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Introduction

As the building blocks of the bio- & ecosystems, the basic premise of the
predator-prey models is: species compete, evolve, and disperse for the
purpose of seeking resources to sustain their struggle and existence.

Denote two population sizes at time t by x(t) and y(t).

A general deterministic model called Kolmogorov system is{
ẋ(t) = xf (x ,y),
ẏ(t) = yg(x ,y).

When f (x ,y) = b−py and g(x ,y) = cx−d : Lotka-Volterra model.
x : prey (example, rabbit) y : predator (fox)

Work from the PDE community: Ni and co-authors.

Some references for stochastic models: Hofbauer & Sigmund (1998), Mao,
Sabais, & Renshaw (2003), Bao, Mao, Y, Yuan (2011), Zhang, Sun, & Jin
(2012)



Introduction

This paper focuses on stochastic predator-prey models with
Beddington-DeAngelsis functional response.

functional response: intake rate of a consumer as a function of food
density.

numerical response: reproduction rate of a consumer as a function of
food density.

Holling initiated the study of functional response, where he introduced
several types of such responses.

Holling type II functional response is characterized by a decelerating
intake rate following from the assumption that the consumer is limited by
its capacity to process food.

Similar to Holling-type functional response with an extra term describing
mutual interference by predators, Beddington and DeAngelis and
colleagues introduced the Beddington-DeAngelis functional response
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Introduction (cont.)

It has been well recognized that, the traditional models are often not
adequate to describe the reality due to random environment and other
random factors. One way of treating random factors is to consider
systems subject to Brownian motion perturbations.

A typical stochastic predator prey model with Beddington-DeAngelsis
functional response is

dx(t) = x(t)
(
a1−b1x(t)− c1y(t)

m1 +m2x(t)+m3y(t)
)
dt +αx(t)dB1(t),

dy(t) = y(t)
(
−a2−b2y(t)+

c2x(t)
m1 +m2x(t)+m3y(t)

)
dt +βy(t)dB2(t),

(1.1)
where ai ,bi ,ci ,mi > 0, α 6= 0,β 6= 0, and B1(·),B2(·) are two mutually
independent Brownian motions.



Introduction (cont.)

It has been well recognized that, the traditional models are often not
adequate to describe the reality due to random environment and other
random factors. One way of treating random factors is to consider
systems subject to Brownian motion perturbations.

A typical stochastic predator prey model with Beddington-DeAngelsis
functional response is

dx(t) = x(t)
(
a1−b1x(t)− c1y(t)

m1 +m2x(t)+m3y(t)
)
dt +αx(t)dB1(t),

dy(t) = y(t)
(
−a2−b2y(t)+

c2x(t)
m1 +m2x(t)+m3y(t)

)
dt +βy(t)dB2(t),

(1.1)
where ai ,bi ,ci ,mi > 0, α 6= 0,β 6= 0, and B1(·),B2(·) are two mutually
independent Brownian motions.



This model has been studied by many people. After proving the
existence of a globally positive solution of (1.1), some moment
and almost sure estimates for the solution were given.

Much effort has been devoted to finding conditions needed for
stochastic permanence. Using suitable Lyapunov-type functions,
some conditions for extinction or permanence were also provided
and ergodicity was investigated.



This model has been studied by many people. After proving the
existence of a globally positive solution of (1.1), some moment
and almost sure estimates for the solution were given.
Much effort has been devoted to finding conditions needed for
stochastic permanence. Using suitable Lyapunov-type functions,
some conditions for extinction or permanence were also provided
and ergodicity was investigated.



Stochastic Permanence

Definition 1.1
The population system is said to be stochastically permanent if for any
ε ∈ (0,1), there exist positive constants H = H(ε),K = K (ε) such that

liminf
t→∞

P{|x(t)| ≥ H} ≥ 1− ε,

liminf
t→∞

P{|x(t)| ≤ K} ≥ 1− ε,

where x(t) is the solution of the population system with any initial condition
x(0).

It will reach extinction if lim
t→∞
|x(t)|= 0 a.s.



