A Linear-Quadratic Optimal Control Problem of Forward-Backward Stochastic Differential Equations with Partial Information

Jie Xiong

Department of Mathematics University of Macau

(Based on joint works with Wang and Wu (SICON 2013, IEEE TAC 2014?))

[The Tenth Workshop on Markov Processes and Related Topics]

Outline

- Motivating examples
- Problem formulation
- Observation of Problem (LQC)
- Maximum Principle for Problem (LQC)
- **5** A Special Case of Problem (LQC)
- Summary

1. Motivating examples

Example 1: European call option under partial info

d stocks $S^i_t,\, 1 \leq i \leq d$ and 1 bond S^0_t

$$\begin{cases} dS_t^i = S_t^i \left(X_t^i dt + \sum_{j=1}^m \tilde{\sigma}_t^{ij} d\tilde{W}_t^j \right), & i = 1, 2, \dots, d, \\ dS_t^0 = S_t^0 X_t^0 dt, & t \ge 0, \end{cases}$$

 $\tilde{z} = (\tilde{z}_1, \dots, \tilde{z}_m)$

where $\tilde{W} := (\tilde{W}^1, \dots, \tilde{W}^m)^*$ is m-dim B.M. (random factors)

Information available:

$$\mathcal{G}_t := \sigma(S_s^i: s \le t, i = 0, 1, 2, \cdots, d), t \ge 0.$$

Portfolio:

$$u_t^i =$$
\$ amount in *i*th stock, $i = 1, 2, \dots, d$.

They should be \mathcal{G}_t -measurable.

Let y_t be the wealth process. Self-finance condition:

$$dy_{t} = \left(y_{t} - \sum_{i=1}^{d} u_{t}^{i}\right) \frac{dS_{t}^{0}}{S_{t}^{0}} + \sum_{i=1}^{d} u_{t}^{i} \frac{dS_{t}^{i}}{S_{t}^{i}}$$

$$= \left(X_{t}^{0} y_{t} + \sum_{i=1}^{d} (X_{t}^{i} - X_{t}^{0}) u_{t}^{i}\right) dt + \sum_{i=1}^{d} \sum_{j=1}^{m} \tilde{\sigma}_{t}^{ij} u_{t}^{i} d\tilde{W}_{t}^{j}.$$

$$(1.2)$$

Note that $X_t^0 = \frac{d}{dt} \log S_t^0$ is \mathcal{G}_t -adapted.

Also, $i = 1, 2, \cdots, d$,

$$\log S_t^i = \log S_0^i + \int_0^t \left(X_s^i - \frac{1}{2} a_s^{ii} \right) ds + \sum_{j=1}^m \int_0^t \tilde{\sigma}_s^{ij} d\tilde{W}_s^j, \quad (1.3)$$

where

$$a_t^{ij} := \sum_{k=1}^m \tilde{\sigma}_t^{ik} \tilde{\sigma}_t^{jk}, \quad i, j = 1, 2, \cdots, d.$$

Then,

$$\left\langle \log S^i, \log S^j \right\rangle_t = \int_0^t a_s^{ij} ds$$

is \mathcal{G}_t -adapted.

Let

$$\Sigma_t = (\sigma_t^{ij})_{d \times d} = \sqrt{(a_t^{ij})_{d \times d}}.$$

Then, there is d-dim. B.M. W_t s.t.

$$\sum_{j=1}^{m} \int_{0}^{t} \tilde{\sigma}_{s}^{ij} d\tilde{W}_{s}^{j} = \sum_{j=1}^{d} \int_{0}^{t} \sigma_{s}^{ij} dW_{s}^{j}, \qquad i = 1, \dots, d.$$
 (1.4)

Thus,

$$d\log S_t^i = \left(X_t^i - \frac{1}{2}a_t^{ii}\right)dt + \sum_{j=1}^d \sigma_t^{ij} dW_t^j, \qquad i = 1, \dots, d.$$
(1.5)

