The L^2 -cutoff for reversible Markov chains

Guan-Yu Chen (Joint with J.-M. Hsu and Y.-C. Sheu)

Dept. of Applied Math, NCTU

July 14, 2016 at Jiangsu Normal University

1 The L^2 -distances and L^2 -mixing times

2 Cutoff of Laplace transforms

Outline

1 The L^2 -distances and L^2 -mixing times

2 Cutoff of Laplace transforms

The L^2 -distance (I)

Consider an irreducible and reversible Markov chain $(X_m)_{m=0}^{\infty}$ on a finite set S with transition matrix K and stationary distribution π .

If K has eigenvalues β₁ = 1, β₂, ... and L²(π)-orthonormal eigenvectors ψ₁ = 1, ψ₂, ..., then

The L^2 -distances and L^2 -mixing times

$$\mathcal{K}^{m}(x,y) = \pi(y) \sum_{i \geq 1} \beta_{i}^{m} \psi_{i}(x) \psi_{i}(y).$$

• The L^2 -distance is defined by

$$d_2(x,m) := \sqrt{\sum_{y \in \mathcal{S}} \left(rac{\mathcal{K}^m(x,y)}{\pi(y)} - 1
ight)^2 \pi(y)} = \sqrt{\sum_{i>1} \psi_i^2(x) eta_i^{2m}}.$$

• If $\beta_i \ge \beta_{i+1}$, then K is aperiodic if and only if $\beta_{|S|} > -1$.

The L^2 -distances and L^2 -mixing times

The L^2 -distance (II)

Let N_t be a Poisson process with parameter 1 and independent of $(X_m)_{m=0}^{\infty}$. Set $Y_t = X_{N_t}$ and $H_t(x, \cdot)$ be the distribution of Y_t given $Y_0 = x$.

- The semigroup $(H_t)_{t\geq 0}$ has K I as the infinitesimal generator, where I is the identity matrix indexed by S.
- The L^2 -distance of Y_t is defined by

$$d_2(x,t) := \sqrt{\sum_{y \in S} \left(\frac{H_t(x,y)}{\pi(y)} - 1\right)^2 \pi(y)} = \sqrt{\sum_{i>1} \psi_i^2(x) e^{-2t(1-\beta_i)}}.$$

For $(X_m)_{m=0}^{\infty}$ and $(Y_t)_{t\geq 0}$, the L²-mixing time is defined by

$$T_2(x,\epsilon) = \min\{t \ge 0 | d_2(x,t) \le \epsilon\}.$$

The L^2 -cutoff

Let $\mathcal{F} = (x_n, \mathcal{S}_n, H_{n,t}, \pi_n)_{n=1}^{\infty}$, where $(x_n, \mathcal{S}_n, H_{n,t}, \pi_n)$ is a continuous time Markov chain on the finite set \mathcal{S}_n with stationary distribution π_n and initial state x_n . Let $d_{n,2}$ and $T_{n,2}$ be the L^2 -distance and the L^2 -mixing time of the *n*th chain.

Definition

 ${\mathcal F}$ has a L^2 -cutoff if there is a sequence $t_n>0$ such that, for $c\in(0,1),$

$$\lim_{n\to\infty}d_{n,2}(x_n,(1+c)t_n)=0,\quad \lim_{n\to\infty}d_{n,2}(x_n,(1-c)t_n)=\infty,$$

or, equivalently,

$$T_{n,2}(x_n,\epsilon) \sim t_n, \quad \forall \epsilon > 0,$$

where $a_n \sim b_n$ means $a_n/b_n \rightarrow 1$. t_n is called a L^2 -cutoff time.

Some history of cutoffs (I)

The L^2 -distances and L^2 -mixing times

- In 1981, Diaconis & Shahshahani declared the total variation cutoff for random transpositions using the representation theory.
- In 1980's, Aldous & Diaconis introduced the coupling time and strong stationary time to bound the mixing times of classical examples in the total variation and separation.
- In 1990's, Bayer, Diaconis, Fill and Saloff-Coste etc. applied enumerative combinatorics and spectral theory to bound the total variation and L^2 -distance for well-known shuffling schemes.
- In late 1990's, Diaconis and Saloff-Coste introduced the Poincaré inequality, the Log-Sobolev inequality and the Nash inequality to bound the L^p-mixing time for 1

In 2004, Peres proposed the following conjecture.