A Result of Ji and Jiang (2011)

Theorem 1.2

Assume

(c2−a2m2)a1/b1 > a2m1, b1 > a1m2/(m1 +m2x∗)

and α > 0,β > 0 such that

δ < min{c2(b1−m2(a1−b1x∗)/m1)(m1 +m3y∗)(x∗)2,

b2c1(m1 +m2x∗)(y∗)2},

where
δ = c2x∗α2/2+c1y∗β 2/2

and (x∗,y∗) is the positive equilibrium of the corresponding deterministic
system. Then there is a stationary distribution π(·) for the system.

lim
t→∞

y(t) = 0 a.s. if a2 +
β 2

2
≥ c2

m2
.



Their conditions are restrictive, not close to necessary. There is a
considerably large set of parameters satisfying neither their
conditions for extinction nor for permanence. Their results are not
applicable to the degenerate case. Thus, although interesting,
their work left a sizable gap.

One of the main goals of this paper is to close this gap. More
precisely, we introduce a threshold value λ whose sign
determines whether (1.1) is permanent (and ergodic) or extinct.
We also consider the degenerate case when B1(·) = B2(·).
In lieu of finding a suitable Lyapunov function, we analyze the
asymptotic properties of solutions on the boundary to give the
threshold λ . Hence, our method can be applied to other stochastic
predator-prey models with various types of functional response.
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Threshold value separating extinction and permanence

If a1 ≤
α2

2
, then lim

t→∞
x(t) = lim

t→∞
y(t) = 0 a.s. Therefore, we always

assume that a1 >
α2

2
.

In the absence of the prey, the predator is eventually die out, that
is, on the y -axis the solution converges to the origin a.s. On the
x-axis we have the following equation

dϕ(t) = ϕ(t)(a1−b1ϕ(t))dt +αϕ(t)dB1(t). (2.1)

Putting θ(t) = lnϕ(t), it becomes

dθ(t) =
(

a1−
α2

2
−b1 exp

(
θ(t)

))
dt +αdB1(t). (2.2)

(2.2) has a unique invariant probability measure with density

f ∗(x) = C exp
(2a1−α2

α2 x− 2b1

α2 exp(x)
)
.
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Let ψ(t) be the solution to

dψ(t) = ψ(t)
(
−a1 +

c2

m2
−b2ψ(t)

)
dt +βψ(t)dB2(t). (2.3)

Then y(t)≤ ψ(t)∀t ≥ 0 a.s. provided y(0) = ψ(0)> 0, Hence, w.p.1,

limsup
t→∞

1
t

lny(t)≤ 0, and (2.4)

limsup
t→∞

1
t

∫ t

0
yp(s)ds ≤ K̂p for some K̂p > 0. (2.5)

Define the threshold

λ :=−a2−
β 2

2
+
∫

∞

−∞

c2 exp(x)
m1 +m2 exp(x)

f ∗(x)dx .



Threshold value between extinction and permanence

In view of ergodicity, we have

lim
t→∞

1
t

∫ t

0

[
−a2−

β 2

2
+

c2ϕ(s)
m1 +m2ϕ(s)

]
ds = λ a.s.

Let (x(t),y(t)) be a solution to (1.1) with (x(0),y(0)) ∈ R2,◦
+ . By

comparison theorem, x(t)≤ ϕ(t) a.s. given that x(0) = ϕ(0).
By comparing y(t) and ϕ(t)−x(t) and making use of the
ergodicity of ϕ(t) we can prove the following result.
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Threshold value between extinction and permanence

Theorem 2.1

If λ < 0, then the predator is eventually extinct, that is, lim
t→∞

y(t) = 0 a.s.

Moreover the distribution of x(t) converges weakly to µ−(·), which is
the unique invariant probability measure of ϕ(t) on R+. Note that µ−(·)
is the distribution of eθ provided that θ is a random variable with
density function f ∗.



Ergodicity for the nondegenerate case

If λ > 0, we can obtain liminf
1
t
∫ t

0 y(s)ds > m a.s. where m is
some positive constant. This property enables us to prove the
following result.

