On the occupation times for spectrally negative Lévy processes

Yingqiu Li, Xiaowen Zhou and Na Zhu

Concordia University and Changsha University of Science and Technology

The 10th International Workshop on Markov Processes and related Topics Xian, August 14-18, 2014

4 n + 4 n +

つくい

Outline of the Talk

- 1 Spectrally negative Lévy process (SNLP)
- 2 [Scale functions and the exit problems](#page-4-0)
- 3 [Scale function identities](#page-9-0)
- 4 [Laplace transforms on occupation times](#page-11-0)
	- [A new approach](#page-11-0)
	- [Joint occupation times](#page-13-0)
	- [A discounted potential measure](#page-17-0)

へのへ

Lévy process

- A Lévy process is a stochastic process with stationary independent increment.
- \bullet It is known that

$$
X_t - X_0 = \gamma t + \sigma B_t + J_t,
$$

where γ is a constant, process B is a Brownian motion, process J is a pure jump process and, B and J are independent.

 X_t is spectrally negative if J_t has no positive jumps.

 \leftarrow \Box

- 4 桐 ト 4 三

へのへ

• For spectrally negative Lévy process X_t with $X_0 = 0$.

$$
\mathbb{E}e^{\theta X_t} = e^{t\psi(\theta)},
$$

for θ , $t > 0$, where the Laplace exponent

$$
\psi(\theta) = \gamma \theta + \frac{1}{2}\sigma^2 \theta^2 + \int_{-\infty}^0 \left(e^{\theta z} - 1 - \theta z 1_{(-1,0)}(z) \right) \Pi(\mathrm{d}z),
$$

and the Lévy measure Π is a σ -finite measure on $(-\infty, 0)$ satisfying

$$
\int_{-\infty}^0 (1 \wedge z^2) \Pi(\mathrm{d} z) < \infty.
$$

 $4.11 \times 4.60 \times 4.72 \times$

つくい

• Let Φ be the right inverse of ψ .

Scale function

- The exit problem concerns how the process X first leaves an interval $[a, b]$.
- We often need the scale function to study the exit problem.
- For $q > 0$, the q-scale function $W^{(q)}$ of the process X is defined as the function with Laplace transform on $[0,\infty)$ given by

$$
\int_0^\infty e^{-\theta z} W^{(q)}(z) dz = \frac{1}{\psi(\theta) - q}, \quad \text{for } \theta > \Phi(q),
$$

and such that $W^{(q)}(x)=0$ for $x < 0$.

We write $W=W^{(0)}.$

へのへ

Remarks on scale functions

• For SNLP with positive drift,

$$
W(x)=\frac{1}{\psi'(0+)}\mathbb{P}_{x}\{\inf_{t<\infty}X_{t}\geq 0\}.
$$

- Roughly, $W^{(q)}$ is W for process killed at rate q.
- The scale function was initially obtained for diffusion process. It is positive, strictly increasing, continuous and often differentiable.
- The explicit expressions of scale function are not always known.
- In the the study of spectrally negative Lévy processes we often want to express the interested quantities in terms of scale functions.

へのへ

More scale functions

 \bullet

 \bullet

$$
Z^{(p)}(x) = 1 + p \int_0^x W^{(p)}(y) dy.
$$

$$
Z^{(p)}(x,\theta) = e^{\theta x} \left(1 + (p - \psi(\theta)) \int_0^x e^{-\theta y} W^{(p)}(y) dy\right).
$$

Given $p, q \geq 0$, for $0 \leq a$ further define

$$
W_a^{(p,q)}(x) := W^{(p)}(x) + (q-p) \int_a^x W^{(q)}(x-y) W^{(p)}(y) dy.
$$

$$
Z_{a}^{(p,q)}(x) := Z^{(p)}(x) + (q-p) \int_{a}^{x} W^{(q)}(x-y) Z^{(p)}(y) dy
$$

Solutions to the exit problems

• Define

$$
\tau_b^+ = \inf\{t > 0 \colon X_t > b\} \text{ and } \tau_0^- = \inf\{t > 0 \colon X_t < 0\}.
$$

