On the occupation times for spectrally negative Lévy processes

Yingqiu Li, Xiaowen Zhou and Na Zhu

Concordia University and Changsha University of Science and Technology

The 10th International Workshop on Markov Processes and related Topics Xian, August 14-18, 2014

Outline of the Talk

- 1 Spectrally negative Lévy process (SNLP)
- 2 Scale functions and the exit problems
- 3 Scale function identities
- 4 Laplace transforms on occupation times
 - A new approach
 - Joint occupation times
 - A discounted potential measure

Lévy process

- A Lévy process is a stochastic process with stationary independent increment.
- It is known that

$$X_t - X_0 = \gamma t + \sigma B_t + J_t,$$

where γ is a constant, process *B* is a Brownian motion, process *J* is a pure jump process and, *B* and *J* are independent.

• X_t is spectrally negative if J_t has no positive jumps.

- (同) - (三)

• For spectrally negative Lévy process X_t with $X_0 = 0$,

$$\mathbb{E}\mathrm{e}^{\theta X_t} = \mathrm{e}^{t\psi(\theta)},$$

for $\theta, t \geq 0$, where the Laplace exponent

$$\psi(\theta) = \gamma \theta + \frac{1}{2}\sigma^2 \theta^2 + \int_{-\infty}^0 \left(e^{\theta z} - 1 - \theta z \mathbf{1}_{(-1,0)}(z) \right) \Pi(\mathrm{d}z),$$

and the Lévy measure Π is a σ -finite measure on $(-\infty, 0)$ satisfying

$$\int_{-\infty}^0 (1 \wedge z^2) \Pi(\mathrm{d} z) < \infty.$$

イロト イポト イラト イ

• Let Φ be the right inverse of ψ .

Scale function

- The exit problem concerns how the process X first leaves an interval [a, b].
- We often need the scale function to study the exit problem.
- For q ≥ 0, the q-scale function W^(q) of the process X is defined as the function with Laplace transform on [0,∞) given by

$$\int_0^\infty \mathrm{e}^{- heta z} W^{(q)}(z) \mathrm{d} z = rac{1}{\psi(heta) - q}, \quad ext{for } heta > \Phi(q),$$

and such that $W^{(q)}(x) = 0$ for x < 0.

• We write $W = W^{(0)}$.

Remarks on scale functions

• For SNLP with positive drift,

$$W(x) = rac{1}{\psi'(0+)} \mathbb{P}_x \{ \inf_{t < \infty} X_t \ge 0 \}.$$

- Roughly, $W^{(q)}$ is W for process killed at rate q.
- The scale function was initially obtained for diffusion process. It is positive, strictly increasing, continuous and often differentiable.
- The explicit expressions of scale function are not always known.
- In the the study of spectrally negative Lévy processes we often want to express the interested quantities in terms of scale functions.

More scale functions

۲

۲

$$Z^{(p)}(x) = 1 + p \int_0^x W^{(p)}(y) dy.$$

$$Z^{(p)}(x,\theta) = e^{\theta x} \left(1 + (p - \psi(\theta)) \int_0^x e^{-\theta y} W^{(p)}(y) \mathrm{d}y \right).$$

• Given $p, q \ge 0$, for $0 \le a$ further define

$$W_a^{(p,q)}(x) := W^{(p)}(x) + (q-p) \int_a^x W^{(q)}(x-y) W^{(p)}(y) dy.$$

$$Z_{a}^{(p,q)}(x) := Z^{(p)}(x) + (q-p) \int_{a}^{x} W^{(q)}(x-y) Z^{(p)}(y) dy$$

Solutions to the exit problems

Define

$$au_b^+ = \inf\{t > 0 \colon X_t > b\} \text{ and } au_0^- = \inf\{t > 0 \colon X_t < 0\}.$$

• It is well known that for $0 \le x \le b$,

$$\mathbb{E}_{\mathsf{x}}\left[e^{-q\tau_b^+};\tau_b^+<\tau_0^-\right]=\frac{W^{(q)}(\mathsf{x})}{W^{(q)}(b)},$$

$$\mathbb{E}_{x}\left[e^{-q\tau_{0}^{-}};\tau_{0}^{-}<\tau_{b}^{+}\right]=Z^{(q)}(x)-Z^{(q)}(b)\frac{W^{(q)}(x)}{W^{(q)}(b)}$$

