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Space of Random Environment

L, R ≥ 1 are two integers(jump size).

Ω : collection of ω = (ωi)i∈Z = (µLi , ..., µ
1
i , λ

1
i , ..., λ

R
i )i∈Z,

µli, λ
r
i ≥ 0, i ∈ Z, l = 1, .., L, r = 1, ..., R.

F : Borel σ-algebra on Ω.

θ : shift operator on Ω defined by (θω)i = ωi+1.

P : a probability measure on (Ω,F) which is assumed to be
i.i.d. or sometimes stationary and ergodic.

Random environment ω is a random element of Ω chosen
according to P.



(L,R) BDPRE

Given a realization of ω,
let {Nt}t≥0 be a continuous time Markov chain,
which waits at a state n an exponentially distributed time
with parameter

∑L
l=1 µ

l
n +

∑R
r=1 λ

r
n and then

jumps to n − i with probability µin/(
∑L

l=1 µ
l
n +

∑R
r=1 λ

r
n),

i = 1, ..., L
or to n + j with probability λjn/(

∑L
l=1 µ

l
n +

∑R
r=1 λ

r
n), j =

1, ..., R.
{Nt}t≥0 is called a birth and death process with bounded jump-
s in random environment ((L,R) BDPRE in short).

Pω : quenched probability;

P : annealed probability.



Background

{Nt} : continuous time analogue of random walk
with bounded jumps in random environment.
Key [K84]
Letchikov [L89]
Brémont [B02, B09]
Hong and Zhang [HZ10]
Hong and Wang [HW13, HW14] etc.
Ritter [R80] (L = R = 1), recurrence criteria, LL-
N.



Embedded process and Skeleton process

τn, n ≥ 0 : discontinuities of {Nt}.

χn := Nτn.

{χn} is called the embedded process of {Nt}.
Fix h > 0, and let Xn := Nnh.
{Xn} is called the h-skeleton process of {Nt}.

Recurrence criteria of embedded process
⇔

Recurrence criteria of {Nt}.
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Condition C

(C1) (Ω,F ,P, θ) forms a stationary and ergodic
system.

(C2) the measure P is uniformly elliptic, that is,

P
(
ε < µl0, λ

r
0 < M, 1 ≤ l ≤ L, 1 ≤ r ≤ R

)
= 1

for some small ε > 0 and large M > 0.
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Define T1 = inf[t > 0 : Nt > 0].

Theorem 1 (LLN for (L,R) BDPRE)

Suppose that conditions (C1) and (C2) are satisfied and γR ≥ 0.
Then
(a) ET1 <∞⇒ limt→∞

Nt
t = vP > 0, P -a.s.;

(b) ET1 =∞⇒ limt→∞
Nt
t = 0, P -a.s..

vP =

E
(∑R

r=1

∑
k≤0Eθ−kω

(∑Uk
j=1 ξkj |NT1 = r

)(∑L
l=1(−l)µl0 +

∑R
r=1 rλ

r
0

))
∑R

r=1E(T1|NT1 = r)
,

Uk := #{n : Nτn = k, τn < T1},

Pω(ξkj > t) = e−(
∑L
l=1 µ

l
k+
∑R
r=1 λ

r
k)t, t ≥ 0.
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Theorem 2 (LLN for (2,2) BDPRE)

Let π(ω) and D(ω) be certain functions of ω. Suppose L = R = 2
and γR ≥ 0. Then P-a.s.,

(a) E(π(ω)) <∞⇒ limt→∞
Nt
t =

E(π(ω)(2λ20+λ10−µ10−2µ20))
E(D(ω)) .

(b) E(π(ω)) =∞⇒ limt→∞
Nt
t = 0.

Idea: branching structure for (2,2) random walk.