• It is well known that for $0 \le x \le b$,

$$
\mathbb{E}_x\left[e^{-q\tau_b^+};\tau_b^+<\tau_0^-\right]=\frac{W^{(q)}(x)}{W^{(q)}(b)},
$$

$$
\mathbb{E}_x\left[e^{-q\tau_0^-}; \tau_0^- < \tau_b^+\right] = Z^{(q)}(x) - Z^{(q)}(b)\frac{W^{(q)}(x)}{W^{(q)}(b)}.
$$

• For $q, \theta > 0$,

$$
\mathbb{E}_x\left[e^{-q\tau_0^- + \theta X_{\tau_0^-}}; \tau_0^- < \infty\right] = Z^{(q)}(x,\theta) - \frac{q - \psi(\theta)}{\Phi(q) - \theta} W^{(q)}(x).
$$

Potential measures

Given $q > 0$, for any x, y, the expected total discounted time when process X takes values in dx is

$$
\int_0^\infty \mathbb{P}\{X_t \in dx\} e^{-qt} dt
$$

= $q^{-1} \mathbb{P}\{X(e_q) \in dx\}$
= $(\Phi'(q) e^{-\Phi(q)x} - W^{(q)}(-x)) dx,$

where e_q is an independent exponential random variable with rate q.

 $4.11 \times 4.60 \times 4.72 \times$

 $2Q$

Identities on scale functions

For any $p, q > 0$

$$
(q-p)\int_0^a W^{(p)}(a-y)W^{(q)}(y)dy = W^{(q)}(a) - W^{(p)}(a),
$$

$$
(q-p)\int_0^a W^{(p)}(a-y)Z^{(q)}(y)dy = Z^{(q)}(a) - Z^{(p)}(a).
$$

For any $r > 0$ and $a < z$,

$$
(r-q)\int_a^z W^{(r)}(z-x)W^{(p,q)}_a(x)dx=W^{(p,r)}_a(z)-W^{(p,q)}_a(z),
$$

$$
(r-q)\int_a^z W^{(r)}(z-x)Z_a^{(p,q)}(x)dx = Z_a^{(p,r)}(z) - Z_a^{(p,q)}(z).
$$

K ロ ⊁ K 個 ⊁ K 差 ≯

∢ 重う

重

 $2Q$

More identities

For any $q \ge 0$ and $0 \le a < b$, we have

$$
\mathbb{E}_x \left[e^{-q \tau_a^-} W^{(\rho)}(X_{\tau_a^-}) ; \ \tau_a^- < \tau_b^+ \right] = W^{(\rho,q)}_a(x) - \frac{W^{(q)}(x-a)}{W^{(q)}(b-a)} W^{(\rho,q)}_a(b)
$$

and

$$
\mathbb{E}_x\left[e^{-q\tau_a^-}Z^{(p)}(X_{\tau_a^-});\ \tau_a^-<\tau_b^+\right]=Z^{(p,q)}_a(x)-\frac{Z^{(q)}(x-a)}{Z^{(q)}(b-a)}Z^{(p,q)}_a(b).
$$

K ロ ト K 御 ト K 差 ト

一 4 店 ト

重

 299

[A "new" approach](#page-11-0) [Joint occupation times](#page-13-0) [A discounted potential measure](#page-17-0)

 $4.11 \times 4.60 \times 4.72 \times$

へのへ

An observation

We propose a new approach using a property for Poisson process.

- Let N_t be an independent Poisson process with intensity λ . Let $0 < T_1 < T_2 < \dots$ be its arrival times.
- For any subset A of \mathbb{R} ,

$$
\mathbb{E}e^{-\lambda \int_0^t 1_A(X_s)ds} = \mathbb{P}\{\{T_i\} \cap \{s \leq t : X_s \in A\} = \emptyset\}.
$$

- By considering the the SNLP observed at discrete Poisson arrival times we get around the problem caused by infinite activity.
- Some fluctuation identities for SNLP observed at Poisson arrival times have been obtained in Albrecher, Ivanovs and Z. (2014).

