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Characterising path-independence Characterisation theorem
The caseof d = 1

Extension to differential manifolds

Given (Q, F, P; { Ft}te[o,0))- Consider the following SDE
dX: = b(t, X;)dt + o(t, X;)dB;, t>0

where

b:[0,00) x RY — RY,

o :[0,00) x RY - R¥® R, and

Bt is d-dimensional { ¢} tc(0,o0)-Brownian motion.

It is well known that under the usual conditions of linear growth
and locally Lipschitz for the coefficients b and o, there exists a
unique solution to the equation with given initial data Xj.
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Characterising path-independence Characterisation theorem
The caseof d = 1

Extension to differential manifolds

The celebrated Girsanov theorem provides a very powerful tool
to solve SDEs under the name of the Girsanov transformation
or the transformation of the drift. Let v : [0, 00) x RY — RY
satisfy the following condition

t
E [exp <;/O y(s,Xs)|2ds>] < oo, Vit>0.

Then, by Girsanov theorem,

t 1 t
oxp ([ (. X)08s — 5 [ (s XRds) . te [0.00)

is an {F;}-martingale. Furthermore, for t > 0, we define

t 1 t
Q= oo [ 2(s. X008~ [ (s xoPds) - P
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Characterising path-independence Characterisation theorem
The caseof d = 1

Extension to differential manifolds

or equivalently in terms of the Radon-Nikodym derivative

Then, forany T > 0,
- t
B; := Bt—/ (s, Xs)ds, 0<t<T
0

is an {F;}-Brownian motion under the probability Q.
Moreover, X; satisfies

dX; = [b(t, X;) + o(t, X)y(t, Xp)]dt + o (t, X;)dB;, t> 0.
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Characterising path-independence Characterisation theorem

The case of d = 1
Extension to differential manifolds

Motivation from economics and finance Now look at

aQr f 1/ 2
op = &P ( /0 V(8. Xs)dBs — /O (s, Xs)| dS)

we see that generally 75 do’ depends on the “history” of the path
uptot(i.e, {Xs:0< s g t})! While in economics and finance
studies, in particular towards to the optimal problem for the
utility functions in an equilibrium market, it is a necessary
requirement that de depends only on the state X;, not on the
whole “history” {Xs :0 < s < t}. See, e.g., [1] E. Stein, J.C. Stein:
Stock price distributions with stochastic volatility: an analytic
approach. The Review of Financial Studies 4 (1991), 727-752;

[2] S. Hodges, A. Carverhill: Quasi mean reversion in an efficient
stock market: the characterisation of Economic equilibria which
support Black-Scholes Option pricing. The Economic Journal 103
(1993), 395-405.
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Characterising path-independence Characterisation theorem

The case of d = 1
Extension to differential manifolds

So mathematically, one requires that the Radon-Nikodym
derivative is in the form of

Z(t, X;) — Z(0,Xp) =1In C;Q,;, t € [0, 00).
We call this the path-independent property of the density of the
Girsanov transformation. A characterisation of this property for

the above SDEs was obtained in

[1] A. Truman, F.-Y. Wang, J.-L. Wu, W. Yang: A link of
stochastic differential equations to nonlinear parabolic
equations, SCIENCE CHINA Mathematics 55 (2012),
1971-1976.

[2] J.-L. Wu, W. Yang: On stochastic differential equations and a
generalised Burgers equation, pp 425-435 in Stochastic
Analysis and Its Applications — Essays in Honor of Prof. Jia-An
Yan (eds T S Zhang, X Y Zhou), Interdisciplinary Mathematical
Sciences, Vol. 13, World Scientific, Singapore, 2012.
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Characterising path-independence Characterisation theorem
The caseof d = 1

Extension to differential manifolds

Assumptions:
(i) (Non-degeneracy) The coefficient o satisfies that the matrix
o(t, x) is invertible, for any (¢, x) € [0, 00) x RY;
(i) Specify the function ~ by
¥t x) = —(o(t,x)) 7" b(t, x)

so that b(t, X;) + o(t, Xt)v(t, X;) = 0, and hence we require b
and o satisfy

E [exp <; /Ot|(a(s, Xs))~"b(s. Xs)|2ds>] < oo, W0
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Characterising path-independence Characterisation theorem

The case of d = 1
Extension to differential manifolds

Thus the associated probability measure Q; is determined by

t
Z% = exp (‘/0<(a(s,xs))—1b(s,Xs),st>

1 t
3 | l(o(s. X)) bts. xo) s
Now set 40
A o 7t
Zt: [ P
that is

t t
Z = /0 (s, Xs)) (s, xs),st>+;/0 (r(5. X)) " b(s. Xs)|"ds .

