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Let’s start with the following paper:

L. Gross, Logarithmic Sobolev inequalities and contractivity
properties of semigroups, Lecture Notes in Math. 1563,
Springer-Verlag, 1993.

In this paper,suppose that (X , µ) is a probability measure space
and that H is a self-adjoint operator on L2(X , µ). Assume that H
is bounded below. Define

‖e−tH‖q→p = sup{‖e−tH f‖p : f ∈ L2 ∩ Lq, ‖f‖q ≤ 1}

where ‖g‖p denotes the Lp(µ) norm of g. Consider the
following questions concerning the relation between properties
of H and the properties of semigroup e−tH which it generates.
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Q1: Under what conditions on H is e−tH a contraction
semigroup on L2(X , µ)?
A1: ‖e−tH‖2→2 ≤ 1 for all t > 0 if and only if

〈Hf , f 〉L2(µ) ≥ 0 for all f in D(H). (A1)

Q2: Assume H is a self-adjoint operator satisfying (A1). Under
what condition on H is e−tH a positivity preserving contraction
semigroup on Lp(X , µ) for all p ≥ 1?
A2: e−tH a positivity preserving and ‖e−tH‖p→p ≤ 1 if and only if

〈Hf , (f − 1)+〉L2(µ) ≥ 0 for all f in D(H), (A1)
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Q3: Assume that H is a self-adjoint operator in L2(X , µ) which
satisfies both (A1) and (A2). Under what conditions on H is
e−tH a contraction from Lq(µ) to Lp(µ) for some t > 0 and some
q and p with 1 < q < p <∞?

A3: ‖e−tH‖q→p ≤ 1 for some t > 0 and some q and p with
1 < q < p <∞ if and only if there is a constant c > 0 such that

c〈Hf , f 〉 ≥
∫

X
f 2 log |f |dµ− ‖f‖22 log ‖f‖22 for all f in D(H), (A3)

(A3) is generally refereed to as a logarithmic Sobolev inequality.
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In the following, the Harnack inequality is used to investigate
the logarithmic Sobolev inequality.

F.-Y. Wang, Logarithmic Sobolev inequalities on
noncompact Riemannian manifolds, Probab. Theory Relat.
Fields 109 (1997), 417–424.
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stochastic functional differential equations

X. Mao, Stochastic Differential Equations and Application,
Horwood publishing, UK, 2007.

S-E. A. Mohammed, Stochastic Functional Differential
Equations, Longman Scientific and Technical, 1984.

In many applications, one assumes that the system under
consideration is governed by a principle of causality; that is, the
future state of the system is independent of the past states and
is determined solely by the present. Lord Cherwell (see Wright
(1961)) has encountered the differential equation

dx(t) = −ax(t − 1)[1 + x(t)].

Dunkel(1968) suggested the more general equation

dx(t) = −a
[ ∫ 0

−1
x(t + θ)dη(θ)

]
[1 + x(t)].
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Volterra (1928) had investigated the equation

dx(t) =

(
ε1 − γ1y(t)−

∫ 0

−r
F1(θ)x(t + θ)dθ

)
x(t),

dy(t) =

(
ε2 − γ2x(t)−

∫ 0

−r
F2(θ)y(t + θ)dθ

)
y(t)

All these equations are special cases of the general functional
differential equation

dx(t) = f (xt , t)

where xt = {x(t + θ) : −r ≤ θ ≤ 0} is the past history of the
state.
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Taking into account the environmental noise, we consider the
following SFDEs

dx(t) = f (xt , t)dt + g(xt , t)dB(t).

