Asymptotic behavior for a generalized

Domany-Kinzel model

Lung-Chi Chen

Department of Mathematical Sciences, National Chengchi University

The 12th workshop on Markov Processes and relate topics

July 16, 2016
Joint work with Shu-Chiuan Chang and Chien-Hao Huang

Lung-Chi Chen Asymptotic behavior for a generalized Domany-Kinzel model



The directed percolation (1957) on square lattice.

—s— Open with probability p

—— Closed with probability (1-p)

e  Wetted site

{®} Wetted cluster
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Domany-Kinzel model (1981)
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Given any a € R, let N, = |[aN| =sup{m € Z : m < aN} with
NezZ,.
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Given any a € R, let N, = |[aN| =sup{m € Z : m < aN} with
NeZ,.
Define the two point correlation function

7(Na, N) = Pp((0,0) — (Na, N)).
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Given any a € R, let N, = |[aN| =sup{m € Z : m < aN} with
NeZ,.
Define the two point correlation function

7(Na, N) = Pp((0,0) — (Na, N)).

Theorem (Domany and Kinzel (1981)) Given any a > 0, there is
ac =q/p:=(1— p)/p such that

a > o

lim 7(Ny, N) = o= Qg -
N—o0

O Nk

a < a¢
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More precisely, for o < . and « close to «., the scaling theory of
critical behavior asserts that the singular part of 7(N,, N) varies
asymptotically as

—BN

No, N)~ exp(——=—;
(N M)~ exp((

)

where fi o(N) ~ f,(N) means that

limy_soo log f1,o(N)/ log £ o(N) = 1. The constants B depending
on p and critical exponent v € (0, 00) is universal constant.
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More precisely, for o < . and « close to «., the scaling theory of
critical behavior asserts that the singular part of 7(N,, N) varies
asymptotically as

—BN

No, N)~ exp(——=—;
(N M)~ exp((

)

where fi o(N) ~ £ o(N) means that

limy_soo log f1,o(N)/ log £ o(N) = 1. The constants B depending
on p and critical exponent v € (0, 00) is universal constant.
Theorem (Wu and Stanley (1982)) v = 2 and (Chen (2011))

B=q/p*
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In this talk we consider generalized Domany-Kinzel model as

follows:

1 1 1 1 1 1 1

o m 2 m 2 n I n
1 1 1 1 1 1 1

” P2 12 P2 »n s n 2
1 1 1 1 1 1 1

o P 2 m 2 n I n
1 1 1 1 1 1 1

” P2 12 P2 »n s n 2
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Main results

Let

T(Na, N) = Pp, 5, ((0,0) = (Na, N)).
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Main results

Let

T(Na, N) = Pp, 5, ((0,0) = (Na, N)).

Question: For our model, ac =7 B =? and v =7
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Main results

Let

T(Na, N) = Pp, 5, ((0,0) = (Na, N)).

Question: For our model, ac =7 B =? and v =7
For notation convenience, let us define g1 =1—p1, go=1—p»

and
a = pig+paai,
b = p2q1+p1Gg2=p1+p2—2p1p2,
C = p2g1—p1g2 = p2 — p1,
,2 — Hpat k)

(p1+ ,02)3
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Theorem 1. In our model, given p; € [0,1) and p2 € [0, 1) with
p1V p2 > 0 and the critical aspect ratio ae = L% we have

p1+p2
7(Na, N) ~exp(—Nl(a)) for a<ac,
T(Ne, N) = %+O(\%N) for a=ac,
1—7(Na,N) ~exp(=Nl(a)) for o> ac,
where
bt, + +/c?t2 + 4p1po
I(a) =alnt, —In a 7
@ : ( 2(1 — q1q2t2) )
and
1
202 —b2(1+a)+by/P2(a+1)2—4ac?\ 2 .
fa = ( 2q1q2¢%(1+) ) it p1# p2,

(=nIeE=k it pr=p2=p.
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(g

I(0)




Remark 1 Theorem 1 leads to the following information:
1. /() is a non-negative, convex function with minimum a = a..
Moreover t,, =1 and I(a.) = 0.
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Remark 1 Theorem 1 leads to the following information:

1. I(«) is a non-negative, convex function with minimum o = a..
Moreover t,, =1 and I(a.) = 0.

2. The model reduces to the Domany-Kinzel model on the square
lattice when py = pp = pand g =1 — p. We have t, = ﬁ
and /(«) can be simplified as

I(a) = aln( ) —In(p(1 + a)).

q(1+ «)
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Remark 1 Theorem 1 leads to the following information:

1. I(«) is a non-negative, convex function with minimum o = a..
Moreover t,, =1 and I(a.) = 0.

2. The model reduces to the Domany-Kinzel model on the square
lattice when py = pp = pand g =1 — p. We have t, = ﬁ
and /(«) can be simplified as

I(a) = aln( ) —In(p(1 + a)).

q(1+ «)

3. The model reduces to the Domany-Kinzel model on the
honeycomb lattice as bricks when either p; =0, pp = p or
p1 = p, pop =0, and Ietq:l—pwitha>1 We obtain

=(q+1)/pand ty, = (a+1) Then /(«) can be simplified as
@) = (3 () (P EL),
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Using Taylor formula and the first item in Remark 1, we have

///
(o) = Iac)+!"(ac)(a—ac)+ (ac) (o — ac)® + O — ag)?
= = :
///
= (;C) (a — ac)® + O(a — ag)?
For the Domany-Kinzel model on the square lattice, we have
I"(a) = a(a1+1)' and hence I"(ac) = p?/q.
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Using Taylor formula and the first item in Remark 1, we have

(@) = Had)+/ac)(e—ad) + “5D(a— acf + O(a ~ ac)
= %
///(ac)

For the Domany-Kinzel model on the square lattice, we have

I"(a) = %alm and hence 1I”(ac) = p?/q. For the
Domany-Kinzel model on the honeycomb lattice as bricks, we have
I"(a) = -, and hence I"(ac) = p?/(4q).

a2—1"
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Using Taylor formula and the first item in Remark 1, we have

(@) = Had)+/ac)(e—ad) + “5D(a— acf + O(a ~ ac)
= %
///(ac)

For the Domany-Kinzel model on the square lattice, we have

I"(a) = %alm and hence 1I”(ac) = p?/q. For the
Domany-Kinzel model on the honeycomb lattice as bricks, we have
I"(a) = =5, and hence I"(ac) = p?/(4q). However, the
function I”(«) does not have a simple expression in general.
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Using Taylor formula and the first item in Remark 1, we have

(@) = Had)+/ac)(e—ad) + “5D(a— acf + O(a ~ ac)
= %
///(ac)

For the Domany-Kinzel model on the square lattice, we have

I"(a) = %aﬂrl) and hence 1I”(ac) = p?/q. For the
Domany-Kinzel model on the honeycomb lattice as bricks, we have
I"(a) = =5, and hence I"(ac) = p?/(4q). However, the
function /”(«) does not have a simple expression in general. In the
second main theorem, we estimate the upper bound and lower

bound of /(«) as « near a., and we need the definition

—1++v/(2ac +1)2 — 402
5 :

g:
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It is easy to see that a € [0, a¢) and particularly « = 0 iff p; = po.
Furthermore, define

\/pllipz if p1p2 7& 0

U, =
P 00 if p1p2 =0
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Theorem 2 Let p; € [0,1) and pp € [0,1) with p; V p, > 0 and
p1 A p2 < 1. We have

2 2

ﬁ(ac —a)

1-— #(ac—f—a%—l)(ac—a)

1
M</(a)<
1+ Z(ac—a) ~ -

for o € (a, ac),
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Theorem 2 Let p; € [0,1) and pp € [0,1) with p; V p, > 0 and
p1 A p2 < 1. We have

ﬁ(ac —a)?

1—1—%(0@—04) -

for o € (a, ac),

o0 gh(o-ad’
l—i-%(oaC%—a—i-l)(oz—ac)_ _1—%(04—%)
o2
for a € (ae, ac + ?)
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Theorem 2 Let p; € [0,1) and pp € [0,1) with p; V p, > 0 and
p1 A p2 < 1. We have

ﬁ(ac —a)?

1—1—%(0@—04) -

for o € (a, ac),

o0 gh(o-ad’
l—i-%(oaC%—a—i-l)(oz—ac)_ _1—%(04—%)
o2
for a € (ae, ac + ?)

In particular, /() > 1(0) = In(Up,p,) for a € (0, ac).
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Remark 2 Theorem 2 leads to the following information:

1. Our result shows that 7(Ny, N) with o < ac and 1 — 7(Ng, N)
with a > a. both decay exponentially to zero. Furthermore, we
obtain the critical exponent v =2 and B = ﬁ for a < ae.
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Remark 2 Theorem 2 leads to the following information:

1. Our result shows that 7(Ny, N) with o < ac and 1 — 7(Ng, N)
with a > a. both decay exponentially to zero. Furthermore, we
obtain the critical exponent v =2 and B = ﬁ for a < ae.