A cutoff exists \Leftrightarrow Mixing time \times Spectral gap $\rightarrow \infty$. (1)

- In 2004, Aldous and Pak introduced counterexamples to (1) in the total variation.
- In 2006, Diaconis & Saloff-Coste proved (1) for birth and death chains in separation and provided a formula on the cutoff time.
- In 2008, Chen & Saloff-Coste proved (1) for reversible Markov chains and processes in the L^p-distance with 1
- In 2010, Peres et. al. proved (1) for birth and death chains in the total variation.

All above results focus on the maximum distance, e.g. $\max_{x} d_2(x, t)$.

Some history of cutoffs (III)

The L^2 -distances and L^2 -mixing times

- In 2010, Chen & Saloff-Coste provided a similar version of (1) for reversible Markov chains and processes with prescribed initial states in the L²-distance and provided a formula on the cutoff time.
- In 2015, Chen & Saloff-Coste introduce the hitting time to identify the cutoff for birth and death chains in the maximum total variation and separation and provided a formula on the cutoff time.
- In 2015, Peres & Sousi introduced (in a preprint) the hitting time to identify the maximum total variation cutoff for reversible Markov chains and confirmed (1) for random walks on trees.
- In 2016, Chen, Hsu & Sheu introduced (in a preprint) a different viewpoint to examine the L²-cutoff from what was introduced by Chen & Saloff-Coste in 2010.

Outline

1 The L^2 -distances and L^2 -mixing times

The Laplace transform

As before, let $(\beta_i, \psi_i)_{i=1}^{|S|}$ be the spectral information of (S, K, π) .

• In the continuous case, if $\beta_i \ge \beta_{i+1}$ and

$$V(\lambda) = \sum_{i=2}^{j-1} \psi_i^2(\mathbf{x}), \quad orall 2(1-eta_{j-1}) \leq \lambda < 2(1-eta_j), \quad 2 \leq j \leq |\mathcal{S}|,$$

where $\sum_{i=2}^{1} := 0$ and $1 - \beta_{|S|+1} := \infty$, then the L^2 -distance can be rewritten as

$$d_2^2(x,t) = \int_{(0,\infty)} e^{-t\lambda} dV(\lambda).$$
⁽²⁾

• In the discrete time case, (2) remains true when $|\beta_i| \ge |\beta_{i+1}|$ and, in the definition of V, $1 - \beta_i$ is replaced by $-\log |\beta_i|$.

Modified spectral gap

Let V be a non-decreasing, right-continuous function on $(0, \infty)$ satisfying $V(0^+) = 0$ and $V(\infty) < \infty$. Define the Laplace transform of V by

$$\mathcal{L}_V(t) := \int_{(0,\infty)} e^{-t\lambda} dV(\lambda)$$

and the mixing time of \mathcal{L}_V by

$$T_V(\epsilon) := \inf\{t : \mathcal{L}_V(t) \le \epsilon\}.$$

For C > 0, consider the following modified spectral gap

$$\lambda_V(C) := \inf\{\lambda : V(\lambda) > C\}.$$

Conjectured mixing time

Observe that, for C > 0,

$$\mathcal{L}_V(t) \geq \int_{(0,\lambda_V(\mathcal{C})]} e^{-t\lambda} dV(\lambda) \geq C e^{-t\lambda_V(\mathcal{C})}$$

and

$$\mathcal{L}_V(t) \leq C + \int_{(\lambda_V(C),\infty)} e^{-t\lambda} dV(\lambda).$$

The first inequality leads to

$$T_V\left(rac{\mathcal{C}}{1+\mathcal{C}}
ight) \geq au_V(\mathcal{C}) := \sup_{\lambda \geq \lambda_V(\mathcal{C})} \left\{rac{\log(1+V(\lambda))}{\lambda}
ight\}.$$

Cutoff of Laplace transforms

Cutoff criterion(Chen and Saloff-Coste))

A family of Laplace transforms $(\mathcal{L}_{V_n})_{n=1}^{\infty}$ is said to present a cutoff if there is a sequence $t_n > 0$ such that, for $c \in (0, 1)$,

$$\lim_{n\to\infty}\mathcal{L}_{V_n}((1+c)t_n)=0,\quad \lim_{n\to\infty}\mathcal{L}_{V_n}((1-c)t_n)=\infty.$$