Clearly, Z; is a one dimensional stochastic process with the
stochastic differential form

dZ = y (t, X)) b(t, Xe) [Pt + (o (t, Xe)) " b(t, Xt), dBy) .
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Characterising path-independence Characterisation theorem
The case of d = 1
Extension to differential manifolds

Theorem 1 (Characterisation Theorem)

Let v : [0,00) x RY — R be a scalar function which is C' with
respect to the first variable and C? with respect to the second
variable. Then

Wt X) = v(0,X)+ / (0(5, X&)~ "b(s, Xe)|?ds

t
+ / ((o(5, Xs)) "' b(s, Xs), dBs)
0

equivalently,

CZ,% =exp{v(0, Xo) — v(t, Xp)}, t€0,00)

holds if and only if
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Characterising path-independence Characterisation theorem
The case of d = 1
Extension to differential manifolds

Theorem 1 (cont’d)

b(t, x) = (60*VV)(t,x), (tx) € [0,00) x R?

and v satisfies the following time-reversed Burgers-KPZ type
equation

(t.x) = 3 { [T V2V)] (6.3 + [o*Vv2(t.0)}

at’ 2

where V2v stands for the Hessian matrix of v with respect to
the second variable.
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Characterising path-independence Characterisation theorem
The caseof d = 1

Extension to differential manifolds

Proof
Necessity Assume that there exists a scalar function

v : [0,00) x RY — R which is C" with respect to the first variable
and C? with respect to the second variable such that

V(LX) = v(0. %)+ /y (5. Xs))~"b(s, Xs)[2dis

T /0 ((o(5. Xe)) " b(s, Xs), dlBo)
holds, then we have

av(t, Xi) = %\(o(t, X))~ b(t, Xo) [P dt+((o(t, X)) " b(t, X), 0By} .
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Characterising path-independence Characterisation theorem

The case of d = 1
Extension to differential manifolds

Now viewing v(t, X;) as the composition of the deterministic
C'2-function v : [0,00) x RY — R with the continuous
semi-martingale X;, we can apply Ité’s formula to v(¢, X;) and
further with the help of our original SDE

aX; = b(t, Xt)dt+ O‘(t, Xt)dBt, t>0

we have the following derivation

avit, Xp) = {gtv(t,xtw;[Tr(aa*)v%](t,x,)

+(b, Vv)(t, Xp)} dt + ((c*VV)(t, Xt), dB:)
since

<VV(t, Xt),O'(t,Xt)dBt> = <0*(t,Xt)VV(t, Xt), dBt> .
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Characterising path-independence Characterisation theorem

The case of d = 1
Extension to differential manifolds

Now comparing this with the previously obtained
av(t, X;) = \ o(t, X)) b(t, X2)|Pdt+ (o (t, X¢))~"b(t, Xz), dB)
and using the uniqueness of Doob-Meyer’s decomposition of

continuous semi-martingale, we conclude that the coefficients
of dt and dB; must coincide, respectively, namely

(e 'b)(t, X;) = (" VV)(t, Xp)

%](a’1b)(t, X)) = gtv(t, Xt)+%[7'r(aa*V2v)](t, X0)+(b, VV)(t, X,)

holds for all t > 0.
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Characterising path-independence Characterisation theorem
The caseof d = 1

Extension to differential manifolds

Since our SDE is non-degenerate, the support of X;, t € [0, c0)
is the whole space RY. Hence, the following two equalities

(e 'b)(t, x) = (6*V)Vv(t, x)

1 —1 Z_Q
S| D)t X = o

hold on [0, cc) x RY. From these equalities we derive

v(t, x)+ (b, VVv)(t, x)+ %[Tr(o—a*Vv)](t, X)

b(t, x) = (co*VV)(t,x), (t x)e0,00) xRY

and v satisfies the Burgers-KPZ type equation

t.x) =~ { oo™ V2] (t.x) + 0" Vv (1. x)}

PTad! 2
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Characterising path-independence Characterisation theorem