Note that $X_t := (X_t^1, \dots, X_t^d)^*$ is not necessarily \mathcal{G}_t -adapted and hence, its value is not available to the investors. Let Y_t be defined as

$$dY_t = \Sigma_t^{-1} d\log S_t, \qquad Y_0 = 0.$$

Then

$$Y_t = \int_0^t h_s(X_s)ds + W_t, \tag{1.6}$$

where

$$h_s(x) = \Sigma_s^{-1} \left(x - \frac{1}{2} \tilde{A}_s \right).$$

Suppose the appreciation rate process $X_t = (X_t^1, \dots, X_t^d)^*$ can be modeled by SDE in \mathbb{R}^d as follows:

$$dX_t = b(X_t)dt + c(X_t)dW_t + \tilde{c}(X_t)dB_t, \quad X_0 = x.$$
 (1.7)

The wealth process y_t satisfies the following SDE:

$$dy_t = \left(X_t^0 y_t + \sum_{i=1}^d (X_t^i - X_t^0) u_t^i\right) dt + \sum_{i,j=1}^d \sigma_t^{ij} u_t^i dW_t^j, \quad (1.8)$$

Terminal

$$y_T = (S_T^1 - K)^+.$$

Objective: Minimize

$$J(u_{\cdot})=y_{0}.$$

Example 2: Recursive Utility Problem

Cash balance:

(Signal)
$$\begin{cases} dx_t^v = (a_t x_t^v + b_t v_t - \bar{b}_t) dt + c_t dw_t + \bar{c}_t d\bar{w}_t, \\ x_0^v = e_0, \end{cases}$$

where v is a control strategy of policymaker and may denote the rate of capital injection or withdrawal so as to achieve a certain goal.

Stock price:

(Observation)
$$\begin{cases} dS_t^v = S_t^v \left[(f_t x_t^v + g_t) dt + h_t dw_t \right], \\ S_0^v = 1. \end{cases}$$

Cost functional:

$$J[v] = \frac{1}{2} \mathbb{E} \left[\int_0^T R_t (v_t - r_t)^2 dt + M(x_T^v - m)^2 - 2y_0^v \right].$$

Recursive utility from v:

$$\begin{cases} -dy_t^v = g(t, y_t^v, z_t^v, \bar{z}_t^v, v_t) dt - z_t^v dw_t - \bar{z}_t^v d\bar{w}_t, \\ y_T^v = x_T^v, \end{cases}$$

where g is concave with respect to (y, z, \bar{z}, v) and satisfies some usual conditions for BSDEs.

Recursive Utility Problem

Find an admissible control v to minimize the cost functional, subject to the cash balance process x^v , the stock price S^v and the recursive utility y^v .

 Suppose that the policymaker can only get information from the stock. Then we are facing a special optimal control problem derived by FBSDEs with partial observations.

2. Problem formulation: Problem (LQC)

Find an admissible control u to minimize

$$J[v] = \frac{1}{2} \mathbb{E} \left\{ \int_0^T \left[L_t(x_t^v)^2 + O_t(y_t^v)^2 + R_t v_t^2 + 2l_t x_t^v + 2o_t y_t^v + 2r_t v_t \right] dt + M(x_T^v)^2 + 2m x_T^v + N(y_0^v)^2 + 2n y_0^v \right\}$$

subject to

$$\begin{cases}
dx_t^v = (a_t x_t^v + b_t v_t + \bar{b}_t) dt + c_t dw_t + \bar{c}_t d\bar{w}_t, \\
-dy_t^v = (A_t x_t^v + B_t y_t^v + C_t z_t^v + \bar{C}_t \bar{z}_t^v + D_t v_t + \bar{D}_t) dt \\
-z_t^v dw_t - \bar{z}_t^v d\bar{w}_t, \\
x_0^v = e_0, \quad y_T^v = F x_T^v + G,
\end{cases}$$

Observation:

$$\begin{cases} dY_t^v = (f_t x_t^v + g_t) dt + h_t dw_t, \\ Y_0^v = 0. \end{cases}$$
 (2.9)

Problem formulation: Assumption Conditions

Assumption 1

The coefficients a_t , b_t , \bar{b}_t , c_t , \bar{c}_t , f_t , g_t , h_t , $1/h_t$, A_t , B_t , C_t , \bar{C}_t , D_t and \bar{D}_t are uniformly bounded, deterministic functions. e_0 and F are constants, and $G \in \mathcal{L}^2_{\mathcal{F}^w_T,\bar{w}}(\mathbb{R})$.