• For $q, \theta > 0$,

$$\mathbb{E}_{x}\left[e^{-q\tau_{0}^{-}+\theta X_{\tau_{0}^{-}}};\tau_{0}^{-}<\infty\right]=Z^{(q)}(x,\theta)-\frac{q-\psi(\theta)}{\Phi(q)-\theta}W^{(q)}(x).$$

Potential measures

Given q > 0, for any x, y, the expected total discounted time when process X takes values in dx is

$$\begin{split} &\int_0^\infty \mathbb{P}\{X_t \in \mathrm{d}x\} e^{-qt} \mathrm{d}t \\ &= q^{-1} \mathbb{P}\{X(e_q) \in \mathrm{d}x\} \\ &= \left(\Phi'(q) e^{-\Phi(q)x} - W^{(q)}(-x)\right) \mathrm{d}x, \end{split}$$

where e_q is an independent exponential random variable with rate q.

Identities on scale functions

For any p, q > 0

$$(q-p)\int_0^a W^{(p)}(a-y)W^{(q)}(y)dy = W^{(q)}(a) - W^{(p)}(a),$$

$$(q-p)\int_0^a W^{(p)}(a-y)Z^{(q)}(y)dy = Z^{(q)}(a) - Z^{(p)}(a).$$

For any r > 0 and a < z,

$$(r-q)\int_{a}^{z}W^{(r)}(z-x)W^{(p,q)}_{a}(x)\mathrm{d}x = W^{(p,r)}_{a}(z) - W^{(p,q)}_{a}(z),$$

$$(r-q)\int_{a}^{z}W^{(r)}(z-x)Z_{a}^{(p,q)}(x)\mathrm{d}x=Z_{a}^{(p,r)}(z)-Z_{a}^{(p,q)}(z).$$

・ロト ・回ト ・ヨト

- ∢ ≣ ▶

More identities

For any $q \ge 0$ and $0 \le a < b$, we have

$$\mathbb{E}_{x}\left[e^{-q\tau_{a}^{-}}W^{(p)}(X_{\tau_{a}^{-}}); \ \tau_{a}^{-} < \tau_{b}^{+}\right] = W_{a}^{(p,q)}(x) - \frac{W^{(q)}(x-a)}{W^{(q)}(b-a)}W_{a}^{(p,q)}(b)$$

and

$$\mathbb{E}_{x}\left[e^{-q\tau_{a}^{-}}Z^{(p)}(X_{\tau_{a}^{-}}); \tau_{a}^{-} < \tau_{b}^{+}\right] = Z_{a}^{(p,q)}(x) - \frac{Z^{(q)}(x-a)}{Z^{(q)}(b-a)}Z_{a}^{(p,q)}(b).$$

・ロン ・回 と ・ ヨン ・ ヨン

æ

A "new" approach Joint occupation times A discounted potential measure

イロト イポト イヨト イヨト

An observation

We propose a new approach using a property for Poisson process.

- Let N_t be an independent Poisson process with intensity λ.
 Let 0 < T₁ < T₂ < ... be its arrival times.
- For any subset A of \mathbb{R} ,

$$\mathbb{E}e^{-\lambda\int_0^t \mathbf{1}_A(X_s)\mathrm{d}s} = \mathbb{P}\{\{T_i\} \cap \{s \le t : X_s \in A\} = \emptyset\}.$$

- By considering the the SNLP observed at discrete Poisson arrival times we get around the problem caused by infinite activity.
- Some fluctuation identities for SNLP observed at Poisson arrival times have been obtained in Albrecher, Ivanovs and Z. (2014).