The case of d = 1
Extension to differential manifolds

Sufficiency Assume that there exists a C'? scalar function
v : [0,00) x R — R solving the Burgers-KPZ equation.
Specify the drift b of the original SDE via

b(t, x) = (co*VV)(t,x), (t,x)e[0,00) xRY.
We then have
av(t, X)) = [—%\J*Vv\z(t,xt)—i—(b,VV>(t,Xt)]dt
+{(c*VV)(t, Xt), dBy)
= %|a‘1b|2(t,X,)dt +{(c7'b)(t, Xp), dBy) .
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Characterising path-independence Characterisation theorem
The caseof d = 1

Extension to differential manifolds

The above clearly implies
v(t,X:) = v(0,X0)+ /] (s, Xs)) (s,Xs)|2ds
+ [ (ots.260)bls. ). a8y

0

by taking stochastic integration. This completes the proof.
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Characterising path-independence Characterisation theorem
The case of d = 1

Extension to differential manifolds

For the simplest case that d = 1, we have more consequences
from the characterisation theorem. In this case we have

b(t, x)

o(t, x)

y(t,X) =

since o(t, x) # 0. Set

b(t,x)  ~(t x)

2~ et (BHE0) xR

u(t, x) =

With the assumption on ~ for the Girsanov theorem, we can
rephrase our previous theorem in a slightly more concise
manner
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Characterising path-independence Characterisation theorem
The case of d = 1

Extension to differential manifolds

Theorem 1 in one dimension case

Let v:[0,00) x R — R be C' with respect to the first variable
and C? with respect to the second variable. Then

=0~ T2 e

iff u(t, x) := 2 v(t, x) satisfies the following nonlinear PDE
D, PR (0 ND 0
at- 2o “\ax” 7)) ax 7 ax”
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Characterising path-independence Characterisation theorem
The case of d = 1

Extension to differential manifolds

Theorem 2

Let v : [0,00) x R — R be C' with respect to the first variable
and C? with respect to the second variable. Then

tb(s, Xs b(s XS
V(tv Xl‘) - V(OaXO) /0 O'(S, Xs / ‘ S XS

iff there exists a C'-function ¢ : R — R such that for u := %v
b(t,x) = ®(u(t,x)), (t,x)e€[0,00) xR

and u satisfies the following (time-reversed) generalized
Burgers equation

2
%u(t,x) ;aaz‘“ (u(t, x)) — %%wz(u(t,X))
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Characterising path-independence Characterisation theorem
The case of d = 1
Extension to differential manifolds

Theorem 2 (cont’d)
where

Vq(r):= /(Dir)dr, Vs(r):=rd(r), rekR.

The above generalized Burgers equation covers much more
classes of specific nonlinear PDEs. Here we give three
examples to explicate this point.
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Characterising path-independence Characterisation theorem
The case of d = 1

Extension to differential manifolds

Example 1 Give a constant o > 0. Let b(t, x) = o?u(t, x) and
o(t,x) = o, our SDE then becomes

dX; = o2u(t, X;)dt + odB;.

The C'-function ¢ is simply given by ®(r) = ¢2r and the
corresponding PDE is a classical Burgers equation
(time-reversed)

02 82

0
_o o _ 2 9
5 qu(t,x) acu(t, x) Xu(t,x).

0
au(t, X) =
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Characterising path-independence Characterisation theorem
The case of d = 1

Extension to differential manifolds

The next example shows that our generalized Burgers equation
can be a porous media type PDE.

Example 2 We fix m € N Let b(t, x) = m[u(t, x)]™ and
o(t, x) = vm[u(t, x)] =", our SDE then becomes

dX; = mlu(t, X)]™dt + v/mlu(t, X;)] "= dB;.

The C'-function ¢ is then given by ®(r) = mr™ and the
corresponding PDE is a porous media type nonlinear PDE

1 92

—u(x,t) = ~5 952! (t,x)—m%um“(t,x).
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Characterising path-independence Characterisation theorem
The case of d = 1

Extension to differential manifolds

The third example is to show that in the time-homogeneous
case in the sense that b and ¢ are functions of the variable
x € R only, the corresponding PDE then determines a
harmonic function.

