2 p1 p2

p2 p1 p2 p1 p2 p1 p2 p1

p1 p2 p2 p1 p2 p1

p2 p1 p2 p1 p2 p1 p2 p1

p1 p2

Lung-Chi Chen Asymptotic behavior for a generalized Domany-Kinzel model



Main results

Let

τ(Nα,N) = Pp1,p2

(
(0, 0)→ (Nα,N)

)
.

Question: For our model, αc =? B =? and ν =?
For notation convenience, let us define q1 = 1− p1, q2 = 1− p2
and

a = p21q
2
2 + p22q

2
1 ,

b = p2q1 + p1q2 = p1 + p2 − 2p1p2,

c = p2q1 − p1q2 = p2 − p1,

σ2 =
4(p1q1 + p2q2)

(p1 + p2)3
.
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Theorem 1. In our model, given p1 ∈ [0, 1) and p2 ∈ [0, 1) with
p1 ∨ p2 > 0 and the critical aspect ratio αc = q1+q2

p1+p2
, we have

τ(Nα,N) ≈ exp
(
−NI (α)

)
for α < αc ,

τ(Nα,N) = 1
2 + O( 1√

N
) for α = αc ,

1− τ(Nα,N) ≈ exp
(
−NI (α)

)
for α > αc ,

where

I (α) = α ln tα − ln
(btα +

√
c2t2α + 4p1p2

2(1− q1q2t2α)

)
,

and

tα =


(
2αc2−b2(1+α)+b

√
b2(α+1)2−4αc2

2q1q2c2(1+α)

) 1
2

if p1 6= p2,

α
(1−p)(1+α) . if p1 = p2 = p.
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− 1
2 ln(p1p2)

1 tα

I(α)
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Remark 1 Theorem 1 leads to the following information:
1. I (α) is a non-negative, convex function with minimum α = αc .
Moreover tαc = 1 and I (αc) = 0.

2. The model reduces to the Domany-Kinzel model on the square
lattice when p1 = p2 = p and q = 1− p. We have tα = α

q(α+1)

and I (α) can be simplified as

I (α) = α ln
( α

q(1 + α)

)
− ln

(
p(1 + α)

)
.

3. The model reduces to the Domany-Kinzel model on the
honeycomb lattice as bricks when either p1 = 0, p2 = p or
p1 = p, p2 = 0, and let q = 1− p with α > 1. We obtain

αc = (q + 1)/p and tα =
√

α−1
q(α+1) . Then I (α) can be simplified as

I (α) = (
α− 1

2
) ln
( α− 1

q(α + 1)

)
− ln

(p(α + 1)

2

)
.
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Using Taylor formula and the first item in Remark 1, we have

I (α) = I (αc)︸ ︷︷ ︸
=0

+ I ′(αc)︸ ︷︷ ︸
=0

(α− αc) +
I ′′(αc)

2
(α− αc)2 + O(α− αc)3

=
I ′′(αc)

2
(α− αc)2 + O(α− αc)3.

For the Domany-Kinzel model on the square lattice, we have
I ′′(α) = 1

α(α+1) , and hence I ′′(αc) = p2/q.

For the
Domany-Kinzel model on the honeycomb lattice as bricks, we have
I ′′(α) = 1

α2−1 , and hence I ′′(αc) = p2/(4q). However, the
function I ′′(α) does not have a simple expression in general. In the
second main theorem, we estimate the upper bound and lower
bound of I (α) as α near αc , and we need the definition

α =
−1 +

√
(2αc + 1)2 − 4σ2

2
.

Lung-Chi Chen Asymptotic behavior for a generalized Domany-Kinzel model



Using Taylor formula and the first item in Remark 1, we have

I (α) = I (αc)︸ ︷︷ ︸
=0

+ I ′(αc)︸ ︷︷ ︸
=0

(α− αc) +
I ′′(αc)

2
(α− αc)2 + O(α− αc)3

=
I ′′(αc)

2
(α− αc)2 + O(α− αc)3.

For the Domany-Kinzel model on the square lattice, we have
I ′′(α) = 1

α(α+1) , and hence I ′′(αc) = p2/q. For the
Domany-Kinzel model on the honeycomb lattice as bricks, we have
I ′′(α) = 1

α2−1 , and hence I ′′(αc) = p2/(4q).

However, the
function I ′′(α) does not have a simple expression in general. In the
second main theorem, we estimate the upper bound and lower
bound of I (α) as α near αc , and we need the definition

α =
−1 +

√
(2αc + 1)2 − 4σ2

2
.

