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Abstract: Partially motivated by the work by Conus el, this work is concerned with the precise spatial asymptotic
behavior for the parabolic Anderson equation
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where the homogeneous generalized Gaussian noise V (t, x) is, among other forms, white or fractional white in time
and space. Associated with the Cole-Hopf solution to the KPZ equation, in particular, the precise asymptotic form
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is obtained for the parabolic Anderson model ∂tu = 1
2∂

2
xxu+ Ẇu with the (1 + 1)-white noise Ẇ (t, x).
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