[A "new" approach](#page-11-0) [Joint occupation times](#page-13-0)

$$
I_x := \mathbb{E}_x e^{-\lambda \int_0^{eq} \mathbb{1}_{(0,\infty)}(X_s)ds} = \mathbb{P}\{\{T_i\} \cap \{s \le e_q : X_s > 0\} = \emptyset\}
$$

with $I \equiv I_0$. Conditioning on X_{T_1} ,

$$
I = \int_{-\infty}^{0} \mathbb{P}\{T_1 < e_q, X_{T_1} \in dx\} I_x + \mathbb{P}\{T_1 > e_q\}
$$
\n
$$
= \lambda \int_{-\infty}^{0} \int_{0}^{\infty} e^{-(q+\lambda)t} \mathbb{P}\{X_t \in dx\} \{\mathbb{P}_x \{\tau_0^+ < e_q\} I + \mathbb{P}_x \{\tau_0^+ > e_q\} \} dt
$$
\n
$$
+ \frac{q}{q+\lambda}.
$$

Solving the equation for I,

$$
I = \frac{\frac{q}{q+\lambda} + \lambda \int_{-\infty}^{0} (1 - e^{\Phi(q)x}) \int_{0}^{\infty} e^{-(q+\lambda)t} \mathbb{P}\{X_t \in dx\} dt}{1 - \lambda \int_{-\infty}^{0} e^{\Phi(q)x} \int_{0}^{\infty} e^{-(q+\lambda)t} \mathbb{P}\{X_t \in dx\} dt}
$$

= $\cdots = \frac{\Phi(q)}{\Phi(q+\lambda)}$.
Newton Zhou **Decupation time**

[A "new" approach](#page-11-0) [Joint occupation times](#page-13-0) [A discounted potential measure](#page-17-0)

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ⊁

 $2Q$

Joint occupation times

• For $0 < a < b$ and $0 < x < b$ we are interested in

$$
\mathbb{E}_x \left[e^{-\lambda_- \int_0^{\tau_0^-} \mathbf{1}_{(0,a)}(X_s) \mathrm{d} s - \lambda_+ \int_0^{\tau_0^-} \mathbf{1}_{(a,b)}(X_s) \mathrm{d} s } ; \, \tau_0^- < \tau_b^+ \right]. \quad \text{ (1)}
$$

Note that when $\tau_0^- < \tau_b^+$,

$$
\int_0^{\tau_0^-}1_{(0,a)}(X_s){\mathord{{\rm d}}} s+\int_0^{\tau_0^-}1_{(a,b)}(X_s){\mathord{{\rm d}}} s=\tau_0^-.
$$

• We want to associate [\(1\)](#page-13-1) to Poisson arrival times.

 \bullet

イロメ イ母メ イヨメ イヨメー

へのへ

- \bullet Let N_{-} and N_{+} be two independent Poisson processes with rates λ_- and λ_+ , respectively.
- Let (T_i^-) $\binom{m}{i}$ and (T_i^+) i^{+}) be the respective arrival times.

 $\mathbb{E}_\mathsf{x}\left[e^{-\lambda_-\int_0^{\tau_0^-} \mathbb{1}_{(0,s)}(X_s)\mathrm{d}s-\lambda_+\int_0^{\tau_0^-} \mathbb{1}_{(a,b)}(X_s)\mathrm{d}s} ;\ \tau_0^-<\tau_b^+ \right]$ 1 $= \mathbb{P}_{x} \left\{ \left\{ T_{i}^{-} \right\}$ $\{\tau_i^-\}\cap\{s:s<\tau_0^-<\tau_b^+,X_s\in(0,a)\}$ $=$ \emptyset $= \{T_i^+\}$ $\{\tau_i^+\}\cap\{s:s<\tau_0^-<\tau_b^+,X_s\in(a,b)\}\}$.

[A "new" approach](#page-11-0) [Joint occupation times](#page-13-0) [A discounted potential measure](#page-17-0)

Theorem

For any $0 < a < b, 0 \le x \le b$ and $\lambda_-, \lambda_+ \ge 0$, we have

$$
\mathbb{E}_{\mathsf{x}}\left[e^{-\lambda_{-}\int_{0}^{\tau_{b}^{+}}1_{(0,a)}(X_{s})ds-\lambda_{+}\int_{0}^{\tau_{b}^{+}}1_{(a,b)}(X_{s})ds};\,\tau_{b}^{+}<\tau_{0}^{-}\right]
$$
\n
$$
=\frac{W_{a}^{(\lambda_{-},\lambda_{+})}(x)}{W_{a}^{(\lambda_{-},\lambda_{+})}(b)}.\tag{2}
$$

$$
\mathbb{E}_{X}\left[e^{-\lambda_{-}\int_{0}^{\tau_{0}^{-}}1_{(0,a)}(X_{s})ds-\lambda_{+}\int_{0}^{\tau_{0}^{-}}1_{(a,b)}(X_{s})ds};\tau_{0}^{-}<\tau_{b}^{+}\right]
$$
\n
$$
=Z_{a}^{(\lambda_{-},\lambda_{+})}(x)-\frac{W_{a}^{(\lambda_{-},\lambda_{+})}(x)Z_{a}^{(\lambda_{-},\lambda_{+})}(b)}{W_{a}^{(\lambda_{-},\lambda_{+})}(b)}.
$$
\n(3)