Let (Ω,F ,P) be a probability space with the filtration {F}t≥0
satisfying the usual condition, and B(t) is the given BM. Let
τ > 0 and denote by C([−τ,0];Rd ) the family of continuous
functions ϕ from [−τ,0] to Rd ,

f : C([−τ,0];Rd )× [0,T ]→ Rd

g : C([−τ,0];Rd )× [0,T ]→ Rd×m
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Define
‖ϕ‖∞ = sup

θ∈[−τ,0]

|ϕ(θ)|

Assume that there exist two positive constants K̄ ,K such that
(i) for all φ, ϕ ∈ C([−τ,0];Rd ), t ∈ [0,T ]

|f (ϕ, t)− f (φ, t)|2 ∨ |f (ϕ, t)− f (φ, t)|2 ≤ K‖ϕ− φ‖2∞;

(ii) for all ϕ ∈ C([−τ,0];Rd ), t ∈ [0,T ]

|f (ϕ, t)|2 ∨ |g(ϕ, t)|2 ≤ K̄ (1 + ‖ϕ‖2∞).

Then there exists a unique solution x(t) to the equation for
given initial data.
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Harnack inequality

In mathematics, Harnack’s inequality is an inequality relating
the values of a positive harmonic function at two points,
introduced by A. Harnack (1887). J. Serrin (1955) and J. Moser
(1961, 1964) generalized Harnack’s inequality to solutions of
elliptic or parabolic partial differential equations. Perelman’s
solution of the Poincare conjecture uses a version of the
Harnack inequality, found by R. Hamilton (1993), for the Ricci
flow. Harnack’s inequality is used to prove Harnack’s theorem
about the convergence of sequences of harmonic functions.
Harnack’s inequality also implies the regularity of the function in
the interior of its domain. (From Wikipedia.)



strathlogo

Background SFDEs Harnack Inequality Exponential Integrability and Hypercontractivity

Deterministic Harnack Inequality

Harnack’s inequality is an inequality relating the values of a
positive harmonic function at two points, introduced by A.
Harnack (1887).

Theorem

[Harnack, 1887] Let u : BR(x0) ⊂ Rd → R be a harmonic function
which is either non-negative or non-positive. Then the value of u at
any point in Br (x0)(r < R) is bounded from above and below by the
quantities

u(x0)
R − r
R + r

(
R

R + r

)d−2

and u(x0)
R − r
R + r

(
R

R − r

)d−2

.
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J. Serrin (1955) and J. Moser (1961, 1964) generalized
Harnack’s inequality to solutions of elliptic or parabolic
partial differential equations.

Theorem

[Moser, 1964] Let u ∈ C∞((0,∞)× Rd ) be a non-negative solution
of the heat equation, then

u(t , x) ≤ u(t + s, y)

(
t + s

t

)d−2

exp
(
|y − x |2

4s

)
,

for x , y ∈ Rd , t , s > 0.
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Harnack inequality of SDEs

F.-Y. Wang, Harnack inequality for SDE with multiplicative
noise and extension to Neumann semigroup on nonconvex
manifolds, Ann. Probab. 39 (2011), no. 4, 1449–1467,

Let
dX (t) = σ(t ,X (t))dB(t) + b(t ,X (t))dt

Pt f (x) := Ef (X x (t)), t ≥ 0, x ∈ Rd , f ∈ B+
b (Rd ).

Under some conditions, Wang proved the following Harnack
inequality

(PT f (y))p ≤ CPT f p(x).

C could be explicit.
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Example
Consider the following OU process

dX (t) = −λX (t)dt + dW (t), (3.1)

where λ ∈ R is a constant and W (t) is a standard Brownian motion
on Rd . For initial condition X (0) = x , Eq. (3.1) admits explicit
solution

X (t) = xe−λt +

∫ t

0
e−λ(t−s)dW (s). (3.2)

Note that X (t) is a Gaussian process with mean µ := xe−λt and
variance σ2(t) := 1−e−2λt

2λ . Let Pt be the transition semigroup
associated with X (t). It can be expressed as

Pt f (x) =

∫
Rd

f (xe−λt + z)dρt (z), x ∈ Rd , f ∈ Cb(Rd ),

where ρt = N(0, σ2(t)).
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Example
Note that

ρt (dz) = (2πσ2(t))−
d
2 exp

(
− |z|

2

2σ2(t)

)
dz.