2. One can consider another version of directed bond percolation
on the square lattice (see Fig. 2). This model is much easier and
the method of steepest decent can be used to get

ac = (qip1 + g2p2)/2p1p2 instantly. Although this model looks
similar to the model we consider here, a. is clearly different.
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Remark 2 Theorem 2 leads to the following information:

1. Our result shows that 7(Ny, N) with o < ac and 1 — 7(Ng, N)
with a > a. both decay exponentially to zero. Furthermore, we
obtain the critical exponent v =2 and B = ﬁ for a < ae.

2. One can consider another version of directed bond percolation
on the square lattice (see Fig. 2). This model is much easier and
the method of steepest decent can be used to get

ac = (qip1 + g2p2)/2p1p2 instantly. Although this model looks
similar to the model we consider here, a. is clearly different.

3. Although a can also be obtained by applying the Theorem 5.9
in "Markov renewal theory: a survey. Management Science, Vol.
21, No. 7", Theory Series, pp. 727-752 (1975), the variance o2
was not discussed there.
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Figure 2
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Theorem 3.

Given p € (0,00) and a positive regularly varying sequence
{ln}oe. Let ay = ac — oN=Ply/\/2 and

af\r, = ac + oN7Ply/v/2. Then both

7'(Nof7 N),1— T(Nax, N)

~ exp(—N—2/HLR) if pe(0,3),
~ exp(—£2)) ifp:%,ﬁ,v—M)o
=W(0) + O(1)max{ =, [ — nl} if p=3, Iy = €000
—§+ O()N~#+3ty if pe(l1),
I+ (ﬁ) if pell,o0),
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Note that p = % is a critical value and we have the following
corollary.
Corollary. Under the same assumptions of Theorem 3, we have

. L B o if pe(0,3),
/vlinooT(Naﬁ’N)_NlinooO T(NQE’ND_{é if pe(3,00).

When p =1/2 and ¢y — ¢ € [0, 00] we have

: _ _ 2 : 1 _ _p2
NlinooT(No‘N’N) = exp(—(7) , NlinooT(Nax”N) =1—exp(—£).
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Idea of the proof
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Proof of Theorem 1

Let S, = X1 + -+ Xj,. (The process is actually called Markov
renewal process or Semi-Markov Chain). By law of large number
we have

Sn — Exp.(Sn)
n
Let Cp(m) = P(S, = m) for m, n € Z, and let

— 0 a.s. when n— 0.

Exp.(S Exp.(S < mC
ac = lim 7xp( ) = |im 7xp( 2n) = |im Zm*lm 2,,(m)‘
n—o0 n n—o00 2n n—o00 2n
We have
Sh
— — ¢ a.s. when n— 0.
n

Let the variance of S, denote by 02(S,).
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By Berry-Esseen theorem (non-identically distributed summands )

(a— Qc)

o (S0 _ N(a —ac), \/TN L% du
|Pro b(m < \/TN 7z 2
< O(m)
We have
2(Sy) = > mPCu(m)> — (3 mCu(m)?)?
m=1 m=1
D omet M Cn(m)? — (3o mCi( )2)2
_ N[ }
N
Y a?(Sy)
= N[5
Let 5
o2 = lim g (SN)
N—oco N
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Setting o = a, we have

0 1
T(NaC,N)—/ “2 du+ O

1
_OOEe ):§—|—O(

3~

1
VN
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Setting o = a, we have

o 1 _p
T(NaC,N) —/ E6_7 du+ O(

We need find the value of a. and o2.

)= 5+ 0

3~

1
VN

Lung-Chi Chen Asymptotic behavior for a generalized Domany-Kinzel model



Setting o = a, we have

0 1 2 1 1
NOtaN: _70' +07:*+O
(N, V) /_mme o =2t

We need find the value of a. and o2.

Note that
T(Na, N) = > Cn(m
m<N,

3~
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Setting o = a, we have

U | 2 1
Na,, N) = =~ e % du+ O(——
7(Na N) [w,% u+ O(—

We need find the value of a. and o2.