イロト イ部 トイヨ トイヨト

È

 $2Q$

[A "new" approach](#page-11-0) [Joint occupation times](#page-13-0) [A discounted potential measure](#page-17-0)

イロト イ押 トイモト イモト

 $2Q$

目

By letting either $a \rightarrow 0+$, or $a \rightarrow b-$, or $p = q$ in [\(2\)](#page-15-0) we recover

$$
\mathbb{E}_x\left[e^{-q\tau_a^+}; \tau_a^+ < \tau_0^- \right] = \frac{W^{(q)}(x)}{W^{(q)}(a)}.
$$

One can also recover

$$
\mathbb{E}_x\left[e^{-q\tau_0^-}; \tau_0^- < \tau_a^+\right] = Z^{(q)}(x) - Z^{(q)}(a) \frac{W^{(q)}(x)}{W^{(q)}(a)}
$$

similarly from [\(3\)](#page-15-1).

[A "new" approach](#page-11-0) [Joint occupation times](#page-13-0) [A discounted potential measure](#page-17-0)

4 n + 4 n +

 $2Q$

A discounted potential measure

• Let e_a be an independent exponential random variable with rate q, we are interested in

$$
\mathbb{E}\left[e^{-\lambda_{-}\int_{0}^{e_{q}}1_{(-\infty,0)}(X_{s})ds-\lambda_{+}\int_{0}^{e_{q}}1_{(0,\infty)}(X_{s})ds};X(e_{q})\in dx\right].
$$
 (4)

• [\(4\)](#page-17-1) concerns the distributions of

$$
\left(\int_0^t 1_{(-\infty,0)}(X_s),\int_0^t 1_{(0,\infty)}(X_s),X_t\right).
$$

[A "new" approach](#page-11-0) [Joint occupation times](#page-13-0) [A discounted potential measure](#page-17-0)

メロメ メ都 メメ 君 メメ 君 メー

目

 299

Theorem

For any
$$
q, \lambda_-, \lambda_+ > 0
$$
 and $x \in \mathbb{R}$,
\n
$$
\mathbb{E}\left[e^{-\lambda_- \int_0^{e_q} 1_{(-\infty,0)}(X_s)ds - \lambda_+ \int_0^{e_q} 1_{(0,\infty)}(X_s)ds}; X(e_q) \in dx\right]
$$
\n
$$
= \frac{q}{\lambda_+ - \lambda_-}[\Phi(q + \lambda_+) - \Phi(q + \lambda_-)]Z^{(q + \lambda_-)}(-x, \Phi(q + \lambda_+))dx
$$
\n
$$
-qW^{(q + \lambda_-)}(-x)dx.
$$

[A "new" approach](#page-11-0) [Joint occupation times](#page-13-0) [A discounted potential measure](#page-17-0)

メロト メタト メミト メミト

重

 $2Q$

One more identity

Observe that for $\lambda, q > 0$

$$
\mathbb{E}\left[e^{-\lambda_{-}\int_{0}^{e_{q}}1_{(-\infty,0)}(X_{s})ds-\lambda_{+}\int_{0}^{e_{q}}1_{(0,\infty)}(X_{s})ds};X(e_{q})\in dx\right]
$$
\n
$$
=\frac{q}{\lambda_{+}-\lambda_{-}}[\Phi(q+\lambda_{+})-\Phi(q+\lambda_{-})]
$$
\n
$$
\times \mathbb{E}\left[e^{-(q+\lambda_{-})\tau_{0}^{-}+\Phi(q+\lambda_{+})X_{\tau_{0}^{-}}};\tau_{0}^{-}<\infty\right]dx.
$$

[A "new" approach](#page-11-0) [Joint occupation times](#page-13-0) [A discounted potential measure](#page-17-0)

メロメ メタメ メミメ メミメ

重

 299

Taking an integral on x , we have the following result.