Assumption 2

 $L_t \geq 0, O_t \geq 0, R_t \geq 0, l_t, o_t \text{ and } r_t \text{ are uniformly bounded,}$ deterministic functions. $M \geq 0, N \geq 0, m \text{ and } n \text{ are constants.}$

What is the Difficulty?

Partially observed stochastic control problems are always hard to study:

- Circular dependence between control and observation;
- coupled filtering and control problems;
- How to solve some practical problems;
- ...

Some Related References

This topic is related to

- Huang, Wang & Xiong [SICON 2009]
 - zero observation coefficient.
 - BSDE state equation.
- Wang & Wu [IEEE TAC 2009], Wu [SCIS, 2010], Xiao [JSSC, 2011]
 - Bounded observation coefficient.
 - Girsanov transformation, variational method.
- Wang, Wu & Xiong [SICON, 2013]
 - Linear observation coefficient.
 - Approximation method.

Their methods, however, are not available to Problem (LQC):

- The observation equation is linear;
- The observation noise is correlated with the signal noise.

3. Decomposition of the Signal and Observation

To solve Problem (LQC), we separate $(x^v, y^v, z^v, \bar{z}^v)$ and Y^v into

$$(x^{v}, y^{v}, z^{v}, \bar{z}^{v}) = (x^{0}, y^{0}, z^{0}, \bar{z}^{0}) + (x^{1}, y^{1}, z^{1}, \bar{z}^{1}),$$

$$Y^{v} = Y^{0} + Y^{1},$$

where $(x^0, y^0, z^0, \bar{z}^0)$ and Y^0 are independent of v.

Define

$$\mathcal{U}_{ad}^{0} = \left\{ v | v_t \text{ is an } \mathcal{F}_t^{Y^0}\text{-adapted process with values in R such that} \right.$$

$$\mathbb{E} \sup_{0 \le t \le T} v_t^2 < +\infty \right\}$$

with
$$\mathcal{F}_t^{Y^v} = \sigma\{Y_s^v; 0 \le s \le t\}$$
 and $\mathcal{F}_t^{Y^0} = \sigma\{Y_s^0; 0 \le s \le t\}$.

Definition 2.1

A control v is called admissible, if $v \in \mathcal{U}_{ad}^0$ is $\mathcal{F}_t^{Y^v}$ -adapted. The set of all admissible controls is denoted by \mathcal{U}_{ad} .

$$\mathcal{U}_{ad} \subseteq \mathcal{U}_{ad}^0$$
.

UNIVERSIDADE DE MACAU

Proposition 3.1

Under Assumptions 1 and 2,

$$\inf_{v \in \mathcal{U}_{ad}} J[v] = \inf_{v \in \mathcal{U}_{ad}^0} J[v].$$

- Problem (LQC) is equivalent to minimizing J[v] over $v \in \mathcal{U}_{ad}^0$.
- One key point of its proof is that \mathcal{U}_{ad} is dense in \mathcal{U}_{ad}^0 under the metric of $\mathcal{L}_{\mathcal{F}_0^Y}^2(0,T;\mathbb{R})$.

4. Maximum Principle for Problem (LQC)

Theorem 3.1

Let Assumptions 1 and 2 hold. Suppose that (u,x,y,z,\bar{z}) is the optimal solution. Then the FBSDE

$$\begin{cases} dp_t = (B_t p_t - O_t y_t - o_t) dt + C_t p_t dw_t + \bar{C}_t p_t d\bar{w}_t, \\ -dq_t = (a_t q_t - A_t p_t + L_t x_t + l_t) dt - k_t dw_t - \bar{k}_t d\bar{w}_t, \\ p_0 = -Ny_0 - n, \quad q_T = -Fp_T + Mx_T + m \end{cases}$$

admits a unique solution $(p, q, k, \bar{k}) \in \mathcal{L}^{2}_{\mathcal{F}^{w,\bar{w}}}(0, T; \mathbb{R}^{4})$ such that