Let α, β > 1 such that 1
α + 1

β = 1 and compute by the Hölder
inequality

Pt f (x)

= (2πσ2(t))−
d
2

∫
Rd

f (xe−λt + z) exp
(
− |z|

2

2σ2(t)

)
dz

= (2πσ2(t))−
d
2

∫
Rd

f (ye−λt + z) exp
(
−|(y − x)e−λt + z|2

2σ2(t)

)
dz

= exp
(
−e−2λt |y − x |2

2σ2(t)

)∫
Rd

f (ye−λt + z) exp
(

e−λt〈x − y , z〉
σ2(t)

)
ρt (dz)
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Example

≤ exp
(
−e−2λt |y − x |2

2σ2(t)

)(∫
Rd

fα(ye−λt + z)ρt (dz)

) 1
α

×
(∫

Rd
exp

(
βe−λt〈x − y , z〉

σ2(t)

)
ρt (dz)

) 1
β

= exp
(
−e−2λt |y − x |2

2σ2(t)

)
(Pt fα(y))

1
α exp

(
βe−2λt |x − y |2

2σ2(t)

)
= exp

(
(β − 1)e−2λt |y − x |2

2σ2(t)

)
(Pt fα(y))

1
α

= exp
(

λ|y − x |2

(α− 1)(e2λt − 1)

)
(Pt fα(y))

1
α .
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Example

Therefore: ∀t > 0, α > 1, f ∈ C+
b (Rd ), x , y ∈ Rd ,

(Pt f (x))α ≤ Pt fα(y) exp
(

λ|y − x |2

(α− 1)(e2λt − 1)

)
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Harnack inequality for SFDEs

Let τ > 0 be fixed, and let C = C([−τ,0];Rd ) be equipped with
the uniform norm ‖ · ‖∞. Let Bb(C) be the set of all bounded
measurable functions on C. Let

σ : [0,∞)× Rd × Ω→ Rd ⊗ Rd ,

Z : [0,∞)× Rd × Ω→ Rd ,

b : [0,∞)× C × Ω→ Rd

are progressively measurable, and σ is invertible. Consider the
following functional SDE on Rd :

dX (t) =
{

Z (t ,X (t)) + b(t ,Xt )
}

dt + σ(t ,X (t))dB(t), X0 ∈ C,
(3.3)
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where C := ([−τ,0];Rd )
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To ensure the existence, uniqueness, non-explosion, and
further regular properties of the solution, we make use of the
following assumption:
(A) Z (t , x) is continous in x, and there are constants
K1,K2 ≥ 0,K3 > 0 and K4 ∈ R such that

(A1)
∣∣σ(t , η(0))−1{b(t , ξ)−b(t , η)}

∣∣ ≤ K1‖ξ−η‖∞, t ≥ 0, ξ, η ∈ C;

(A2)
∣∣(σ(t , x)− σ(t , y))

∣∣ ≤ K2(|x − y | ∧ 1), t ≥ 0, x , y ∈ Rd ;

(A3)
∣∣σ(t , x)−1

∣∣ ≤ K3, t ≥ 0, x ∈ Rd ;

(A4)
∥∥σ(t , x)− σ(t , y)‖2HS + 2〈x − y ,Z (t , x)− Z (t , y)〉 ≤
K4|x − y |2, t ≥ 0, x , y ∈ Rd

hold almost surely.
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we aim to establish the Harnack inequality with a power p > 1

PT f (η) ≤ {PT f p(ξ)}1/p exp[Φp(T , ξ, η)], f ≥ 0,T > τ, ξ, η ∈ C
(3.4)

for some positive function Φp on (τ,∞)× C2. Assume that
p > (1 + K2K3)2. Let

λp =
1

2(p − 1)2 ,

Θp :=

{
ε ∈ (0,1) :

(1− ε)4

2(1 + ε)3K 2
2 K 2

3
≥ λp

}
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Theorem

Assume (A). For any p > (1 + K2K3)2 and T > τ , the Harnack
inequality (3.4) holds for

Φp(T , ξ, η) :=
p − 1

p
inf
ε∈Θp

inf
s∈(0,sε(λp)∧(T−r0)]