Example 3 Let b(t, x) = b(x) and o(t, x) = o(x), our original
SDE then reads as

dX; = b(Xt)dt + o(X;)dB;
and the corresponding PDE is a second order elliptic equation
for harmonic functions
62

W%(U(X)) + E\Ilg(u(x)) =0

ox
where

\IJ1(r):/¢(rr)dr, Wo(r) = ro(r), reRr.
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Characterising path-independence Characterisation theorem
The caseof d = 1

Extension to differential manifolds

Here we’d like to extend our theorem to the case of SDEs on a
general connected complete differential manifold. To this end,
we need a proper framework to start with. Let us start with the
following observation. In the situation of the SDEs on RY, if

X = (Xt)te[0,0) SOlve

dXt:b(t,X[)dt+U(t,Xt)dBt, t>0
then, via martingale problem, the diffusion process X is
associated with the Markov generator

d

Lif(x) = % pEU(s x)m + Zb’(t, x)af(;_() f e C3(RY)

i?j:1

with a(t, x) := o(t, x)o*(t, x).So let

9t =(9/()) = (00™) (8, ).
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Characterising path-independence Characterisation theorem
The caseof d = 1

Extension to differential manifolds

Then we have a time-dependent metric on RY defined as follow

Z gtx,y, (gix,y), X,y eRC.
7/ 1

Let Vg4, and Ay, be the associated gradient and Laplacian,
respectively. Then the generator for X can be reformulated as
follows (cf. e.g. the classic books by D. Elworthy or by N. Ikeda
and S. Watanabe)

1 -
Ltf == éAgtf + <b(t, ‘), VQtf>gt
for some smooth function b : [0, c0) x RY — RY. From this point
of view, we intend to extend our theorem to a general

connected complete differential manifold.
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Characterising path-independence Characterisation theorem
The caseof d = 1

Extension to differential manifolds

Let M be a d-dimensional connected complete differential
manifold with a family of Riemannian metrics {9t }c0,o0), Which
is smooth in t € [0, 00). Clearly (M, g;) is a Riemannian
manifold for each t € [0, 00). Let {b(t,-)}c[o,00) b€ @ family of
smooth vector fields on M which is smooth in t as well. Let Vg,
and Ay, denote the gradient and Laplacian operators induced
by the metric g;, respectively. Then the diffusion process X on
M generated by the operator

1

can be constructed by solving the following SDE on M

dX; = b(t, X;)dt + &t o dB;
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Characterising path-independence Characterisation theorem
The caseof d = 1

Extension to differential manifolds

where {Bt}c[0,~) is the d-dimensional Brownian motion, od
stands for the Stratonovich differential, and ®; is the horizontal
lift of X; onto the frame bundle O;(M) of the Riemannian
manifold (M, g;), namely, ®; solves the following equation

d

1
d¢t = Ht,d>, o dXt — E{ Z (8tgt)(d>te,-, ¢te,-) V,'j(q)t)}d L,
i j=1

where H;. : T(M) — O(M) is the horizontal lift w.r.t. the metric
gt, {€i}1<i<q is the canonical basis on RY and {Viji}1<ij<a is the
canonical basis of vertical vector fields. Here T(M) denotes the
tangent bundle of M (cf. M. Arnaudon, K.A. Coulibaly and A.
Thalmaier, C. R. Acad. Sci. Paris Ser. 1346 (2008)). The next
result is an extension of our characterisation theorem to M.
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Characterising path-independence Characterisation theorem
The caseof d = 1

Extension to differential manifolds

Theorem 3
Let v : [0,00) x M — R be C'2. Then

1t t
v(t, Xe) = v(0, Xo)+ 5 /0 \b(s,xs)};ds+ /0 (®5'b(s, Xs), dBs)g,

holds if and only if
b(ta X) = (ngv)(t7 X)> (t7 X) € [0,00) x M
and the following time-reversed Burgers-KPZ type equation

0 1
SV(EX) = =5 [(BgV)(tX) + Vg VI3, (8,%))

hold, where |z]§t = (Z,Z)q, for any vector z on M.
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Further related works

Recently, an interesting study by colleagues in Swansea

G. Alhamzi, E.J. Beggs, A.D. Neate: From homotopy to Ité
calculus and Hodge theory, arXiv.1307.3119

derives a similar link by pure algebraic approach, which is more
close to quantum probability calculations.
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Further related works

Path-independent phenomenon also appeared in Calculus of
Variation and Stochastic Deformation of Classical Mechanics
[cf. J.-C. Zambrini, The research program of Stochastic
Deformation (with a view toward Geometric Mechanics),
arXiv.1212.4186]. In

A.B. Cruzeiro, J.-L. Wu and J.-C. Zambrini: On stochastically
complete integrability of stochastic dynamical systems, working

paper.