Lung-Chi Chen Asymptotic behavior for a generalized Domany-Kinzel model



Using Taylor formula and the first item in Remark 1, we have

I (α) = I (αc)︸ ︷︷ ︸
=0

+ I ′(αc)︸ ︷︷ ︸
=0

(α− αc) +
I ′′(αc)

2
(α− αc)2 + O(α− αc)3

=
I ′′(αc)

2
(α− αc)2 + O(α− αc)3.

For the Domany-Kinzel model on the square lattice, we have
I ′′(α) = 1

α(α+1) , and hence I ′′(αc) = p2/q. For the
Domany-Kinzel model on the honeycomb lattice as bricks, we have
I ′′(α) = 1

α2−1 , and hence I ′′(αc) = p2/(4q). However, the
function I ′′(α) does not have a simple expression in general.

In the
second main theorem, we estimate the upper bound and lower
bound of I (α) as α near αc , and we need the definition

α =
−1 +

√
(2αc + 1)2 − 4σ2

2
.

Lung-Chi Chen Asymptotic behavior for a generalized Domany-Kinzel model



Using Taylor formula and the first item in Remark 1, we have

I (α) = I (αc)︸ ︷︷ ︸
=0

+ I ′(αc)︸ ︷︷ ︸
=0

(α− αc) +
I ′′(αc)

2
(α− αc)2 + O(α− αc)3

=
I ′′(αc)

2
(α− αc)2 + O(α− αc)3.

For the Domany-Kinzel model on the square lattice, we have
I ′′(α) = 1

α(α+1) , and hence I ′′(αc) = p2/q. For the
Domany-Kinzel model on the honeycomb lattice as bricks, we have
I ′′(α) = 1

α2−1 , and hence I ′′(αc) = p2/(4q). However, the
function I ′′(α) does not have a simple expression in general. In the
second main theorem, we estimate the upper bound and lower
bound of I (α) as α near αc , and we need the definition

α =
−1 +

√
(2αc + 1)2 − 4σ2

2
.

Lung-Chi Chen Asymptotic behavior for a generalized Domany-Kinzel model



It is easy to see that α ∈ [0, αc) and particularly α = 0 iff p1 = p2.
Furthermore, define

Up1p2 =

{
1√
p1p2

if p1p2 6= 0

∞ if p1p2 = 0
.
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Theorem 2 Let p1 ∈ [0, 1) and p2 ∈ [0, 1) with p1 ∨ p2 > 0 and
p1 ∧ p2 < 1. We have

1
2σ2 (αc − α)2

1 + 2
σ2 (αc − α)

≤ I (α) ≤
1

2σ2 (αc − α)2

1− 1
σ2 (αc + α + 1)(αc − α)

for α ∈ (α, αc),

1
2σ2 (α− αc)2

1 + 1
σ2 (αc + α + 1)(α− αc)

≤ I (α) ≤
1

2σ2 (α− αc)2

1− 2
σ2 (α− αc)

for α ∈ (αc , αc +
σ2

2
).

In particular, I (α) ≥ I (0) = ln(Up1p2) for α ∈ (0, αc).
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Remark 2 Theorem 2 leads to the following information:
1. Our result shows that τ(Nα,N) with α < αc and 1− τ(Nα,N)
with α > αc both decay exponentially to zero. Furthermore, we
obtain the critical exponent ν = 2 and B = 1

2σ2 for α < αc .

2. One can consider another version of directed bond percolation
on the square lattice (see Fig. 2). This model is much easier and
the method of steepest decent can be used to get
αc = (q1p1 + q2p2)/2p1p2 instantly. Although this model looks
similar to the model we consider here, αc is clearly different.
3. Although αc can also be obtained by applying the Theorem 5.9
in ”Markov renewal theory: a survey. Management Science, Vol.
21, No. 7”, Theory Series, pp. 727-752 (1975), the variance σ2

was not discussed there.
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Theorem 3.
Given ρ ∈ (0,∞) and a positive regularly varying sequence
{`n}∞n=1. Let α−N = αc − σN−ρ`N/

√
2 and

α+
N = αc + σN−ρ`N/

√
2. Then both

τ(Nα−N
,N), 1− τ(Nα+

N
,N)

≈ exp(−N−2ρ+1`2N) if ρ ∈ (0, 12),
≈ exp(−`2N) if ρ = 1

2 , `N →∞
= Ψ(`) + O(1) max{ 1√

N
, |`− `N |} if ρ = 1

2 , `N → ` ∈ [0,∞) ,

= 1
2 + O(1)N−ρ+

1
2 `N if ρ ∈ (12 , 1) ,

= 1
2 + O( 1√

N
) if ρ ∈ [1,∞) ,
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Note that ρ = 1
2 is a critical value and we have the following

corollary.
Corollary. Under the same assumptions of Theorem 3, we have

lim
N→∞

τ(Nα−N
,N) = lim

N→∞

(
1− τ(Nα+

N
,N)

)
=

{
0 if ρ ∈ (0, 12) ,
1
2 if ρ ∈ (12 ,∞) .