{
ε

2(1 + ε)

+
16K 2

2 s2Wε(λp)

1− 4K1K2s
+
λp(1 + ε)2K 2

3 K4|ξ(0)− η(0)|2

2ε(1− ε)2(1 + 2ε)(1− e−K4s)

+
(
K 2

1 r0λp + 2sWε(λp)
)
‖ξ − η‖2∞

}
.
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Harnack inequality for SFDE with additive noise

Let σ be an invertible d × d-matrix, Z ∈ C(Rd ;Rd ) and
b : C → Rd be Lipschitz continuous. Consider the following
FSDE on Rd :

dX (t) =
{

Z (X (t))+b(Xt )
}

dt +σdB(t), X0 = ξ ∈ C([−τ,0];Rd ],
(3.5)

Assume

〈Z (x)− Z (y), x − y〉 ≤ −k1|x − y |2, x , y ∈ Rd , (3.6)

|b(ξ)− b(η)| ≤ k2‖ξ − η‖∞, ξ, η ∈ C([−τ,0];Rd ]. (3.7)
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Theorem
Let (3.6) and (3.7) hold for some constants k1 ∈ R and k2 ≥ 0.
Then, for any p > 1, δ > 0, positive f ∈ Bb(([−τ,0];Rd )), and
ξ, η ∈ ([−τ,0];Rd ),(

Pt+τ f (ξ)
)p

≤
(
Pt+τ f p(η)

)
exp

[
p2‖σ−1‖2(1 + δ)

2(p − 1)

{2k1|ξ(0)− η(0)|2

e2k1t − 1

+
k2

2
δ

(
τ‖ξ − η‖2∞ +

|ξ(0)− η(0)|2(e4k1t − 1− 4k1te2k1t )

2k1(e2k1t − 1)2

)}]
.
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exponential integrability

Denote C := C([−τ,0];Rd ). Assume that

2〈Z (ξ(0)) + b(ξ)− Z (η(0))− b(η), ξ(0)− η(0)〉
≤ λ2‖ξ − η‖2 − λ1|ξ(0)− η(0)|2, ξ, η ∈ C.

we assume that λ = λ1 − λ2eτλ1 .

Lemma

If λ > 0, then there exist two constants c, ε > 0 such that

Eeε‖X
ξ
t ‖

2
∞ ≤ ec(1+‖ξ‖2

∞), t ≥ 0, ξ ∈ C.

Lemma

For any t ≥ 0 and ξ, η ∈ C, ‖X ξ
t − X η

t ‖2∞ ≤ ‖ξ − η‖2∞eλ1τ−λt .
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Let
Pt f (ξ) := Ef (X ξ

t ), t ≥ 0, f ∈ Bb(C), ξ ∈ C,

where X ξ
t is the corresponding segment process of X ξ(t) which

solves the equation for X0 = ξ.

Lemma

If λ > 0, then Pt has a unique invariant probability measure µ
such that

lim
t→∞

Pt f (ξ) = µ(f ) :=

∫
C

fdµ, f ∈ Cb(C), ξ ∈ C.
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Hypercontractivity

We now state our main result:
Theorem

Assume λ > 0. Then the following assertions hold.
(1) Pt is hypercontractive, i.e. ‖Pt‖2→4 ≤ 1 holds for large

enough t > 0, where ‖ · ‖2→4 is the operator norm from
L2(µ) to L4(µ).

(2) Pt is compact on L2(µ) for large enough t > 0.
(3) There exists a constant C > 0 such that

‖Pt − µ‖22 := sup
µ(f 2)≤1

µ
(
(Pt f − µ(f ))2) ≤ Ce−λt , t ≥ 0.