)= 5+ 0

3~

Note that
T(Na, N) = > Cn(m
m<N,

Let

Co(m) = C7(m) + C(m),
where

Co(m) = Cn(m) if mis odd,

0 others,

and

)

Cé(m) = Co(m) if mis evenU {0},
o others.
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We have

m

Coria(m) = 3 (Coalm = )Decli) + Ca(m = )Dee(1)), (1)
j=0
and
m
Coria(m) = 3 (Coalm = NDeoli) + Coa(m = NDooli));  (2)
j=0
where
i [=2i+1
Derl)) = {(Chqz) PLo l.+ ;
0, J=2i,
, (@) q2p1,  J=2i,
D =
oe(,/) {0’ j:2i+1,
and

. (9192) q1p2, J=2i
De"(J):{o j=2i41
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Similarly,

NE

C5(m) = >~ Cpor(m = )Diei) + Crr(m = ) Dheli) )
j=0
and
C5,(m Zm;(cz,, 1(m = j)Dlo(i) + Crr(m = )Dbo()) ).
P
where

Dee(J) = Doo(j), Doo(f) = Dee(J): Deoi) = Doelf); Doelf) = Deoli).
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Define the generated function for f : Z, — R as follows

F(t) = i fF(m)t", |t| <1.

n=0
Therefore
A P1 A P2
Dee t) = 3 Doo - 5
(&) 1 — qigot? (&) 1 —qigot?
A qip2t A qz2p1t
Deo(t) = =
eolt) 1— qiqot?’ oe 1) 1 — qiqot?
Let
Dee(t)  Doe(t) > < DL.(t) Dhe(t) >
A t — Aee Aoe , A t — ee Aoe
0= (5t bty ) A0=( 520 brte

Asymptotic behavior for a generalized Domany-Kinzel model
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We have
() -»e(&0)

and for n € N, we have
Cs(1) ) ( s, 1(1) )
~en = As(t ~2on .
(&) =~0(g0

At) = Ax(t)Au(t)

_ 1 < pip2 + piait’  (pip2g2 + p3qi)t ) '
(1— q1q2t2)2 \ (p1p2q1 + Piq2)t  pip2 + pig3t?

~
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By the definition of our model, for n € Z, we have

QAQ:@JMUV(%),f%ﬂﬁ%%LUMUM“V<é>‘

Recall that
2.2 2 2 _ _
a=pig5+p5q;, b=pig2+pq and c=p>—p1,

we have

A(t) = Q(1)D(1)Q(1) ™,

at?++2p1 pp+bty/ 2 t2+4p1 p2 0
D(t) = 2(1-quqot?)?
0 at?++2p1py—bty/ 2 t>+4p1 p2

2(1=1¢28)°

—pP2 —P2
Q(t) = ct—\/C2t24+4p1py  ct++/c2t2+4p1po :
2 2
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Therefore

Con(t) = A1(t)"ur(t) + Aa(t)"ua(t),
Con1(t) = Aa(t)"va(t) + Aa(t)"va(2),

for some wj(t) and v;(t), where

at? + 2p1ps + bt+/c2t2 + 4p1 po
() =

2(1 — q1g2t?)? ’

at? + 2p1pp — bt\/c2t2 + 4p1po
Xo(t) = .

2(1 — q1g2t?)?
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We can define the average mean of two point function n-step walk

0 a4 (t !
[y = Zm:O mC,,(m) _ dt ( )‘tzl _ )‘1(1) + O(l),
n n 2 n

and we can define the average variance of n-step walk

[es) 0o 2
3= Emo POl = By Clm)” 2 e 2
n n— 00

It can be shown that

. 1
ac = lim py, = ——=,
— 00
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Original result,

v - PG+ P3q3 + p + p3 — Rim(pite)
2(1 - q192)?
+4q1q2(pf + P5 — 2pipa — 2p1P3 + 2p1pa + PIP3)
(1 - Q1Q2)3
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Original result,

v - PG+ P3q3 + p + p3 — Rim(pite)
2(1 - q192)?
+4q1q2(pf + P5 — 2pipa — 2p1P3 + 2p1pa + PIP3)
(1 - Q1Q2)3

Improve (INFORMS (Institute for operations research and the
management sciences), 1975)

_ P192(2 — p1) + p2g1(2 — p2)
(1 —q192)(p1 + p2)

C
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Original result,

v - PG+ P3q3 + p + p3 — Rim(pite)
2(1 - q192)?
+4q1q2(pf + P5 — 2pipa — 2p1P3 + 2p1pa + PIP3)
(1 - Q1Q2)3

Improve (INFORMS (Institute for operations research and the
management sciences), 1975)

_ P192(2 — p1) + p2g1(2 — p2)
(1 —q192)(p1 + p2)

C

After computing, we can rewrite

bt + \/c2t2 + 4p1py. 2
M(t) = ( )

2(1 — q1q2t?)
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Hence

2)‘1(t) B iV c2t2 + 4p1po

Note that A\1(1) =1 and ¢ + 4p1p2 = (p1 + p2)?, we have

tA (t) 23/ (i) L

MA) _2-p—p_ a1+
2 p1+ p2 p1+ p2

Oc =
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Furthermore

Ni(8) +tX(t)  eN(2)? 2N (t) Aty M(Y)
(1) M(t)? VA1(t)(c?t? + 4p1p2) (c2t? + 4p1,02)% '

Put t = 1 we have
2M(1)  4(pL — p2)?