Theorem 2.2

If λ > 0, the process (x(t),y(t)) has an invariant probability measure
concentrated on R2,◦

+ . Moreover, since (1.1) is non-degenerate, µ∗ has
support R2,◦

+ and ∀(x(0),y(0)) ∈ R2,◦
+ ,

(a) For any µ∗-integrable f (x ,y) : R2,◦
+ → R, we have

lim
t→∞

1
t

∫ t

0
f (x(s),y(s))ds =

∫
f (x ,y)µ∗(dx ,dy)a.s.

(b) lim
t→∞
‖P(t ,(x ,y), ·)−µ∗(·)‖= 0∀(x ,y) ∈ R2,◦

+ where ‖ · ‖ is the total

variation norm.



Permanence and average values in time

Corollary 2.3
If λ > 0, the system (1.1) is stochastically permanent in the sense that
for any ε > 0, there is some δ ∈ [0,1] such that
liminf

t→∞
P(t ,x ,y , [δ ,δ−1]2)> 1− ε. Moreover, we have the following limits

almost surely.

0 < lim
t→∞

1
t

∫ t

0
xp(s)ds =

∫
xp

µ
∗(dx ,dy)< ∞ ∀(x(0),y(0)) ∈ R2,◦

+ , p > 0,

0 < lim
t→∞

1
t

∫ t

0
yp(s)ds =

∫
yp

µ
∗(dx ,dy)< ∞ ∀(x(0),y(0)) ∈ R2,◦

+ , p > 0.



Degenerate case

Suppose that B1(·) = B2(·) = W (·). We consider the equation
dx(t) = x(t)

(
a1−b1x(t)− c1y(t)

m1 +m2x(t)+m3y(t)
)
dt +αx(t)dW (t),

dy(t) = y(t)
(
−a2−b2y(t)+

c2x(t)
m1 +m2x(t)+m3y(t)

)
dt +βy(t)dW (t).

(3.1)

By the symmetry of Brownian motion, we can suppose α > 0.
Since estimates in the previous section still hold for this case, we
have lim

t→∞
y(t) = 0 when λ < 0 while x(t) converges weakly to the

stationary distribution of µ− of ϕ(t). In what follows, we suppose
λ > 0 for which the process has an invariant probability measure
µ∗ on R2,◦

+ .
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Degenerate case

Put ξ (t) = lnx(t) and η(t) = lny(t), Equation (3.1) becomes


dξ (t) =

(
a1−

α2

2
−b1eξ (t)− c1eη(t)

m1 +m2eξ (t)+m3eη(t)

)
dt +αdW (t),

dη(t) =
(
−a2−

β 2

2
−b2eη(t)+

c2eξ (t)

m1 +m2eξ (t)+m3eη(t)

)
dt +βdW (t).

(3.2)

Denote by (ξ u,v (t),ηu,v (t)) the solution with initial value (u,v) to
(3.2) and let P̂(t ,(u,v), ·) be its transition probabilities.



Degenerate case

In order to describe the support of the invariant measure µ∗ and to
prove the ergodicity of (3.2), we need to investigate the following
control system


u̇φ (t) = αφ(t)+a1−

α2

2
−b1euφ (t)− c1evφ (t)

m1 +m2euφ (t)+m3evφ (t)
,

v̇φ (t) = βφ(t)−a2−
β 2

2
−b2evφ (t)+

c2euφ (t)

m1 +m2euφ (t)+m3evφ (t)
,

(3.3)
where φ is taken from the set of piecewise continuous real valued

functions defined on R+.
Let (uφ (t ,u,v), vφ (t ,u,v)) be the solution to Equation (3.3) with
control φ and initial value (u,v).
Denote by O+

1 (u,v) the reachable set from (u,v), that is the set of
(u′,v ′) ∈ R2 such that there exists a t ≥ 0 and a control φ(·)
satisfying uφ (t ,u,v) = u′,vφ (t ,u,v) = v ′.
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Degenerate case

The following assumption guarantees the accessibility of (3.3),
i.e., O+

1 (u,v) has non-empty interior for every (u,v) ∈ R2 (see V.
Jurdjevic (1997)).