[HW14] Hong W. M., and Wang H. M., Intrinsic branching structure
within random walk on Z, Teor. Veroyatnost. i Primenen.,
Vol.58(4), 730õ751, 2013 (English version will appear in
Theory of Probability and Its Applications§2014)
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LLN for (1,1) BDPRE

Tn := inf[t ≥ 0 : Nt = n];

limt→∞
Nt

t = limn→∞
n
Tn

= 1
ET1

.

∃ n s.t. Tn < t < Tn+1;

n− νn < Nt < n+ 1;
n−νn
Tn+1

< Nt

t <
n+1
Tn
.

Key point:{Tn−Tn−1} is a stationary and mix-
ing sequence under P.

For (L,1) BDPRE transient to the right, the above
approach still works.

But for general (L,R) BDPRE, it does not work.
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(L,R) BDPRE-difficulties of LLN

T0 = 0, Tn = inf[t > Tn−1 : Nt > NTn−1
], n ≥ 1;

NTn =???

n ≤ NTn ≤ nR

∃ n s.t. Tn ≤ t < Tn+1;

n− νn ≤ Nt < (n+ 1)R;
n−νn
Tn+1
≤ Nt

t <
(n+1)R
Tn

.

{Tn−Tn−1}n≥1 is neither stationary nor ergod-
ic.

Idea: consider the skeleton process {Nnh}n≥0.
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nh ≤ t < (n+ 1)h;

Nnh − JtL ≤ Nt < Nnh + JtR,

where Jt := #{ jumps of {Nt} in [t,t+h)};
Nnh−JtL
(n+1)h

≤ Nt
t
< Nnh+JtR

nh
;

If limn→∞
Nnh
n

= vhP then

limt→∞
Nt
t

= limn→∞
Nnh
nh

=
vhP
h
.

limt→∞
Nt
t

= limh→0
vhP
h

=: vP.

Idea to prove LLN of skeleton process {Nnh}
Approach: “the environment viewed from particle”.

Difficulty: {Nnh}n≥0 is a discrete time random walk in
random environment with unbounded jumps.



nh ≤ t < (n+ 1)h;

Nnh − JtL ≤ Nt < Nnh + JtR,

where Jt := #{ jumps of {Nt} in [t,t+h)};
Nnh−JtL
(n+1)h

≤ Nt
t
< Nnh+JtR

nh
;

If limn→∞
Nnh
n

= vhP then

limt→∞
Nt
t

= limn→∞
Nnh
nh

=
vhP
h
.

limt→∞
Nt
t

= limh→0
vhP
h

=: vP.

Idea to prove LLN of skeleton process {Nnh}
Approach: “the environment viewed from particle”.

Difficulty: {Nnh}n≥0 is a discrete time random walk in
random environment with unbounded jumps.



nh ≤ t < (n+ 1)h;

Nnh − JtL ≤ Nt < Nnh + JtR,

where Jt := #{ jumps of {Nt} in [t,t+h)};

Nnh−JtL
(n+1)h

≤ Nt
t
< Nnh+JtR

nh
;

If limn→∞
Nnh
n

= vhP then

limt→∞
Nt
t

= limn→∞
Nnh
nh

=
vhP
h
.

limt→∞
Nt
t

= limh→0
vhP
h

=: vP.

Idea to prove LLN of skeleton process {Nnh}
Approach: “the environment viewed from particle”.

Difficulty: {Nnh}n≥0 is a discrete time random walk in
random environment with unbounded jumps.



nh ≤ t < (n+ 1)h;

Nnh − JtL ≤ Nt < Nnh + JtR,

where Jt := #{ jumps of {Nt} in [t,t+h)};
Nnh−JtL
(n+1)h

≤ Nt
t
< Nnh+JtR

nh
;

If limn→∞
Nnh
n

= vhP then

limt→∞
Nt
t

= limn→∞
Nnh
nh

=
vhP
h
.

limt→∞
Nt
t

= limh→0
vhP
h

=: vP.