(Maximum Condition)
$$R_t u_t - D_t \mathbb{E}\left[p_t \middle| \mathcal{F}_t^Y\right] + b_t \mathbb{E}\left[q_t \middle| \mathcal{F}_t^Y\right] + r_t = 0$$

with
$$\mathcal{F}_t^Y = \sigma\{Y_s^u; 0 \le s \le t\}.$$

Optimality Condition: Verification Theorem

Theorem 3.2

Assume Assumptions 1 and 2 hold. Let $u \in \mathcal{U}_{ad}$ satisfy

$$R_t u_t - D_t \mathbb{E}\left[p_t \middle| \mathcal{F}_t^Y\right] + b_t \mathbb{E}\left[q_t \middle| \mathcal{F}_t^Y\right] + r_t = 0,$$

where $(x,y,z,\bar{z},p,q,k,\bar{k})$ is a solution to the Hamiltonian system

$$\begin{cases}
dx_t = (a_t x_t + b_t u_t + \bar{b}_t)dt + c_t dw_t + \bar{c}_t d\bar{w}_t, & x_0 = e_0, \\
-dy_t = (A_t x_t + B_t y_t + C_t z_t + \bar{C}_t \bar{z}_t + D_t u_t + \bar{D}_t)dt - z_t dw_t - \bar{z}_t d\bar{w}_t, \\
dp_t = (B_t p_t - O_t y_t - o_t)dt + C_t p_t dw_t + \bar{C}_t p_t d\bar{w}_t, & p_0 = -Ny_0 - n, \\
-dq_t = (a_t q_t - A_t p_t + L_t x_t + l_t)dt - k_t dw_t - \bar{k}_t d\bar{w}_t, \\
y_T = Fx_T + G, & q_T = -Fp_T + Mx_T + m.
\end{cases}$$

Then u is an optimal control of Problem (LQC).

Optimality Condition: Uniqueness

Assumption 3

 $R_t > 0$ and $1/R_t$ are uniformly bounded and deterministic functions.

Proposition 3.1

Let Assumptions 1, 2 and 3 hold. If u is an optimal control of Problem (LQC), then u is unique.

Proposition 3.2

Let Assumption 1 hold. For any $v \in \mathcal{U}_{ad}$, the optimal filtering of $(x_t^v, y_t^v, z_t^v, \bar{z}_t^v)$ with respect to $\mathcal{F}_t^{Y^v}$ satisfies an FBSDE

$$\begin{cases}
d\hat{x}_{t}^{v} = \left(a_{t}\hat{x}_{t}^{v} + b_{t}v_{t} + \bar{b}_{t}\right)dt + \left(c_{t} + \frac{P_{t}f_{t}}{h_{t}}\right)d\hat{w}_{t}, \\
-d\hat{y}_{t}^{v} = \left(A_{t}\hat{x}_{t}^{v} + B_{t}\hat{y}_{t}^{v} + C_{t}\hat{z}_{t}^{v} + \bar{C}_{t}\hat{z}_{t}^{v} + D_{t}v_{t} + \bar{D}_{t}\right)dt - \hat{Z}_{t}^{v}d\hat{w}_{t}, \\
\hat{x}_{0}^{v} = e_{0}, \quad \hat{y}_{T}^{v} = F\hat{x}_{T}^{v} + \hat{G},
\end{cases} \tag{4.10}$$

where the mean square error P_t of the estimate \hat{x}_t^v is the unique solution of

• A special case of (4.10) is derived originally in Huang, Wang and Xiong [SICON, 2009].

Continuation of Proposition 3.2

$$\begin{cases} \dot{P}_t - 2a_t P_t + \left(c_t + \frac{P_t f_t}{h_t}\right)^2 - (c_t + \bar{c}_t)^2 = 0, \\ P_0 = 0, \end{cases}$$

$$\hat{w}_t = \int_0^t \frac{f_s}{h_s} (x_s^v - \hat{x}_s^v) ds + w_t \tag{4.11}$$

is a standard BM with values in \mathbb{R} , and

$$\hat{Z}_t^v = \hat{z}_t^v + \frac{f_t}{h_t} \left(\widehat{x_t^v y_t^v} - \hat{x}_t^v \hat{y}_t^v \right).$$

