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Background and Motivations

The contact process is an interacting particle system. (NS 4]:(»)
T is the underlying graph, 27, T,

The state space X={0,1}’ with the product topology.

ne X, n={n(x), xe T}.

The process {n,, t=0} is formally defined by a collection of infinitesimal
rates

c(x,n)=1 if n(x)=1

AL~ nly), if n(x)=0
where A is a nonnegative parameter.



Background and Motivations

This process may serve as a model of the spread of an infection.

An individual at xe T is infected if n(x)=1 and healthy if n(x)=0.
A healthy individual x is infected by some infected neighbor y at rate A.
Infected individuals recover at a constant rate, normalized to be 1.



Background and Motivations

Phase Transition.

* As A increases, it is more likely to get infected.

* A, ={xe T, nyx)=1}

* Two different limiting behaviors:

* the infection dies out A, = ¢ for some t,

* or persists forever A, # ¢ for all t.

* Critical point A.=inf{ A, A, # ¢ for all t}

1

* 0< A, < oo, largely unknown for T =29, lim 5..dA_(d)= >



Background and Motivations

If T=1Z4, L}im A= & L}im n:(x)=0forany xe T
If T is a regular tree
limA;=¢p == L]im Ne(x)=0forany xe T

t—o0

Two critical points
A =inf{A, A, = forall t},
A, =inf{ A, limsup n.(x) = 1 for all x}.

t— o0

0<A, <A <o, 0<A, <A, < oo,



Background and Motivations

0 <A, <A, <o verified for regular trees by Pemantle, Liggett &
Stacey

infinitely many invariant measures for A; <A<A,,
one invariant measure for A <A,
two invariant measures for A > A,



Background and Motivations

Two formulations of random environments.
(1) Birth rate (or death rate) are i.i.d.
sufficient conditions for survival/dying out.

(2) random graph, Galton-Watson tree

For each GW tree T, there are also 0 < A (T) < A,(T) < oo
easy to see that A,(T) and A,(T) are independent of T.
Easy 0 < A, <A, < oo, difficult 0 <A; <A, < oo,



Model and the main results

T¥ = regular tree where the root O has degree d and other vertices have
degree d+1.

omit d for simplicity if there is no confusion.

random weight nonnegative r. v. p(x) for each vertex x € T,

Assumption {p(x), x e T} are i.i.d.
{p(x), x € T} is uniformly bounded by a positive number M.



Model and the main results

This ensures the process is a spin system.
c(x,n)=1 ifn(x)=1

A2~ P(x)o(y)nly), ifn(x)=0
where A is a nonnegative parameter.

The contact process on the regular tree with random vertex weights.
Graphical construction.



Model and the main results

The random weights {p(x), x € T} are defined on some probability space
(Q, 7 ).

E = expectation operator w.r.t. measure L.

Forany w €Q, P,* = the quenched law of the contact processon T
with vertex weights {p(x, w), xe T} and infection rate A.

The expectation operator w.r.t. P,* is denoted by E,*
Annealed measure P, (¢ )=E P,*(e)=[P,w (o) du

E, = expectation operator w.r.t. P, .



Model and the main results

A, (w) =inf{A, A,z d forall t} isindependent of w,
Easy to prove. So write A, = A,(7T%) = A (d).

Theorem: lim d A(d) = iz
d—oo Ep

Recall that for T=274, limys..d A (d) =~.



Model and the main results

Lemma 1. If (1;2;\? < d forsomeA >0, thenA(d) <A.

Recall that u(p<M) =1
Let A (d, w) = sup{A, limsup%log P (A z29)<0}.

t—o0

Again A (d, w) is independent of w, so write A (d)
Ac(d) < A(d)

4N —1
Lemma 2. A (d) = (dEp2 + Eipz) .