Idea to prove LLN of skeleton process {Nnh}
Approach: “the environment viewed from particle”.

Difficulty: {Nnh}n≥0 is a discrete time random walk in
random environment with unbounded jumps.



nh ≤ t < (n+ 1)h;

Nnh − JtL ≤ Nt < Nnh + JtR,

where Jt := #{ jumps of {Nt} in [t,t+h)};
Nnh−JtL
(n+1)h

≤ Nt
t
< Nnh+JtR

nh
;

If limn→∞
Nnh
n

= vhP then

limt→∞
Nt
t

= limn→∞
Nnh
nh

=
vhP
h
.

limt→∞
Nt
t

= limh→0
vhP
h

=: vP.

Idea to prove LLN of skeleton process {Nnh}
Approach: “the environment viewed from particle”.

Difficulty: {Nnh}n≥0 is a discrete time random walk in
random environment with unbounded jumps.



nh ≤ t < (n+ 1)h;

Nnh − JtL ≤ Nt < Nnh + JtR,

where Jt := #{ jumps of {Nt} in [t,t+h)};
Nnh−JtL
(n+1)h

≤ Nt
t
< Nnh+JtR

nh
;

If limn→∞
Nnh
n

= vhP then

limt→∞
Nt
t

= limn→∞
Nnh
nh

=
vhP
h
.

limt→∞
Nt
t

= limh→0
vhP
h

=: vP.

Idea to prove LLN of skeleton process {Nnh}
Approach: “the environment viewed from particle”.

Difficulty: {Nnh}n≥0 is a discrete time random walk in
random environment with unbounded jumps.



nh ≤ t < (n+ 1)h;

Nnh − JtL ≤ Nt < Nnh + JtR,

where Jt := #{ jumps of {Nt} in [t,t+h)};
Nnh−JtL
(n+1)h

≤ Nt
t
< Nnh+JtR

nh
;

If limn→∞
Nnh
n

= vhP then

limt→∞
Nt
t

= limn→∞
Nnh
nh

=
vhP
h
.

limt→∞
Nt
t

= limh→0
vhP
h

=: vP.

Idea to prove LLN of skeleton process {Nnh}
Approach: “the environment viewed from particle”.

Difficulty: {Nnh}n≥0 is a discrete time random walk in
random environment with unbounded jumps.



nh ≤ t < (n+ 1)h;

Nnh − JtL ≤ Nt < Nnh + JtR,

where Jt := #{ jumps of {Nt} in [t,t+h)};
Nnh−JtL
(n+1)h

≤ Nt
t
< Nnh+JtR

nh
;

If limn→∞
Nnh
n

= vhP then

limt→∞
Nt
t

= limn→∞
Nnh
nh

=
vhP
h
.

limt→∞
Nt
t

= limh→0
vhP
h

=: vP.

Idea to prove LLN of skeleton process {Nnh}
Approach: “the environment viewed from particle”.

Difficulty: {Nnh}n≥0 is a discrete time random walk in
random environment with unbounded jumps.



Define T h1 = inf[n : Xn > 0].

pω(h, i, j) := Pω(Nh = i+ j|N0 = i).

Theorem 3 (LLN of the skeleton process)

Suppose that (C1) and (C2) hold. Then P -a.s., {Xn} is tran-
sient to the right, recurrent or transient to the left according
as γR ≥ 0, γR = 0 or γR ≤ 0. Moreover, if γR ≥ 0, then
E(T h1 ) =∞⇒ P -a.s., limn→∞

Xn
n

= 0;

E(T h1 ) <∞⇒ P -a.s., limn→∞
Xn
n

= vhP > 0,

where vhP =
E
(∑∞

i=1

∑
k≤0 Eθ−kω

(
Uhk |XTh1 =i

)∑
j∈Z jpω(h,0,j)

)
∑∞
i=1 E

(
Th1 |XTh1

=i
) , with

Uh
k = #{0 ≤ n < T h1 : Xn = k}.