When ρ = 1/2 and `N → ` ∈ [0,∞] we have

lim
N→∞

τ(Nα−N
,N) = exp(−`2) , lim

N→∞
τ(Nα+

N
,N) = 1− exp(−`2) .
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Idea of the proof
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Proof of Theorem 1

Let Sn = X1 + · · ·Xn. (The process is actually called Markov
renewal process or Semi-Markov Chain). By law of large number
we have

Sn − Exp.(Sn)

n
→ 0 a.s. when n→∞ .

Let Cn(m) = P(Sn = m) for m, n ∈ Z+ and let

αc := lim
n→∞

Exp.(Sn)

n
= lim

n→∞

Exp.(S2n)

2n
= lim

n→∞

∑∞
m=1mC2n(m)

2n
.

We have
Sn
n
→ αc a.s. when n→∞ .

Let the variance of Sn denote by σ2(Sn).
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By Berry-Esseen theorem (non-identically distributed summands )

∣∣Prob.(SN − αcN√
σ2(SN)

≤ N(α− αc)√
σ2(SN)

)
−
∫ N(α−αc )√

σ2(SN )

−∞

1√
2π

e−
u2

2 du
∣∣

≤ O(
1√

σ2(SN)
).

We have

σ2(SN) =
∞∑

m=1

m2CN(m)2 −
( ∞∑
m=1

mCN(m)2
)2

= N
[∑∞

m=1m
2CN(m)2 −

(∑∞
m=1mCN(m)2

)2
N

]
= N

[σ2(SN)

N

]
.

Let

σ2 := lim
N→∞

σ2(SN)

N
.
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Setting α = αc , we have

τ(Nαc ,N) =

∫ 0

−∞

1√
2π

e−
u2

2 du + O(
1√
N

) =
1

2
+ O(

1√
N

) ,

We need find the value of αc and σ2.
Note that

τ(Nα,N) =
∑

m≤Nα

CN(m).

Let

Cn(m) = C o
n (m) + C e

n (m),

where

C o
n (m) =

{
Cn(m) if m is odd,

0 others,

and

C e
n (m) =

{
Cn(m) if m is even ∪ {0},
0 others.

,
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τ(Nαc ,N) =
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−∞

1√
2π

e−
u2

2 du + O(
1√
N

) =
1

2
+ O(

1√
N

) ,

We need find the value of αc and σ2.
Note that

τ(Nα,N) =
∑

m≤Nα
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We have

C e
2n+1(m) =

m∑
j=0

(
C e
2n(m − j)Dee(j) + C o

2n(m − j)Doe(j)
)
, (1)

and

C o
2n+1(m) =

m∑
j=0

(
C e
2n(m − j)Deo(j) + C o

2n(m − j)Doo(j)
)
, (2)

where

Dee(j) =

{
(q1q2)ip1, j = 2i + 1,

0, j = 2i ,

Doe(j) =

{
(q1q2)iq2p1, j = 2i ,

0, j = 2i + 1,

and

Deo(j) =

{
(q1q2)iq1p2, j = 2i ,

0, j = 2i + 1,

Doo(j) =

{
(q1q2)ip2, j = 2i + 1,

0, j = 2i .
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Similarly,

C e
2n(m) =

m∑
j=0

(
C e
2n−1(m − j)D ′ee(j) + C o

2n−1(m − j)D ′oe(j)
)
,

and

C o
2n(m) =

m∑
j=0

(
C e
2n−1(m − j)D ′eo(j) + C o

2n−1(m − j)D ′oo(j)
)
,

where

D ′ee(j) = Doo(j), D ′oo(j) = Dee(j), D ′eo(j) = Doe(j), D ′oe(j) = Deo(j).

Lung-Chi Chen Asymptotic behavior for a generalized Domany-Kinzel model



Define the generated function for f : Z+ → R+ as follows

f̂ (t) =
∞∑
n=0

f (n)tn, |t| ≤ 1.