A "new" approach Joint occupation times A discounted potential measure

$$I_x := \mathbb{E}_x e^{-\lambda \int_0^{e_q} \mathbf{1}_{(0,\infty)}(X_s) ds} = \mathbb{P}\{\{T_i\} \cap \{s \le e_q : X_s > 0\} = \emptyset\}$$

with $I \equiv I_0$. Conditioning on X_{T_1} ,

$$\begin{split} I &= \int_{-\infty}^0 \mathbb{P}\{T_1 < e_q, X_{T_1} \in \mathrm{d}x\}I_x + \mathbb{P}\{T_1 > e_q\} \\ &= \lambda \int_{-\infty}^0 \int_0^\infty e^{-(q+\lambda)t} \mathbb{P}\{X_t \in \mathrm{d}x\}(\mathbb{P}_x\{\tau_0^+ < e_q\}I + \mathbb{P}_x\{\tau_0^+ > e_q\})\mathrm{d}t \\ &+ \frac{q}{q+\lambda}. \end{split}$$

Solving the equation for I,

$$I = \frac{\frac{q}{q+\lambda} + \lambda \int_{-\infty}^{0} (1 - e^{\Phi(q)x}) \int_{0}^{\infty} e^{-(q+\lambda)t} \mathbb{P}\{X_{t} \in dx\} dt}{1 - \lambda \int_{-\infty}^{0} e^{\Phi(q)x} \int_{0}^{\infty} e^{-(q+\lambda)t} \mathbb{P}\{X_{t} \in dx\} dt}$$
$$= \dots = \frac{\Phi(q)}{\Phi(q+\lambda)}.$$

A "new" approach Joint occupation times A discounted potential measure

イロト イヨト イヨト イヨト

Joint occupation times

• For 0 < a < b and 0 < x < b we are interested in

$$\mathbb{E}_{\mathsf{x}}\left[e^{-\lambda_{-}\int_{0}^{\tau_{0}^{-}}\mathbf{1}_{(0,a)}(X_{s})\mathrm{d}s-\lambda_{+}\int_{0}^{\tau_{0}^{-}}\mathbf{1}_{(a,b)}(X_{s})\mathrm{d}s}; \tau_{0}^{-}<\tau_{b}^{+}\right].$$
 (1)

• Note that when $\tau_0^- < \tau_b^+$,

$$\int_0^{\tau_0^-} \mathbf{1}_{(0,a)}(X_s) \mathrm{d}s + \int_0^{\tau_0^-} \mathbf{1}_{(a,b)}(X_s) \mathrm{d}s = \tau_0^-.$$

• We want to associate (1) to Poisson arrival times.

۲

イロン イヨン イヨン イヨン

- Let N_- and N_+ be two independent Poisson processes with rates λ_- and λ_+ , respectively.
- Let (T_i^-) and (T_i^+) be the respective arrival times.

$$\begin{split} \mathbb{E}_{x} \left[e^{-\lambda_{-} \int_{0}^{\tau_{0}^{-}} \mathbf{1}_{(0,a)}(X_{s}) \mathrm{d}s - \lambda_{+} \int_{0}^{\tau_{0}^{-}} \mathbf{1}_{(a,b)}(X_{s}) \mathrm{d}s}; \ \tau_{0}^{-} < \tau_{b}^{+} \right] \\ &= \mathbb{P}_{x} \left\{ \{ T_{i}^{-} \} \cap \{ s : s < \tau_{0}^{-} < \tau_{b}^{+}, X_{s} \in (0,a) \} \right. \\ &= \emptyset \\ &= \{ T_{i}^{+} \} \cap \{ s : s < \tau_{0}^{-} < \tau_{b}^{+}, X_{s} \in (a,b) \} \right\}. \end{split}$$

A "new" approach Joint occupation times A discounted potential measure

Theorem

For any $0 < a < b, 0 \le x \le b$ and $\lambda_-, \lambda_+ \ge 0$, we have

$$\mathbb{E}_{x}\left[e^{-\lambda_{-}\int_{0}^{\tau_{b}^{+}}1_{(0,a)}(X_{s})\mathrm{d}s-\lambda_{+}\int_{0}^{\tau_{b}^{+}}1_{(a,b)}(X_{s})\mathrm{d}s}; \tau_{b}^{+}<\tau_{0}^{-}\right]$$

$$=\frac{W_{a}^{(\lambda_{-},\lambda_{+})}(x)}{W_{a}^{(\lambda_{-},\lambda_{+})}(b)}.$$
(2)