E(T h1 ) <∞⇔ E(T1) <∞.
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Sketch of the proof of Theorem 3

Define ω(n) = θXnω.

Define the local drift d(x, ω) = Exω(X1 −X0) and set

Mn = Xn −X0 −
n−1∑
k=0

d(Xn, ω)

= Xn −X0 −
n−1∑
k=0

d(0, ω(k))

Lemma 1

Under Pω, {Mn} is a martingale and P -a.s., limn→∞
Mn
n = 0.

Lesigne and Volný (SPA, 2001):

E(e|Mn−Mn−1|) <∞⇒ P (|Mn| >
√
nλ) ≤ e−c4λ

2
3

⇒ P -a.s., limn→∞
Mn
n = 0.
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E(e|Mn−Mn−1|) <∞⇒ P (|Mn| >
√
nλ) ≤ e−c4λ

2
3

⇒ P -a.s., limn→∞
Mn
n = 0.



Lemma 2

Suppose that Condition (C2) is satisfied. Then for P-a.a. ω,
pω(h, i, j) < ec0he−c1|j|,

for some constant c0, c1 > 0.

By Lemma 2,

Eω(e|Xn−Xn−1|) < c3

which implies

E(e|Mn−Mn−1|) <∞.

What left to prove is only

P -a.s., limn→∞
1
n

∑n−1
k=0 d(0, ω(k)) = vhP.
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Define

Kh(ω, dω′) =
∑

j∈Z pω(h, 0, j)δω′=θjω.

Lemma 3

Under either P or Pω, {ω(n)}n≥0 is a Markov chain with transi-
tion kernel Kh(ω, ω′).

Whenever E(T h1 ) <∞, define the measures

Qh(dω) := E

∑
i≥1

1X
Th1

=i

Pω(XTh1
= i)

Th1 −1∑
k=0

1ω(k)∈dω

 , Q
h
(dω) =

Qh(dω)

E(T h1 )
.
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Lemma 4

Suppose that conditions (C1), (C2) hold and E(T h1 ) <∞. Then
Qh is invariant under the kernel Kh, that is

Qh(B) =
x

1ω′∈BK
h(ω, dω′)Qh(dω).

Moreover, Qh ∼ P and

dQh

dP
=
∑
k≤0

∑
i≥1

Eθ−kω(Uhk |XTh1
= i) =: πh(ω),

where Uhk = #{n ≤ T h1 : Xn = k}.

Lemma 5

Under the conditions of Lemma 4, {ω(n)} is stationary and er-

godic under the probability measure Q
h × Pω.
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Using Birkhoff’s ergodic theorem, we have that for Q
h
-a.a. or

P-a.a. ω, Pω-a.s.,

lim
n→∞

1

n

n−1∑
k=0

d(Xk, ω) = lim
n→∞

1

n

n−1∑
k=0

d(0, ω(k)) =

∫
d(0, ω)dQ

h
.

Then P -a.s.,

lim
n→∞

Xn

n
=

∫
d(0, ω)dQ

h
=: vhP.

vhP =

∫
d(0, ω)dQ

h

=
E
(∑∞

i=1

∑
k≤0Eθ−kω(Uhk |XTh1 =i)

∑
j∈Z jpω(h, 0, j)

)
∑∞

i=1E(T h1 |XTh1
= i)
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Recurrence criteria

Given ω, define for i ∈ Z,

bi(k) =


∑R
j=R−k+1 λ

j
i

µLi
if 1 ≤ k ≤ R,

−
∑L
j=k−R µ

j
i

µLi
if R+ 1 ≤ k ≤ R+ L− 1,

and let

Ai =


0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

bi(1) bi(2) · · · bi(L+R− 1)


be an (L+R− 1)× (L+R− 1) matrix.