(4) There exist two constants t0,C > 0 such that

‖Pξ
t − Pη

t ‖
2
var ≤ C‖ξ − η‖2∞e−λt , t ≥ t0.
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Hypercontractivity

We now state our main result:
Theorem

Assume λ > 0. Then the following assertions hold.
(1) Pt is hypercontractive, i.e. ‖Pt‖2→4 ≤ 1 holds for large
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Proof of main result

(a) We first prove that ‖Pt‖2→4 <∞ holds for large enough
t > 0. By the Harnack inequality, for any t0 > τ there exists
c0 > 0 such that

(Pt0 f (ξ))2 ≤ (Pt0 f 2(η))ec0‖ξ−η‖2
∞ , ξ, η ∈ C.

By the Markov property and Schwartz’s inequality,

|Pt+t0 f (ξ)|2 = |E(Pt0 f )(X ξ
t )|2

≤
(
E
√

(Pt0 f 2(X η
t )) exp[c0‖X ξ

t − X η
t ‖2∞]

)2

≤ (E(Pt0 f 2(X η
t ))Eec0‖Xξt −Xηt ‖

2
∞ = (Pt+t0 f 2(η))Eec0‖Xξt −Xηt ‖

2
∞ .
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Proof Cont.

Combining this with Lemma, we obtain

|Pt+t0 f (ξ)|2 ≤ (Pt+t0 f 2(η)) exp
[
c1e−λt‖ξ − η‖2∞

]
.

Let r > 0 such that µ(Br ) ≥ 1
2 , where Br := {‖ · ‖∞ < R}. Then

|Pt+t0 f (ξ)|2 exp
[
− c1e−λt (‖ξ‖∞ + r)2]

≤ 2|Pt+t0 f (ξ)|2
∫

Br

exp
[
− c1e−λt‖ξ − η‖2∞

]
µ(dη)

≤ 2
∫
C

Pt+t0 f 2(η)µ(dη) = 2.
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Proof Cont.

Thus,

|Pt+t0 f (ξ)|4 ≤ exp
[
c2(1 + ‖ξ‖2∞e−λt )

]
, t ≥ 0 (4.1)

holds for some constant c2 > 0. On the other hand, by Lemmas
(exponential integrability and invariant measure) we have

µ(N ∧ eε‖·‖
2
∞) = lim

t→∞
E(N ∧ eε‖X

0
t ‖

2
∞) ≤ ec <∞, N > 0

for some constant c > 0. Letting N →∞ we obtain
µ(eε‖·‖

2
∞) <∞. Therefore, (4.1) implies ‖Pt+t0‖2→4 <∞ for

large enough t > 0.
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Idea for the proof of Harnack inequality

Main tools: Coupling and Girsanov transformation

Fix T > 0. Let b(t , x) be an Rd -valued Borel measurable
function defined on [0,T ]× Rd . We aim to study Harnack
inequality for the transition semigroup Pt
Consider the following coupled stochastic differential equations
on Rd

dX (t) = b(t ,X (t))dt + σ(t ,X (t))dB(t),X (0) = x ,
dY (t) = b(t ,Y (t))dt + σ(t ,Y (t))dB(t)

+
1
ξ(t)

σ(t ,Y (t))σ(t ,X (t))−1(X (t)− Y (t))dt ,Y (0) = y .
(4.2)
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Let

dB̃(t) = dB(t) +
1
ξ(t)

σ(t ,X (t))−1(X (t)− Y (t))dt

Rs : = exp
[
−
∫ s

0
ξ(t)−1〈σ(t ,X (t))−1(X (t)− Y (t)),dB(t)〉

− 1
2

∫ s

0
ξ(t)−2|σ(t ,X (t))−1(X (t)− Y (t))|2dt

]
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Rewrite (4.2) as

dX (t) = b(t ,X (t))dt + σ(t ,X (t))dB̃(t)− X (t)− Y (t)
ξ(t)

,X (0) = x ,

dY (t) = b(t ,Y (t))dt + σ(t ,Y (t))dB̃(t),Y (0) = y .
(4.3)

We shall see that the coupling is successful up to time T , so
that X (T ) = Y (T ) under Q = RT P. we then have

(PT f (y))p = (EQ[f (Y (T ))])p

= (E [RT f (X (T ))])p ≤ PT f p(x)(ERp/(p−1)
T )p−1.
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