Proposition 3.3

Let Assumptions 1, 2 and $O_t = 0$ hold. The optimal filtering of (p_t, q_t, k_t) depending on \mathcal{F}_t^Y satisfies an FBSDE

$$\begin{cases}
d\hat{p}_{t} = (B_{t}\hat{p}_{t} - o_{t})dt + \left[C_{t}\hat{p}_{t} + \frac{f_{t}}{h_{t}}(\widehat{x_{t}p_{t}} - \hat{x}_{t}\hat{p}_{t})\right]d\hat{w}_{t}, \\
-d\hat{q}_{t} = (a_{t}\hat{q}_{t} - A_{t}\hat{p}_{t} + L_{t}\hat{x}_{t} + l_{t})dt - \hat{K}_{t}d\hat{w}_{t}, \\
\hat{p}_{0} = -Ny_{0} - n, \quad \hat{q}_{T} = M\hat{x}_{T} - F\hat{p}_{T} + m
\end{cases}$$
(4.12)

with

$$\hat{K}_t = \hat{k}_t + \frac{f_t}{h_t} \left(\widehat{x_t q_t} - \hat{x}_t \hat{q}_t \right),$$

Optimal Filtering of Adjoint Equation

Continuation of Proposition 3.3

where (\hat{x}, \hat{y}) , \hat{w} and $\widehat{x^{\mathbf{m}}p}$ satisfy (4.10) with v = u, (4.11), and

$$\begin{cases}
\widehat{dx_t^{\mathbf{m}}p_t} = \left[(\mathbf{m}a_t + B_t)\widehat{x_t^{\mathbf{m}}p_t} - o_t\widehat{x_t^{\mathbf{m}}} + \mathbf{m} \left(b_t u_t + \bar{b}_t + c_t C_t + \bar{c}_t \bar{C}_t \right) \widehat{x_t^{\mathbf{m}}} \right. \\
+ \left[\mathbf{m}c_t \widehat{x_t^{\mathbf{m}-1}p_t} + C_t \widehat{x_t^{\mathbf{m}}p_t} + \frac{f_t}{h_t} \left(\widehat{x_t^{\mathbf{m}+1}p_t} - \hat{x}_t \widehat{x_t^{\mathbf{m}}p_t} \right) \right] d\hat{w}_t, \\
\widehat{x_0^{\mathbf{m}}p_0} = -e_0^{\mathbf{m}} (Ny_0 + n), \quad \mathbf{m} = 1, 2, 3, \dots,
\end{cases}$$

respectively.

Set

$$\left\{ \begin{array}{l} q_t = \pi_t x_t + \Sigma_t p_t + \theta_t \\ \pi_T = M, \;\; \Sigma_T = -F, \;\; \theta_T = m. \end{array} \right.$$

Then,

$$\begin{cases} \dot{\pi}_t + 2a_t\pi_t - \frac{1}{R_t}b_t^2\pi_t^2 + L_t = 0, \\ \pi_T = M, \end{cases}$$
 (4.13)

$$\begin{cases} \dot{\Sigma}_{t} + \left(a_{t} + B_{t} - \frac{1}{R_{t}}b_{t}^{2}\pi_{t}\right)\Sigma_{t} + \frac{1}{R_{t}}b_{t}D_{t}\pi_{t} - A_{t} = 0, \\ \Sigma_{T} = -F, \end{cases}$$

$$\begin{cases} \dot{\theta}_{t} + \left(a_{t} - \frac{1}{R_{t}}b_{t}^{2}\pi_{t}\right)\theta_{t} - o_{t}\Sigma_{t} - \frac{1}{R_{t}}b_{t}r_{t}\pi_{t} + \bar{b}_{t}\pi_{t} + l_{t} = 0, \\ \theta_{T} = m. \end{cases}$$

$$(4.14)$$

Theorem 3.3

Let Assumptions 1, 2, 3 and $O_t = 0$ hold. If

$$u_t = \frac{1}{R_t} (D_t \hat{p}_t - b_t \hat{q}_t - r_t)$$

is the optimal control of Problem (LQC), then it can be represented as

$$u_t = \frac{1}{R_t} [(D_t - b_t \Sigma_t) \hat{p}_t - b_t \pi_t \hat{x}_t - b_t \theta_t - r_t],$$

where $(\hat{x}, \hat{y}, \hat{z}, \hat{z})$, $(\hat{p}, \hat{q}, \hat{k})$, π , Σ and θ are the solutions of (4.10) with v = u, (4.12), (4.13), (4.14) and (4.15), respectively.