N(1) = =N (1) + N (1) + .
1(1) (1) (1) p1+ p2 (p1 + p2)3

Therefore, by the definition of Co,(t), we obtain the variance of
the two-point function is given by
2

3y mPCan(m) = (255 mCan(m))®
o = lim
n—o00 2!7
NI(1) + X (1) = Ny ()
2

M) 2(p— p2)?
p1+ p2 (p1 + p2)3
4(p1q1 + p2q2)

(p1+ p2)3
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Estimate /(«)

We set A = —logt for & < a and use the Chebyshev inequality to

have

Prob.(Sy < Ng)

VANVAN

IA

Prob.(Sy < aN))
inf Prob.(e N > ¢=AaN)

A>0
Exp.(e= SN
inf EP(& )
A>0 en¢
Sn(t)
te(0,1) toN
- aaw® ( | /
infie(0,1) B — it N=2N
_ (1,1)A1(t)A(t)N’( ! ) _ ,
infre(0,1) GV D)a if N=2N"+1
efNIN(oz)'
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When N = 2N/, we have

In(a) = tes(t:fl){aln - Wln()\l( W (1) —i—)\g(t)N,uQ(t))},

and when N = 2N’ + 1, we have

1 / /
In(a) = tes(t:fl){aln t— a7 MY () + 2a(0)" vz(t))}.

It can be shown that for t € (0, o)

| , In Ax(t) 1 _
N In()\l( ) 1(t) + )\g(t)N uz(t)) = + O(N)’ uniformly.

Similarly for N = 2N’ 4 1 we also have the the uniform bounded.
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Hence

Prob.(Sy < N,) <  sup {aln t— M} +0(+)

te(0,1) 2 N
| o 1
= alnt, — n)\12(t) + O(N)’
where t, is a function of «.
Let X
I(a) =alnty, — In Ai(ta) .
2
We have
1
In(e) = 1(a) + O(N)'

Lung-Chi Chen Asymptotic behavior for a generalized Domany-Kinzel model



Therefore, for o« < o we have

Prob.(Sy < Np) < O(1)e M),
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Therefore, for o« < o we have

Prob.(Sy < Np) < O(1)e M),

By the same way, for @ > a. we have

Prob.(Sy > N,) < 0O(1)e M(),
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Therefore, for o« < o we have

Prob.(Sy < Np) < O(1)e M),

By the same way, for @ > a. we have

Prob.(Sy > N,) < 0O(1)e M(),

The derivatives of /() satisfy following relations.

I// ne) = —
(00) = -

I"(a) >0 for «€(0,00),
1
27
—(2a+ D" (@)? < I"(a) <2I"(a)® for «c (0,00).
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Assume above inequalities holds, by Taylor formula, we have

1

///(ac)
I(a) > ) (a—ac)?® = ;(ac —a)® for a€(0,a)
"
I(a) < / (204C) (a—ac)® = %(ac —a)® for a>ac
o

which yields the lower bound.
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For a € (a, ac), integrate « in
—(2a + 1)I"(a)? < I"(a) < 21"(a)? from a to a. to give

< 11
- ///(a) ///(ac)

—(ac —a)(ac+a+1) < 2(ae — a).

It follows that

/”(Ozc) " /”(Ozc)
T2 (ae—a) = ) S T o actat Do —a)
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For a € (a, ac), integrate « in
—(2a + 1)I"(a)? < I"(a) < 21"(a)? from a to a. to give

1 1

—(ac —a)(lac+a+1) < ) 7(ad) < 2(ae — a).
It follows that
/”(Ozc) " /”(Ozc)
T2 (ae—a) = ) S T o actat Do —a)

Then by Taylor formula for any a € (a, ¢ ), there exists a certain
¢ € (a,ac) such that

I(a) = I(Oéc) + //(ac)(a — ac) + /llgg) (a o CYC)2
1 I"(ex) o — o)?
< ali- I"(oe) (o + € + 1) (e — 5)>( c—a)
1 /H(Olc)
< e ot Diae—ap e
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Similarly, we have

/”(Ozc)

14 21"(ac) (e — a))(ac —a)’.

1
() > 5(

Using /”(cc) = 1/0? we obtain the lower and upper bounds.
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Thank You
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