Proof of Lemma 2

Comparison with a linear system {§,} = {&,(x), x €T}.
§o(x) =1, €,.(x)€{0,1,2,3,... ..},

afe) =
Y el f ) = FOI +Z, o7 B Mol¥oly) 1f (€,) = F(©)

where é s (z) =¢&(x) ifz#x, or 0ifz=x;
fxy (z) = é(x) if z# x, or &(x)+ Ely) if z =x



Proof of Lemma 2

the finite contact process A, starting with one particle on the root,
* self-duality

the infinite contact process n, starting with 1 (a particle at every site)
e coupling

The linear system {{,} starting with 1

PAw (At Q)= P/\w (nt(O) =]1) < P)\w (ft(o) =1) = E;\w ft(o);
P, (A#9)= P,(n(0)=1) < E,(O)



Proof of Lemma 2

d

SECEN = —ECEM T Mol wlply, w) B ELY),
d

dt E, &= (G, — 1) E)¥ ¢,

where G is a matrix, G (x,y) = Ao(x, w)p(y, w) if x~y

O otherwise

00 t"G,"(0,X
0 E(0) = et B Y P 0)

n!

E,£(0)= et i @ R gl wherea =B




Proof of Lemma 2

E al*"l < [A (dEp? + Elpz) —1]n
by a martingale argument
M4-

-1
exponential convergence to 0 occurs if A< (dE p? + E—pz) .

4N —1
Therefore A (d) = (dEp2 + Elpz) .



Proof of Lemma 1

SIR model {,, t=0}, {(x)=0,1,0r—1

S,={xeT, ((x)=0} susceptible

L={xeT C((x)=1} infected

Ri=1{xeT, ((x)=—1} removed

Initially {,(O) = 1, {,(x) = 0 for all x #0

1 > — 1 at rate 1.

0 — 1atrate Ao(x, w)p(y, w) if(x) =1, {(y) =0, yisasonof x
forward spreading of disease



Proof of Lemma 1

If initially both in the SIR model and in the contact process, only the
root of tree T is infected.

By coupling I, < A,
l,=U{l,, t= 0}
{l.#0, forallt= 0} ={]| I, | =}

P.Y(A,#dforallt=0) = P,@(l,# @ forallt= 0) =P,* (]| I, | =),
P, (Azdforallt=0)= P,(l.#+ 0forallt=0)= P, (]| |, | =00),



Proof of Lemma 1

L.={xeT, |x|=n,xel,}
{| 1o | =00} = NpZoflL,| > 0}
P, (| 1., | =0) = P, (Ni7-ofIL,| > 0}) = lim P, (IL,| > 0)

Second moment method
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E |L|°




Proof of Lemma 1

.. (E,IL|)?
Suffices to prove liminf (EA an) >0
n—oo A Ln p)
Or equivalently limsup =0~ < o0
n—oo (EA |Ln|)

To compute E, |L |

E ILI=E, Zx:|x|=n H{x €l,} = Zx:|x|=n P(xel,)

_1_No(xi, w)p(X;,; w)
o _m n—1 [+1,
=d" Py(x € L)=d"Elliz0 73,00 wlpix.. w)

i+1,



Proof of Lemma 1

To compute E, |L,|?
E, L= 2 ixj=n 2y |yl=n PA(X € I,y € I)
= 2k=02xyPy(x €L,y € Ly, [x A y[=k)
=Dxilxlen PAGX € 1) + XR2o Xy Pa(x € L,y € Ly, [x A yl=k)
=d"Py(x € L,) + X3 0d" Yy Pi(x € Ly g,y € Ly, [x AY[=K)
=d"P,(x € L))
+Yksod dr AR (d — DPy(x € L) [Py(x € Lyp—y)]?
=d"P,(x € L)+ X5 d? k1 (d - 1)P,(x € Ln)P,(x € L,_;)



Proof of Lemma 1

E, |L2=E, |L | X(1+X325 d" %71 (d — 1) Py(x € L))
=E, |L,| X (143728 (1 = DE; |Lnl)

EA |Ln|2 — 1
(E, L) E,|L

n—1 . 1 EA |Ln—kl

ol ol

(1+AM)?
AEp?

< d is a sufficient condition to ensure convergence.
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