Heat Kernels of Non-Symmetric Jump Processes: beyond the Stable Case

Panki Kim Seoul National University, Korea **Renming SONG** University of Illinois, USA, E-mail: rsong@illinois.edu Zoran Vondracek University of Zagreb, Croatia

KEY WORDS: Heat kernel estimates, subordinate Brownian motion, symmetric Lévy process, non-symmetric operator, non-symmetric Markov process

MATHEMATICAL SUBJECT CLASSIFICATION: 60J35, 60J75

Abstract: Let J be the Lévy density of a symmetric Lévy process in \mathbb{R}^d with its Lévy exponent satisfying a weak lower scaling condition at infinity. Consider the non-symmetric and non-local operator

$$\mathcal{L}^{\kappa}f(x) := \lim_{\epsilon \downarrow 0} \int_{\{z \in \mathbf{R}^{\mathbf{d}} : |\mathbf{z}| > \epsilon\}} (f(x+z) - f(z))\kappa(x,z)J(z) \, dz \,,$$

where $\kappa(x, z)$ is a Borel measurable function on $\mathbf{R}^{\mathbf{d}} \times \mathbf{R}^{\mathbf{d}}$ satisfying $0 < \kappa_0 \leq \kappa(x, z) \leq \kappa_1$, $\kappa(x, z) = \kappa(x, -z)$ and $|\kappa(x, z) - \kappa(y, z)| \leq \kappa_2 |x - y|^{\beta}$ for some $\beta \in (0, 1)$. We construct the heat kernel $p^{\kappa}(t, x, y)$ of \mathcal{L}^{κ} , establish its upper bound as well as its fractional derivative and gradient estimates. Under an additional weak upper scaling condition at infinity, we also establish a lower bound for the heat kernel p^{κ} .