The Lyapunov exponents (Oseledec’s multiplicative ergodic the-
orem) of the sequence {Ai}i∈Z are

−∞ < γ1 ≤ γ2 ≤ ... ≤ γR+L−1 <∞.
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Proposition 1 (Recurrence criteria)

Suppose that (C1) and (C2) are satisfied. Let γ1 ≤ γ2 ≤ ... ≤
γR+L−1 be the Lyapunov exponents of the sequence {Ai}i∈Z un-
der P. Then
(1) γR > 0⇒ P (limt→∞Nt =∞) = 1;
(2) γR = 0⇒ P

(
−∞ = limt→∞Nt < limt→∞Nt =∞

)
= 1;

(3) γR < 0⇒ P (limt→∞Nt = −∞) = 1.

Proof. Since the recurrence criteria for {Nt} is the same as it-
s embedded process {χn}, Proposition 1 is just a corollary of
Theorem A in Letchikov [L89]. 2

[L89] Letchikov, A. V., Localization of one-dimensional random
walks in random environments, Sov. Sci. Rev. C. Math.
Phys., Vol. 8, pp 173-220, 1989
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(L,1) BDPRE

Letting R = 1, consider (L,1) BDPRE.

Condition B

(B1) P
(
λ0 +

∑L
l=1 µ

l
0 > 0

)
= 1;

(B2) P
( ∞∑
n=1

1

λn +
∑L

n=1 µ
l
n

=∞
)

= 1,

and P
(∑0

n=−∞
1

max1≤k≤L{λnL−k+
∑L
l=1 µ

l
nL−k}

=∞
)

= 1.

(B3) E ln λ0
λ0+

∑L
l=1 µ

l
0

> −∞,E ln
µL0

λ0+
∑L
l=1 µ

l
0

> −∞.
(B4) P is i.i.d..

(B1) and (B2) ensure the existence.

Under (B3) and (B4), we could use the multiplicative ergodic
theorem for the following random matrices.
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Introduce matrices

Mi =


µ1i
λi

...
µL−1
i
λi

µLi
λi

1 +
µ1i
λi
...

µL−1
i
λi

µLi
λi

...
. . .

...
...

µ1i
λi

... 1 +
µL−1
i
λi

µLi
λi

 , i ∈ Z.

For i ∈ Z, let ai(k) =
∑L
l=k µ

l
i

λi
, k = 1, ..., L, bi(1) = λi

µLi
and

bi(k) =
∑L
l=k−1 µ

l
i

µLi
, k = 2, ..., L.

Introduce matrices

Bi =


0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

bi(1)−bi(2) · · · −bi(L)

 , B−1i =


ai(1) · · · ai(L− 1) ai(L)

1 · · · 0 0
...

. . .
...

...
0 · · · 1 0

 .
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Theorem 4 (Recurrence criteria)

Suppose that (B1-B4) are all satisfied. Let γ1 ≤ γ2 ≤ ... ≤ γL be
the Lyapunov exponents of the sequence (Mi)i∈Z. Then
γL < 0⇒ P (limt→∞Nt =∞) = 1;
γL = 0⇒ P (−∞ = limt→∞Nt < limt→∞Nt =∞) = 1;
γL > 0⇒ P (limt→∞Nt = −∞) = 1.

Define Tn = inf[t ≥ 0 : Nt = n].

Theorem 5 (LLN)

Suppose that (B1-B4) are all satisfied and γL ≤ 0. Then
(a) ET1 <∞⇒ limt→∞

Nt
t = (ET1)

−1, P -a.s.;

(b) ET1 =∞⇒ limt→∞
Nt
t = 0, P -a.s..