Assumption 3.1

The Lie algebra L(u,v) generated by A(u,v) and B satisfies
dimL(u,v) = 2 at every (u,v) ∈ R2. In other words, the set of vectors
A,B, [A,B], [A, [A,B]], [B, [A,B]], . . . spans R2, where

A(u,v) =

 a1−
α2

2
−b1eu− c1ev

m1 +m2eu +m3ev

−a2−
β 2

2
−b2ev +

c2eu

m1 +m2eu +m3ev

 , B =

(
α

β

)
,

and [·, ·] denotes Lie bracket.



Degenerate case

For specific parameters, the assumption can be verified by direct
calculations after taking into account a sufficient number of
equations of the form det(A,B) = 0,det(A, [A,B]) = 0, ...

Although verifying this assumption for our model in general
involves cumbersome calculations, it seems that this assumption
and even the stronger one given below are satisfied for any
ai ,bi ,ci ,m1,m2,m3,α > 0, i = 1,2, β 6= 0.

Assumption 3.2

The ideal L0 in L generated by B satisfies dimL(u,v) = 2 at every
(u,v) ∈ C. In other words, the set of vectors
B, [A,B], [B, [A,B]], [B, [B,A,B]], . . . spans R2.

Assumption 3.2, called Hörmander condition, guarantees that
P̂(t ,u,v , ·) has density function.
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Support of the invariant measure for degenerate case

To prove the uniqueness of an i.p.m and to describe its support,
we recall some concepts introduced in W. Kliemann (1987).

Denote by O+
1 (u,v) the reachable set from (u,v), that is the set of

(u′,v ′) ∈ R2 such that there exists a t ≥ 0 and a control φ(·)
satisfying uφ (t ,u,v) = u′,vφ (t ,u,v) = v ′.
Let A be a subset of R2 satisfying the property that for any
w1,w2 ∈ A, we have w2 ∈O+

1 (w1). Then there is a unique maximal
set B ⊂ A such that this property still holds for B. Such B is called
a control set. A control set C is said to be invariant if O+

1 (w)⊂ C
for all w ∈ C.
We use a result of Kliemann (1987) that the support of an ergodic
i.p.m is an invariant control set provided Assumption 3.1 holds.
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Support of the i.p.m for degenerate case

Analyzing the control system (3.3), we claim that

Proposition 3.1

If λ > 0, there is c∗ >−∞ such that C = {(u′,v ′) : v ′− β

α
u′ ≤ c∗} is

contained in O+
1 (u,v) for any (u,v) ∈ R2. Consequently, C is the only

invariant control set of the control system (3.3). In case 0 < β < α, we
have c∗ = ∞, hence C = R2.

It is proved in the previous section that λ > 0, there is an i.p.m π∗

of (3.2). It follows from Proposition 3.1 that π∗ is unique.
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Properties in the invariant control set

Applying results in W. Kliemann (1987) and K. Ichihara, K. Kunita
(1974) we have for any (u,v) ∈ C that if Assumption 3.1 holds
then.

P
{

lim
t→∞

1
t

∫ t

0
f
(
ξ

u,v (s),ηu,v (s)
)
ds =

∫
R2

f (u′,v ′)π∗(du′,dv ′)
}
= 1.

(3.4)

Moreover, if Assumption 3.2 is satisfied,

lim
t→∞
‖P̂(t ,(u,v), ·)−π

∗(·)‖→ 0∀(u,v) ∈ C, (3.5)

where ‖ · ‖ is the total variation norm.
We aim to prove that (3.4) (under Assumption 3.1) and (3.5)
(under Assumption 3.2) hold for all (u,v) ∈ R2. We need only
consider the case β < 0 or β ≥ α since C = R2 if 0 < β < α.
We will prove that ξ u,v (·),ηu,v (·) eventually enters C almost surely.
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Case β ≥ α

In the proof of the existence of an i.p.m given that λ > 0, we have
already shown that the process (ξ u,v (·),ηu,v (·)) is recurrent
relative to A = {(u,v) : u ≤ d1,d2 ≤ v ≤ d1} for some d1,d2 ∈ R.