we link the complete integrability (via Ito-Dynkin formula) to the
path-independence of the action functionals and we then
characterise the integrability by certain
Hamilton-Jacobi-Bellman equation.
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Further related works

Degenerate case

. Joint with Bo Wu, we recently consider the following SDE
aX; = b(t, Xt)dt + U(f, Xt)dBt, t>0

where

b:[0,00) x RY — RY,

o :[0,00) x RY - R ® R™, and

Bt is m-dimensional { Ft}c[o,.c)-Brownian motion.
Under the condition

b(t, x) + o(t,x)v(t,x) =0

we recover the characterisation theorem on the support of the
solution X;. Furthermore, we discuss this on Riemannian
manifolds.
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Extension to SDEs on Hilbert spaces via Galerkin approximati

This part based on

[1] M. Wang, J.-L. Wu: Necessary and sufficient conditions for
path-independence of Girsanov transformation for
infinite-dimensional stochastic evolution equations, Frontiers of
Mathematics in China 9 (2014), Issue 3, 601-622.

[2] F.-Y. Wang, J.-L. Wu: On infinite-dimensional stochastic
differential equations driving by Q-Wiener processes, in
preparation.
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Extension to SDEs on Hilbert spaces via Galerkin approximati

Given a separable (H, (-, -), | - [|#) with {&;};>1 a complete
orthonormal basis for H. Let L(H) be the Banach space of all
linear operators T : H — H endowed with the usual operator
norm || T|| := supy =1 [| TX||# and Lys(H) the Hilbert space of
all Hilbert-Schmidt operators T : H — H endowed with the
norm || Tlys :== Oy || Te,-”,%,)%. For a given symmetric,
nonnegative operator Q € Lysg, let {3i(t,w)};>1 is a family of
independent one-dim. Brownian motions. A Q-Wiener process
{Wi}t>0 is formulated as

W = W(w := Zﬁi(t,w)e,-, we, tel0,o00)
i—1
with

E((W, x)(Ws,y)) = tAs(x,Qy), t,s€[0,00), X,y eH
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Extension to SDEs on Hilbert spaces via Galerkin approximati

We are concerned with the initial value problem for a
semi-linear stochastic differential equation on H

dX; = {AXt + b(t, Xp) }dt + o(t, Xp)dW;s, t>0 ’
Xo=x€H, ( )

where A H — His an unbound, linear operator with its domain
D(A) C H,b:[0,00) x H— Hand o :[0,00) x H— L(H) are
C'2, in Fréchet differentiation.
As is known, in order the stochastic differentiation term makes
sense, o must be Lys(H)-valued! This then causes a problem
as we require that o must be invertible but Hilbert-Schmidt
operators are NOT invertible! So we need to find an
appropriate way to formulate our problem. For simplicity, we
assume Q = Identity (which was done with Miao Wang in [1].
Extension to general Q-Wiener process driven SDEs is
discussed in [2] joint with Feng-Yu Wang).
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Extension to SDEs on Hilbert spaces via Galerkin approximati

Let (A, D(A)) be a linear, unbounded, negative definite,
self-adjoint operator on H generating a contraction
Co-semigroup {etA}tZO. Let L4(H) be defined as

La(H) = {L:H— H| &L e Lys(H), vt> 0}
endowed with the o-algebra induced by the family
{L— (e”Lx,y)y | t >0,x,y € H}

from B(R) so that L4(H) is a measurable space. Consider mild
equation associated with (1)

t t
X, = ex+ / e(=9Ap(s. X,)ds+ / el=9A(s. X)dWs, t> 0.

0 0
So we require o : [0,00) x H — La(H) to make the stochastic
integral well-defined. To ensure the existence of a unique
solution, we put following
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Extension to SDEs on Hilbert spaces via Galerkin approximati

(H1) Assume that —A has discrete spectrum with eigenvalues
0 < N\ §>\2S§)\]S

counting multiplicities such that Zj’; Al/ < 00.

(H2) There exist a constant e € (0, 1) and an increasing
function L : [0,00) — (0,00) such that vt > 0, Vx,y ¢ H

t
sup {Hb(t,0)||i,+/ He(’S)Aa(s,O)H;"_,Ssﬁds} < oo
te[0,T] 0

and

16(t, x)=b(t, )| r-+lle” (o (t, x) = o (t, 1)) lus < LD XY 1.
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Extension to SDEs on Hilbert spaces via Galerkin approximati

One can show that under the above conditions, there is a
unique mild solution with

E ( sup ||Xtﬁ,> < oo, YT>0.
te[0,T]

Remark: Under the assumption (H1), it clear that the space
La(H) allows to have invertible operators from H to H, such as
the identity operator.