$$\mathbb{E}_{x}\left[e^{-\lambda_{-}\int_{0}^{\tau_{0}^{-}}1_{(0,a)}(X_{s})\mathrm{d}s-\lambda_{+}\int_{0}^{\tau_{0}^{-}}1_{(a,b)}(X_{s})\mathrm{d}s}; \tau_{0}^{-} < \tau_{b}^{+}\right] = Z_{a}^{(\lambda_{-},\lambda_{+})}(x) - \frac{W_{a}^{(\lambda_{-},\lambda_{+})}(x)Z_{a}^{(\lambda_{-},\lambda_{+})}(b)}{W_{a}^{(\lambda_{-},\lambda_{+})}(b)}.$$
(3)

・ロン ・回と ・ヨン・

æ

A "new" approach Joint occupation times A discounted potential measure

・ロト ・日本 ・モト ・モト

æ

By letting either $a \rightarrow 0+$, or $a \rightarrow b-$, or p = q in (2) we recover

$$\mathbb{E}_{x}\left[e^{-q\tau_{a}^{+}};\tau_{a}^{+}<\tau_{0}^{-}\right]=\frac{W^{(q)}(x)}{W^{(q)}(a)}.$$

One can also recover

$$\mathbb{E}_{x}\left[e^{-q\tau_{0}^{-}};\tau_{0}^{-}<\tau_{a}^{+}\right]=Z^{(q)}(x)-Z^{(q)}(a)\frac{W^{(q)}(x)}{W^{(q)}(a)}$$

similarly from (3).

A "new" approach Joint occupation times A discounted potential measure

A discounted potential measure

• Let *e_q* be an independent exponential random variable with rate *q*, we are interested in

$$\mathbb{E}\left[e^{-\lambda_{-}\int_{0}^{e_{q}}\mathbf{1}_{(-\infty,0)}(X_{s})\mathrm{d}s-\lambda_{+}\int_{0}^{e_{q}}\mathbf{1}_{(0,\infty)}(X_{s})\mathrm{d}s};X(e_{q})\in\mathrm{d}x\right].$$
 (4)

• (4) concerns the distributions of

$$\left(\int_0^t 1_{(-\infty,0)}(X_s), \int_0^t 1_{(0,\infty)}(X_s), X_t\right).$$

A "new" approach Joint occupation times A discounted potential measure

æ

Theorem

For any
$$q, \lambda_{-}, \lambda_{+} > 0$$
 and $x \in \mathbb{R}$,

$$\mathbb{E}\left[e^{-\lambda_{-}\int_{0}^{e_{q}}1_{(-\infty,0)}(X_{s})\mathrm{d}s-\lambda_{+}\int_{0}^{e_{q}}1_{(0,\infty)}(X_{s})\mathrm{d}s}; X(e_{q}) \in \mathrm{d}x\right]$$

$$= \frac{q}{\lambda_{+}-\lambda_{-}}[\Phi(q+\lambda_{+})-\Phi(q+\lambda_{-})]Z^{(q+\lambda_{-})}(-x,\Phi(q+\lambda_{+}))\mathrm{d}x$$

$$-qW^{(q+\lambda_{-})}(-x)\mathrm{d}x.$$

A "new" approach Joint occupation times A discounted potential measure

・ロト ・回ト ・ヨト ・ヨト

æ

One more identity

Observe that for $\lambda, q > 0$

$$\mathbb{E}\left[e^{-\lambda_{-}\int_{0}^{e_{q}}\mathbf{1}_{(-\infty,0)}(X_{s})\mathrm{d}s-\lambda_{+}\int_{0}^{e_{q}}\mathbf{1}_{(0,\infty)}(X_{s})\mathrm{d}s};X(e_{q})\in\mathrm{d}x\right]$$

$$=\frac{q}{\lambda_{+}-\lambda_{-}}\left[\Phi(q+\lambda_{+})-\Phi(q+\lambda_{-})\right]$$

$$\times\mathbb{E}\left[e^{-(q+\lambda_{-})\tau_{0}^{-}+\Phi(q+\lambda_{+})X_{\tau_{0}^{-}}};\tau_{0}^{-}<\infty\right]\mathrm{d}x.$$

A "new" approach Joint occupation times A discounted potential measure

・ロト ・回ト ・ヨト ・ヨト

æ

Taking an integral on x, we have the following result.