Therefore

D̂ee(t) =
p1

1− q1q2t2
, D̂oo(t) =

p2
1− q1q2t2

,

D̂eo(t) =
q1p2t

1− q1q2t2
, D̂oe(t) =

q2p1t

1− q1q2t2

Let

A1(t) =

(
D̂ee(t) D̂oe(t)

D̂eo(t) D̂oo(t)

)
, A2(t) =

(
D̂ ′ee(t) D̂ ′oe(t)

D̂ ′eo(t) D̂ ′oo(t)

)
.
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We have (
Ĉ e
2n+1(t)

Ĉ o
2n+1(t)

)
= A1(t)

(
Ĉ e
2n(t)

Ĉ o
2n(t)

)
,

and for n ∈ N, we have(
Ĉ e
2n(t)

Ĉ o
2n(t)

)
= A2(t)

(
Ĉ e
2n−1(t)

Ĉ o
2n−1(t)

)
.

Let

A(t) = A2(t)A1(t)

=
1

(1− q1q2t2)2

(
p1p2 + p21q

2
1t

2 (p1p2q2 + p22q1)t
(p1p2q1 + p21q2)t p1p2 + p21q

2
2t

2

)
.
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By the definition of our model, for n ∈ Z+, we have

Ĉ2n(t) = (1, 1)A(t)n
(

1
0

)
, Ĉ2n+1(t) = (1, 1)A1(t)A(t)n

(
1
0

)
.

Recall that

a = p21q
2
2 + p22q

2
1 , b = p1q2 + p2q1 and c = p2 − p1,

we have

A(t) = Q(t)D(t)Q(t)−1,

where

D(t) =

 at2+2p1p2+bt
√

c2t2+4p1p2
2(1−q1q2t2)2 0

0
at2+2p1p2−bt

√
c2t2+4p1p2

2(1−q1q2t2)2

 ,

and

Q(t) =

(
−p2 −p2

ct−
√

c2t2+4p1p2
2

ct+
√

c2t2+4p1p2
2

)
.
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Therefore

Ĉ2n(t) = λ1(t)nu1(t) + λ2(t)nu2(t),

Ĉ2n+1(t) = λ1(t)nv1(t) + λ2(t)nv2(t),

for some uj(t) and vj(t), where

λ1(t) =
at2 + 2p1p2 + bt

√
c2t2 + 4p1p2

2(1− q1q2t2)2
,

λ2(t) =
at2 + 2p1p2 − bt

√
c2t2 + 4p1p2

2(1− q1q2t2)2
.
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We can define the average mean of two point function n-step walk

µn =

∑∞
m=0mCn(m)

n
=

d
d t Ĉn(t)

n
|t=1 =

λ′1(1)

2
+ O(

1

n
),

and we can define the average variance of n-step walk

σ2n =

∑∞
m=0m

2Cn(m)−
(∑∞

m=0m
2Cn(m)

)2
n

, σ2 = lim
n→∞

σ2n.

It can be shown that

αc = lim
n→∞

µ2n =
λ′1(1)

2
,

σ2n = σ2 + O(
1

n
).
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Original result,

λ′1(1) =
p21q

2
2 + p22q

3
1 + p21 + p22 −

2p1p2(p21+p22)
p1+p2

2(1− q1q2)2

+
4q1q2(p21 + p22 − 2p21p2 − 2p1p

2
2 + 2p1p2 + p21p

2
2)

(1− q1q2)3
.

Improve (INFORMS (Institute for operations research and the
management sciences), 1975)

αc =
p1q2(2− p1) + p2q1(2− p2)

(1− q1q2)(p1 + p2)
.

After computing, we can rewrite

λ1(t) =
(bt +

√
c2t2 + 4p1p2

2(1− q1q2t2)

)2
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Hence
tλ′1(t)

2λ1(t)
=

2
√
λ1(t)√

c2t2 + 4p1p2
− 1.

Note that λ1(1) = 1 and c2 + 4p1p2 = (p1 + p2)2, we have

αc =
λ′1(1)

2
=

2− p1 − p2
p1 + p2

=
q1 + q2
p1 + p2

.
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Furthermore

λ′1(t) + tλ′′1(t)

λ1(t)
− tλ′1(t)2

λ1(t)2
=

2λ′(t)√
λ1(t)(c2t2 + 4p1p2)

− 4c2t
√
λ1(t)

(c2t2 + 4p1p2)
3
2

.

Put t = 1 we have

λ′′1(1) = −λ′1(1) + λ′1(1)2 +
2λ′1(1)

p1 + p2
− 4(p1 − p2)2

(p1 + p2)3
.