Next, we need It6 formula for real-valued functions of X;. Here
we notice that the diffusion coefficient o in (1) is not
Hilbert-Schmidt, thus the usual infinite-dimensional It6 formula
can not apply. it seems so far there is no 1t6 formula for
functions of solutions of infinite-dimensional semi-linear SDEs
containing our SEEs (1) which are only solved with midl
solutions. We could succeed It6 formula here by using Galerkin
approximation.
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Extension to SDEs on Hilbert spaces via Galerkin approximati

Forany n>1,letm,: H — H, :=span{ey,--- , ey} be the
(orthogonal) projection operator, that is

n

X = Z(X, e,->,.,e,-, x e H.

i=1
We note that the project operator =, commutes with the
semigroup €A, t > 0. Let A, := A |y, by := mpb and oy, := mpo.
We then consider the following (finite-dim.) stochastic
differential equation in H,

adX{" = {ApX{" + bn(t, X[") }dt + on(t, X{")dW,,
Xn(O) — 7TnX.
The assumption (H2) implies b, and o, fulfill the usuall growth

and Lipschitz conditions so that there exists a unique strong
solution X" € Hp,t € [0, c0) to (2). One can show

lim E|IX] X4, =0, t>0. (3)

(@)
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Extension to SDEs on Hilbert spaces via Galerkin approximati

By using It6 formula for X{" and the above limit, we have the
following It6 formula for X;

Proposition

Assume (H1), (H2), and let v : [0,00) x H — R be in
C;’Q([O,oo) x H) such that [Vv(t, x)] € Dom(A) for any
(t,x) € [0,00) x Hand ||AVv(t,-)| y is bounded locally and
uniformly in t € [0, c0). Then we have

Wt X) = v(0,%)+ /0 o (5. Xe) V(5. Xe), dWe)

t
+ [ [55M(5.50) + (Tv(s. Xe). b(s. Xe)m
+(AVv(s, Xs), Xs) 1] ds

+1/tTr[( *)(s, Xs)V2v(s, Xs)]ds (4)
2 0 g0 s A\s , A\s 5
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Extension to SDEs on Hilbert spaces via Galerkin approximati

Next, we assume

(H3) o(t, x) is invertible for each (t, x) € [0, 00) x H and the two
coefficients b, o in Equation (1) fulfill

;
E (exp {;/0 o= (t, X;)b(t, xgu,%,m}) < oo, VYT>0.

So under (H1), (H2) and (H3), the Girsanov density

C;P; = exp{ / -1 (s, Xs(w))b(s, Xs(w)), dWs(w))H

3 [ 1o s X b X s} 20

is a well-defined process for the SDE in (1).
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Extension to SDEs on Hilbert spaces via Galerkin approximati

The following main result gives a necessary and sufficient
conditions, and hence a characterization of path-independence
of the Girsanov density process for (infinite-dimensional) SDEs
on separable Hilbert spaces.

Theorem 4

Assume (H1), (H2), (H3) and let v : [0, 00) x H — R be in
CZ,’Z([O,oo) x H) such that [Vv(t, x)] € Dom(A) for any
(t,x) € [0,00) x Hand |AVv(t,-)||y is bounded locally and
uniformly in t € [0, 00). Then the Girsanov density (5) for (1)
fulfills the following path-indendenpent property

dP
TI; = eXp{V(O,XO) - V(ta Xt)}7 t>0

if and only if v satisfies
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Extension to SDEs on Hilbert spaces via Galerkin approximati

Theorem 4 (cont’d)

;v(t,x) = —%{Tr[(aa*)vzv](t,x)+Ha*VvH,z_,(t,x)}
— (X, AVV(t, X))y

and

b(t, x) = [(0o™)VV](t,X), Y(t,x) € (0,00) x H.
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Extension to SDEs on Hilbert spaces via Galerkin approximati

With Feng-Yu Wang, we study SDEs on Hilbert spaces. The
key starting point is to extend the finite dimensional condition

b(t,x) + o(t,x)y(t,x) =0

to infinite dimensional so that we allow ¢ to be Hilbert-Schmidt
operator valued.
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Extension to SDEs on Hilbert spaces via Galerkin approximati

Thank Youl!
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