We construct D = {(u,v) ∈ R2 : u <
α

β
(d3−c∗),v < d3} and

E = {(u,v) ∈ R2,u,v ≤ d4} where d3, d4 are negative large
number chosen to satisfy our purpose. Let d5� d4 and devide A
into A1 = {(u,v) : u < d5,d2 ≤ v ≤ d1} and A2 = A\A1.
A2 is compact, using the support theorem and the Feller property,
we can estimate a positive lower bound for the probability of
entering C from A2.
Using the property of the drift, we can also estimate a positive
lower bound for the probability of entering E from A1. Moreover,
when the solution exits D after entering E , the solution will go
through the right side of D with a large probability.
We can find a positive lower bound for the probability of entering
C from A. Since the process is recurrent relative to A, it must
enter C almost surely due to the strong Markov property.
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Case β < 0

In this case, set A1 = C◦∩A, A2 = A\A1. We can give a positive
lower bound for the probability of entering C from A2 while A1 is
already in C. Hence, using similar argument as in the previous
case, the solution eventually go into C with probability 1.



Ergodicity and convergence in total variation for degenerate case

In conclusion, we have ∀(u,v) ∈ R2,

Theorem 3.2

Suppose α,β 6= 0, λ > 0 and Assumption 3.1 holds. Then, (3.2) has a
unique invariant probability measure π∗ satisfying that for any
π∗-integrable function f ,

P
{

lim
t→∞

1
t

∫ t

0
f
(
ξ

u,v (s),ηu,v (s)
)
ds =

∫
R2

f (u′,v ′)π∗(du′,dv ′)
}
= 1. (3.6)

Moreover, if Assumption 3.2 is satisfied, the transition probability
P̂(t ,(u,v), ·) converges to π∗(·) in total variation.



Example 1

Consider (3.1) with parameters a1 = 10, a2 = 1, b1 = 1, b2 = 2,
c1 = 1, c2 = 10, m1 = 1, m2 = 1, m3 = 1, α = 1, and β = 2. Direct
calculation shows that λ = 6.005 and Assumption 3.2 holds. As a
result, the conclusion of Theorem 3.2 holds.

Figure: Phase portrait of (3.1) and the curve y = ĉx2.
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Example 2

Consider (3.1) with the same parameters as in Example 1, except
that β =−2. The conclusion of Theorem 3.2 also holds for this
example.

Figure: Phase portrait of (3.1) and the curve y = ĉx−2.



Example 2

Consider (3.1) with the same parameters as in Example 1, except
that β =−2. The conclusion of Theorem 3.2 also holds for this
example.
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Example 3
Consider (1.1) with a1 = 8, a2 = 1, b1 = 2, b2 = 2, c1 = 3, c2 = 2,
m1 = 2, m2 = 1, m3 = 1.5, α = 2, and β = 1. We obtain
λ =−0.096 < 0. As a result of Theorem 2.1 that y(t)→ 0 a.s. as
t → ∞. This claim is justified in Figures 3 and 4.

Figure: x(t),y(t) in Example 3.



Example 3

Figure: Phase portrait of (3.1) in Example 3.



Concluding Remarks

While using Lyapunov function requires restrictive conditions, our
method of analyzing the properties of solutions on the boundary
provide a much sharper result. We have given a sufficient and
almost necessary condition for permanence and ergodicity of the
stochastic predator-prey model with Beddington-DeAnglesis
functional response.

Our condition for ergodicity is weaker that Theorem 1.2.
In case m1 = 1,m2 = 1,m3 = 0, the functional response is called
Holling type II. Our result is also better than that in J. Lv, K. Wang
(2011).
Our method can be used to obtain similar results for more general
stochastic predator-prey models.
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