Theorem

Let $\mathcal{F} = (\mathcal{L}_{V_n})_{n=1}^{\infty}$ be a family of Laplace transforms and, for C > 0, set

$$\lambda_n(C) = \lambda_{V_n}(C), \quad \tau_n(C) = \tau_{V_n}(C).$$

Then, \mathcal{F} has cutoff if and only if, for some (all) C > 0 and A > 0, (1) $\tau_n(C)\lambda_n(C) \to \infty$, (2) $\int_{(0,\lambda_n(C))} e^{-A\tau_n(C)\lambda} dV_n(\lambda) \to 0$. Moreover, $\tau_n(C)$ is a cutoff time. Cutoff of Laplace transforms

Cutoff criterion(Chen, Hsu and Sheu)

As a result of the integration by parts, one may rewrite

$$\mathcal{L}_V(t) = t \int_0^\infty V(\lambda) e^{-t\lambda} d\lambda.$$

Theorem

Let $\mathcal{F}, \lambda_n(C), \tau_n(C)$ be constants as before. The following are equivalent. (1) \mathcal{F} has a cutoff. (2) $\tau_n(C)\lambda_n(C) \to \infty$ for all C > 0. Moreover, $\tau_n(C)$ is a cutoff time.

Remark

 $\tau_n(C)\lambda_n(C) \to \infty$ for some C > 0 is not sufficient for a cutoff.

.

Outline

1 The L^2 -distances and L^2 -mixing times

2 Cutoff of Laplace transforms

Product chains

Let $(S_i, K_i, \pi_i)_{i=1}^n$ be irreducible finite Markov chains and $p = (p_1, ..., p_n)$ be a probability vector. Consider the following product chain.

$$S = S_1 \times \cdots \times S_n, \quad \pi = \pi_1 \times \cdots \times \pi_n,$$

and

$$\mathcal{K} = \sum_{i=1}^{n} p_i I_1 \otimes \cdots \otimes I_{i-1} \otimes \mathcal{K}_i \otimes I_{i+1} \otimes \cdots \otimes I_n,$$

where I_i is the identity matrix indexed by S_i and $A \otimes B$ denotes the tensor product of matrices A, B. Concerning the continuous time case, we set $H_t = e^{-t(I-K)}$ and $H_{i,t} = e^{-t(I_i-K_i)}$. Then, one has

$$H_t = H_{1,p_1t} \otimes \cdots \otimes H_{n,p_nt}.$$

Generally, the above identity fails in the discrete time case.

The L^2 -distances of product chains

For the continuous time product chain, the L^2 -distances, $d_{i,2}$ and d_2 , of (S_i, K_i, π_i) and (S, K, π) satisfy, for $x = (x_1, .., x_n) \in S$,

$$d_2^2(x,t) = \prod_{i=1}^n (d_{i,2}^2(x_i,p_it)+1) - 1.$$

Note that the above equality holds without the assumption of reversibility. As a consequently, this leads to

$$\sum_{i=1}^n d_{i,2}^2(x_i, p_i t) \le d_2^2(x, t) \le \exp\left\{\sum_{i=1}^n d_{i,2}^2(x_i, p_i t)\right\} - 1.$$

A practical example

Consider a machinery with a large number of components.

- Each component has two states and evolves independently in the way that the state changes to the other after an exponential waiting time.
- Concerning the effect of some external force, we assume that each component could speed up or slow down its evolution but still operates independently.
- The question is how (the existence of cutoffs) and when (the mixing time) this machinery gets close to its stability.

Mathematical setting

For simplicity, we quantize this problem as follows.

- (1) Those components have $S = \{0, 1\}$ as their state spaces and are indexed by positive integers.
- (2) The *n*th component has unforced transition kernel $e^{-t(I-L_n)}$, where

$$L_n = \left(\begin{array}{cc} 1 - \alpha_n & \alpha_n \\ \beta_n & 1 - \beta_n \end{array}\right),$$

and $\alpha_n, \beta_n \in (0, 1)$.

(3) The accelerating rate of the *n*th component is $p_n > 0$ and, hence, the forced transition kernel is $e^{-p_n t(I-L_n)}$.

Products of two-state chains

Consider the set C_n of components indexed from m_n to $m_n + \ell_n - 1$.

- (1) Clearly, C_n has state space $S_n = \{0, 1\}^{\ell_n}$.
- (2) As components operate independently, the transition kernel of C_n is $H_{n,t} = e^{-q_n t(I-K_n)}$, where $q_n = p_{m_n} + \cdots + p_{m_n+\ell_n-1}$, and

$$\mathcal{K}_n = q_n^{-1} \sum_{i=1}^{\ell_n} p_{m_n+i-1} \mathcal{I}_1 \otimes \cdots \otimes \mathcal{I}_{i-1} \otimes \mathcal{L}_{m_n+i-1} \otimes \mathcal{I}_{i+1} \otimes \cdots \otimes \mathcal{I}_{\ell_n},$$

and I_i is the 2-by-2 identity matrix.