Corollary
For
$$q, \lambda_{-}, \lambda_{+} > 0$$
,
 $\mathbb{E}e^{-\lambda_{-}\int_{0}^{e_{q}} 1_{(-\infty,0)}(X_{s})ds - \lambda_{+}\int_{0}^{e_{q}} 1_{(0,\infty)}(X_{s})ds} = \frac{q\Phi(q + \lambda_{-})}{(q + \lambda_{-})\Phi(q + \lambda_{+})}.$

A "new" approach Joint occupation times A discounted potential measure

Brownian motion

Suppose that B is a standard one-dimensional Brownian motion and $X_t = B_t + \mu t$ for constant $\mu \in \mathbb{R}$. Then

$$\psi(\lambda) = \mu\lambda + rac{1}{2}\lambda^2,$$
 $\Phi(q) = \sqrt{\mu^2 + 2q} - \mu_1$

$$W^{(q)}(x) = \frac{1}{\sqrt{\mu^2 + 2q}} \left(e^{\left(\sqrt{\mu^2 + 2q} - \mu\right)x} - e^{-\left(\sqrt{\mu^2 + 2q} + \mu\right)x} \right),$$

$$Z^{(p)}(x,\theta) = \frac{\sqrt{\mu^2 + 2p} + \sqrt{\mu^2 + 2\theta}}{2\sqrt{\mu^2 + 2p}} e^{-(\sqrt{\mu^2 + 2p} - \mu)x} + \frac{\sqrt{\mu^2 + 2p} - \sqrt{\mu^2 + 2\theta}}{2\sqrt{\mu^2 + 2p}} e^{(\sqrt{\mu^2 + 2p} + \mu)x}.$$

Xiaowen Zhou

Occupation time

A "new" approach Joint occupation times A discounted potential measure

・ロン ・回 と ・ ヨ と ・ ヨ と

æ

For $x \ge 0$,

$$\mathbb{E}\left[e^{-\lambda_{-}\int_{0}^{e_{q}}\mathbf{1}_{(-\infty,0)}(X_{s})\mathrm{d}s-\lambda_{+}\int_{0}^{e_{q}}\mathbf{1}_{(0,\infty)}(X_{s})\mathrm{d}s}, X(e_{q})\in\mathrm{d}x\right]$$

$$=\frac{q}{\lambda_{+}-\lambda_{-}}\left(\sqrt{\mu^{2}+2(q+\lambda_{+})}-\sqrt{\mu^{2}+2(q+\lambda_{-})}\right)$$

$$\times e^{\left(\mu-\sqrt{\mu^{2}+2(q+\lambda_{+})}\right)x}\mathrm{d}x.$$

For x < 0,

$$\mathbb{E}\left[e^{-\lambda_{-}\int_{0}^{e_{q}}\mathbf{1}_{(-\infty,0)}(X_{s})\mathrm{d}s-\lambda_{+}\int_{0}^{e_{q}}\mathbf{1}_{(0,\infty)}(X_{s})\mathrm{d}s}, X(e_{q})\in\mathrm{d}x\right]$$

$$=\frac{q}{\lambda_{+}-\lambda_{-}}\left(\sqrt{\mu^{2}+2(q+\lambda_{+})}-\sqrt{\mu^{2}+2(q+\lambda_{-})}\right)$$

$$\times e^{(\mu+\sqrt{\mu^{2}+2(q+\lambda_{-})})x}\mathrm{d}x.$$

A "new" approach Joint occupation times A discounted potential measure

Summary

- We use a direct approach to find Laplace transforms on occupation times for spectrally negative Lévy processes.
- It identifies the Laplace transform on occupation time as a fluctuation result on SNLP observed at Poisson arrival times.
- To implement this approach we need to be familiar with fluctuation results on SNLP and identities on scale functions.
- We also need to carry out lengthy computations.

A "new" approach Joint occupation times A discounted potential measure

æ

Thank you for your attention!