Idea: {Tn−Tn−1}n≥1 is a mixing sequence under P. An applica-
tion of ergodic theorem yields that P -a.s., limn→∞ Tn/n = E(T1).
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Theorem 6 (Decomposition of T1)

Suppose that conditions (B1-B4) are all satisfied and γL ≤ 0.
Then P (T1 <∞) = 1 and

T1
D
= ξ0,1 +

∑
i≤−1

Ui,1∑
k=1

ξi,k +
∑
i≤−1

Ui,1+...+Ui,L∑
k=1

ξ̃i+1,k,

(Ui,1, ..., Ui,L)i≤0 forms an L-type branching process in random
environment ([HW13]) and

Pω(ξ̃i,k ≥ t) = Pω(ξi,k ≥ t) = e−(λi+
∑L
i=1 µ

l
i)t, t ≥ 0.

Moreover,

EωT1 =

0∑
i=−∞

1

λi
e1M0M−1 · · ·Mi+11.

[HW13] Hong, W. M. and Wang, H. M., Intrinsic branching structure
within (L-1) random walk in random environment and its
applications, Infin. Dimens. Anal. Quantum Probab. Relat.
Top., Vol. 16, 1350006, 2013
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(1,R) BDP in fixed environment

Consider (1,R) BDP in fixed environment on positive half lattice.

Recall that (µi, λ
1
i , ..., λ

R
i )i≥0 is the environment for BDP {Nt}.

In order to limit the walker on Z+, set µ0 = 0.

For i ≥ 1, let aki =
∑R
l=k λ

l
i

µi
, k = 1, ..., R, and introduce matrices

Mi =


a1i · · · a

R−1
i aRi

1 · · · 0 0
...

. . .
...

...
0 · · · 1 0

 . (1)

Let
Pt(i, j) = P (Nt = j|N0 = i).
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Theorem 7

Suppose that there are small κ > 0 and large K > 0 such that
for all n ≥ 0, κ < µn +

∑R
r=1 λ

r
n < K..

Then
(a) If limn→∞ e1M1M2 · · ·Mne

T
1 = 0, then {Nt} is recurrent.

(b) If
∑∞

n=1
1
µi
e1M1M2 · · ·Mne

T
1 < ∞, then {Nt} is positive re-

current and the limits

ψ0 := lim
t→∞

Pt(i, 0) =
(
∑R

r=1 λ
r
0)
−1

(
∑R

r=1 λ
r
0)
−1 +

∑∞
n=1

1
µn

e1M1M2 · · ·Mn−1eT1

ψk := lim
t→∞

Pt(i, k) =

1
µn

e1M1M2 · · ·Mk−1e
T
1

(
∑R

r=1 λ
r
0)
−1 +

∑∞
n=1

1
µn

e1M1M2 · · ·Mn−1eT1

define a stationary distribution for {Nt} in the sense that for all
t > 0,

ψk =
∞∑
n=0

ψnPt(n, k), k ≥ 0.
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The existence of {Nt}

Given ω, let Q = (qij) be a matrix with

qij =


λri , if j = i+ r, r = 1, ..., R;
µli, if j = i− l, l = 1, ..., L;

−
(∑L

i=1 µ
l
i +
∑R

r=1 λ
r
i ), if j = i;

0, else.

Then Q is obviously a conservative Q-matrix.

We have from classical argument that there exists at least one
transition matrix (pω(t, i, j)) such that

lim
t→0

pω(t, i, j)− δij
t

= qij , i, j ∈ Z. (2)
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The existence of {Nt}

Theorem 8 (The existence)

Suppose that P
(∑L

l=1 µ
l
0 +

∑R
r=1 λ

r
0 > 0

)
= 1 and

P
( ∞∑
n=1

(
max
1≤k≤R

{ R∑
r=1

λrnR−k +
L∑
l=1

µlnR−k

})−1
=∞

)
= 1,

P
( 0∑
n=−∞

(
max
1≤k≤L

{ R∑
r=1

λrnL−k +
L∑
l=1

µlnL−k

})−1
=∞

)
= 1.

Then for P-a.a. ω, there is a unique transition matrix
(pω(h, i, j)) which satisfies (2), that is {Nt} exists.
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