(3) The stationary distribution for C_n is

$$\pi_n(x) = \prod_{i=1}^{\ell_n} \frac{\alpha_{m_n+i-1}^{x_i} \beta_{m_n+i-1}^{1-x_i}}{\alpha_{m_n+i-1} + \beta_{m_n+i-1}}, \quad \forall x = (x_1, ..., x_{\ell_n}) \in \mathcal{S}_n.$$

July 14, 2016 at JSNU 21 / 26

Product chains

Cutoffs for products of two-state chains

Theorem

Let $\mathcal{F} = (\mathbf{0}, \mathcal{S}_n, \mathcal{H}_{n,t}, \pi_n)$, where **0** is the zero vector, and assume

$$\alpha_n + \beta_n = A > 0, \quad 0 < \inf_{n \ge 1} \frac{\alpha_n}{\beta_n} \le \sup_{n \ge 1} \frac{\alpha_n}{\beta_n} < \infty.$$

(1) If $p_n = e^{an}$, then \mathcal{F} has no L^2 -cutoff.

- (2) If $p_n = \exp\{a[\log(n+1)]^b\}$ with a > 0, b > 0, then \mathcal{F} has a L^2 -cutoff if and only if $m_n \to \infty$ and $\ell_n \to \infty$.
- (3) If $p_n = [\log(n+1)]^a$, then \mathcal{F} has a L^2 -cutoff if and only if

$$\begin{cases} m_n \to \infty, \ \ell_n \to \infty & \text{for } a \ge 1, \\ \ell_n \to \infty & \text{for } 0 < a < 1 \end{cases}$$

Product chains

Cutoff times for products of two-state chains

Theorem

Let t_n be a L^2 -cutoff time for cases (2) and (3).

• In the case that $p_n = \exp\{a[\log(n+1)]^b\}$ or $p_n = [\log(n+1)]^a$ with $a \ge 1$, if $m_n \to \infty$ and $\ell_n \to \infty$, then

$$t_n \sim rac{\log(m_n \wedge \ell_n)}{2Ap_{m_n}}$$

• In the case of $p_n = [\log(n+1)]^a$ with 0 < a < 1, if $\ell_n \to \infty$, then

$$t_n \sim rac{[\log(1+m_n\wedge\ell_n)]^a(\log\ell_n)^{1-a}}{2Ap_{m_n}}.$$

Remark

Recently, Chen and Kumagai proved the above theorems in total variation.

G.-Y. Chen (DAM, NCTU)

A concrete example

Consider the following concrete setting.

- m_n = ⌊n^α⌋ and ℓ_n = n − ⌊n^α⌋ + 1: This means that C_n is the set of components indexed from ⌊n^α⌋ to n.
- $p_n = n + 1$: The accelerating rates are of case (2) with a = b = 1.
- $\alpha_n + \beta_n = 1$ and $\inf_n(\alpha_n \wedge \beta_n) > 0$: For each component, the transition rates between 0 and 1 are comparable with each other and sum up to 1.

The conclusion says:

- (1) For $\alpha = 0$, \mathcal{F} has no L^2 -cutoff and the L^2 -mixing times are bounded above and below by positive constants.
- (2) For $0 < \alpha < 1$, \mathcal{F} has a L^2 -cutoff with cutoff time $\alpha(\log n)/(2n^{\alpha})$.

Reference

Books:

- 1. Diaconis, P. Group representations in probability and statistics, 1988.
- 2. Aldous, D. and Fill, J. An unpublished book on finite Markov chians.
- 3. Saloff-Coste, L. Lectures on finite Markov chains, 1996.
- 4. Saloff-Coste, L. Random walks on finite groups, 2004.
- 5. Levin, D. and Peres, Y. and Wilmer, E. *Markov Chains and Mixing Times*, 2009.

Articles: (To capture this talk)

- 1. Diaconis, P. The cutoff phenomenon in finite Markov chains, 1996.
- 2. Chen, G.-Y. and Saloff-Coste, L. *The L2-cutoff for reversible Markov* processes, 2010.
- 3. Chen, G.-Y., Hsu, J.-M. and Sheu, Y.-C. *The L2-cutoff for reversible Markov chains*, 2016.

Thank you for your attention!

э