Therefore, by the definition of Ĉ2n(t), we obtain the variance of
the two-point function is given by

σ2 = lim
n→∞

∑∞
m=0m

2C2n(m)−
(∑∞

m=0mC2n(m)
)2

2n

=
λ′′1(1) + λ′1(1)− λ′1(t)2

2

=
λ′1(t)

p1 + p2
− 2(p1 − p2)2

(p1 + p2)3

=
4(p1q1 + p2q2)

(p1 + p2)3
.
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Estimate I (α)

We set λ = − log t for α < αc and use the Chebyshev inequality to
have

Prob.(SN ≤ Nα) ≤ Prob.(SN ≤ αN))

≤ inf
λ>0

Prob.(e−λSN ≥ e−λαN)

≤ inf
λ>0

Exp.(e−λSN )

e−λαN

= inf
t∈(0,1)

ŜN(t)

tαN

=


inft∈(0,1)

(1,1)A(t)N
′
(

1

0

)
t2N′α

if N = 2N ′

inft∈(0,1)
(1,1)A1(t)A(t)N

′
(

1

0

)
t(2N
′+1)α if N = 2N ′ + 1

:= e−NIN(α).
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When N = 2N ′, we have

IN(α) = sup
t∈(0,1)

{
α ln t − 1

2N ′
ln
(
λ1(t)N

′
u1(t) + λ2(t)N

′
u2(t)

)}
,

and when N = 2N ′ + 1, we have

IN(α) = sup
t∈(0,1)

{
α ln t − 1

2N ′ + 1
ln
(
λ1(t)N

′
v1(t) + λ2(t)N

′
v2(t)

)}
.

It can be shown that for t ∈ (0,∞)

1

N ′
ln
(
λ1(t)N

′
u1(t) + λ2(t)N

′
u2(t)

)
=

lnλ1(t)

2
+ O(

1

N
), uniformly.

Similarly for N = 2N ′ + 1 we also have the the uniform bounded.
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Hence

Prob.(SN ≤ Nα) ≤ sup
t∈(0,1)

{
α ln t − lnλ1(t)

2

}
+ O(

1

N
)

:= α ln tα −
lnλ1(tα)

2
+ O(

1

N
),

where tα is a function of α.
Let

I (α) = α ln tα −
lnλ1(tα)

2
.

We have

IN(α) = I (α) + O(
1

N
).
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Therefore, for α < αc we have

Prob.(SN ≤ Nα) ≤ O(1)e−NI (α),

By the same way, for α > αc we have

Prob.(SN > Nα) ≤ O(1)e−NI (α).

The derivatives of I (α) satisfy following relations.

I ′′(α) > 0 for α ∈ (0,∞),

I ′′(αc) =
1

σ2
,

−(2α + 1)I ′′(α)2 ≤ I ′′′(α) ≤ 2I ′′(α)2 for α ∈ (0,∞).
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Assume above inequalities holds, by Taylor formula, we have

I (α) ≥ I ′′(αc)

2
(α− αc)2 =

1

σ2
(αc − α)2 for α ∈ (0, αc)

I (α) ≤ I ′′(αc)

2
(α− αc)2 =

1

σ2
(αc − α)2 for α > αc

which yields the lower bound.
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For α ∈ (α, αc), integrate α in
−(2α + 1)I ′′(α)2 ≤ I ′′′(α) ≤ 2I ′′(α)2 from α to αc to give

−(αc − α)(αc + α + 1) ≤ 1

I ′′(α)
− 1

I ′′(αc)
≤ 2(αc − α).

It follows that

I ′′(αc)

1 + 2I ′′(αc)(αc − α)
≤ I ′′(α) ≤ I ′′(αc)

1− I ′′(αc)(αc + α + 1)(αc − α)
.

Then by Taylor formula for any α ∈ (α, αc), there exists a certain
ξ ∈ (α, αc) such that

I (α) = I (αc) + I ′(αc)(α− αc) +
I ′′(ξ)

2
(α− αc)2

≤ 1

2

( I ′′(αc)

1− I ′′(αc)(αc + ξ + 1)(αc − ξ)

)
(αc − α)2

≤ 1

2

( I ′′(αc)

1− I ′′(αc)(αc + α + 1)(αc − α)

)
(αc − α)2.
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Similarly, we have

I (α) ≥ 1

2

( I ′′(αc)

1 + 2I ′′(αc)(αc − α)

)
(αc − α)2 .

Using I ′′(αc) = 1/σ2 we obtain the lower and upper bounds.
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Thank You
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