5. A Special Case of Problem (LQC)

Example 4.1

$$\inf_{v \in \mathcal{U}_{ad}} J[v], \quad J[v] = \frac{1}{2} \mathbb{E} \left\{ \int_0^T \left[O_t(y_t^v)^2 + R_t v_t^2 \right] dt + N(y_0^v)^2 + 2n y_0^v \right\},$$

$$\int -dy_t^v = \left(B_t y_t^v + C_t z_t^v + \bar{C}_t \bar{z}_t^v + D_t v_t \right) dt - z_t^v dw_t - \bar{z}_t^v d\bar{w}_t,$$

$$\begin{cases}
-dy_t^v = (B_t y_t^v + C_t z_t^v + \bar{C}_t \bar{z}_t^v + D_t v_t) dt - z_t^v dw_t - \bar{z}_t^v d\bar{w}_t, \\
y_T^v = G.
\end{cases}$$

Suppose that w_t is observable at time t. It can be regarded as the case of (2.9) with $f_t = g_t = 0$ and $h_t = 1$.

$$u_t = R_t^{-1} D_t \hat{p}_t$$

where

$$\begin{cases} dp_t = (B_t p_t - O_t y_t) dt + C_t p_t dw_t + \bar{C}_t p_t d\bar{w}_t \\ p_0 = -N y_0 - n \end{cases}$$

and hence,

$$\begin{cases}
d\hat{p}_{t} = (B_{t}\hat{p}_{t} - O_{t}\hat{y}_{t})dt + C_{t}\hat{p}_{t}dw_{t}, \\
-d\hat{y}_{t} = (B_{t}\hat{y}_{t} + C_{t}\hat{z}_{t} + \bar{C}_{t}\hat{z}_{t} + D_{t}u_{t})dt - \hat{z}_{t}dw_{t}, \\
\hat{p}_{0} = -Ny_{0} - n, \quad \hat{y}_{T} = \hat{G}.
\end{cases} (5.16)$$

Set

$$p_t = \alpha_t y_t + \beta_t, \quad \alpha_0 = -N, \quad \beta_0 = -n.$$

Then,

$$\alpha_t z_t = C_t p_t, \quad \alpha_t \bar{z}_t = \bar{C}_t p_t$$

$$\begin{cases} \dot{\alpha}_{t} - \left(2B_{t} + C_{t}^{2} + \bar{C}_{t}^{2}\right)\alpha_{t} - \frac{1}{R_{t}}D_{t}^{2}\alpha_{t}^{2} + O_{t} = 0, \\ \alpha_{0} = -N, \end{cases}$$

$$\begin{cases} \dot{\beta}_{t} - \left(B_{t} + C_{t}^{2} + \bar{C}_{t}^{2} + \frac{1}{R_{t}}D_{t}^{2}\alpha_{t}\right)\beta_{t} = 0, \\ \beta_{0} = -n. \end{cases}$$
(5.17)

Proposition 4.1

Let Assumptions 1, 2 and 3 hold. The optimal control of Example 4.1 is uniquely denoted by

$$u_t = \frac{1}{R_t} D_t \hat{p}_t,$$

where \hat{p} is the unique solution of

$$\begin{cases} d\hat{p}_{t} = (B_{t}\hat{p}_{t} - O_{t}\hat{y}_{t})dt + C_{t}\hat{p}_{t}dw_{t}, \\ -d\hat{y}_{t} = (B_{t}\hat{y}_{t} + C_{t}\hat{z}_{t} + (\alpha_{t}^{-1}\bar{C}_{t}^{2} + R_{t}^{-1}D_{t}^{2})\hat{p}_{t})dt - \hat{z}_{t}dw_{t}, \\ \hat{p}_{0} = -Ny_{0} - n, \quad \hat{y}_{T} = \hat{G}. \end{cases}$$

6. Summary

- We focus on an LQ optimal control problem of FBSDEs, where observation coefficient is linear with respect to x, and observation noise is correlated with state noise. A backward separation method is introduced. Combining it with variational method and optimal filtering, two optimality conditions and a feedback representation of optimal control are derived. A closed-form optimal solution is obtained in Example 4.1.
- The backward separation method is applicable to some linear stochastic differential games with partial observations.

Thanks!