Corollary
\nFor
$$
q, \lambda_-, \lambda_+ > 0
$$
,
\n
$$
\mathbb{E}e^{-\lambda_- \int_0^{eq} 1_{(-\infty,0)}(X_s)ds - \lambda_+ \int_0^{eq} 1_{(0,\infty)}(X_s)ds} = \frac{q\Phi(q+\lambda_-)}{(q+\lambda_-)\Phi(q+\lambda_+)}.
$$

[A "new" approach](#page-11-0) [Joint occupation times](#page-13-0) [A discounted potential measure](#page-17-0)

Brownian motion

Suppose that B is a standard one-dimensional Brownian motion and $X_t = B_t + \mu t$ for constant $\mu \in \mathbb{R}$. Then

$$
\psi(\lambda) = \mu \lambda + \frac{1}{2} \lambda^2,
$$

$$
\Phi(q) = \sqrt{\mu^2 + 2q} - \mu,
$$

$$
W^{(q)}(x) = \frac{1}{\sqrt{\mu^2 + 2q}} \left(e^{(\sqrt{\mu^2 + 2q} - \mu)x} - e^{-(\sqrt{\mu^2 + 2q} + \mu)x} \right),
$$

$$
Z^{(p)}(x,\theta) = \frac{\sqrt{\mu^2 + 2p} + \sqrt{\mu^2 + 2\theta}}{2\sqrt{\mu^2 + 2p}} e^{-(\sqrt{\mu^2 + 2p} - \mu)x} + \frac{\sqrt{\mu^2 + 2p} - \sqrt{\mu^2 + 2\theta}}{2\sqrt{\mu^2 + 2p}} e^{(\sqrt{\mu^2 + 2p} + \mu)x}.
$$

Xiaowen Zhou [Occupation time](#page-0-0)

[A "new" approach](#page-11-0) [Joint occupation times](#page-13-0) [A discounted potential measure](#page-17-0)

メロトメ 御 トメ 君 トメ 君 トッ

目

 299

For $x \geq 0$,

$$
\mathbb{E}\left[e^{-\lambda_{-}\int_{0}^{e_{q}}1_{(-\infty,0)}(X_{s})ds-\lambda_{+}\int_{0}^{e_{q}}1_{(0,\infty)}(X_{s})ds},X(e_{q})\in dx\right]
$$
\n
$$
=\frac{q}{\lambda_{+}-\lambda_{-}}\left(\sqrt{\mu^{2}+2(q+\lambda_{+})}-\sqrt{\mu^{2}+2(q+\lambda_{-})}\right)
$$
\n
$$
\times e^{\left(\mu-\sqrt{\mu^{2}+2(q+\lambda_{+})}\right)x}dx.
$$

For
$$
x < 0
$$
,

$$
\mathbb{E}\left[e^{-\lambda-\int_0^{eq}1_{(-\infty,0)}(X_s)\mathrm{d}s-\lambda+\int_0^{eq}1_{(0,\infty)}(X_s)\mathrm{d}s},X(e_q)\in\mathrm{d}x\right]
$$
\n
$$
=\frac{q}{\lambda_+-\lambda_-}\left(\sqrt{\mu^2+2(q+\lambda_+)}-\sqrt{\mu^2+2(q+\lambda_-)}\right)
$$
\n
$$
\times e^{(\mu+\sqrt{\mu^2+2(q+\lambda_-)})x}\mathrm{d}x.
$$

[A "new" approach](#page-11-0) [Joint occupation times](#page-13-0) [A discounted potential measure](#page-17-0)

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right\}$

へのへ

Summary

- We use a direct approach to find Laplace transforms on occupation times for spectrally negative Lévy processes.
- It identifies the Laplace transform on occupation time as a fluctuation result on SNLP observed at Poisson arrival times.
- To implement this approach we need to be familiar with fluctuation results on SNLP and identities on scale functions.
- We also need to carry out lengthy computations.

[A "new" approach](#page-11-0) [Joint occupation times](#page-13-0) [A discounted potential measure](#page-17-0)

K ロ ⊁ K 倒 ≯ K ミ ⊁ K ミ ⊁

重

 $2Q$

Thank you for your attention!