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Space of Random Environment

L, R > 1 are two integers(jump size).

Q : collection of w = (wi)iez = (UF, ..., ub, AL o A ez,
P Nf>0,i€Z, l=1,.,L,r=1,....R.

F : Borel o-algebra on ).
0 : shift operator on 2 defined by (fw); = w; 1.

P : a probability measure on (€2, F) which is assumed to be
i.i.d. or sometimes stationary and ergodic.

Random environment w is a random element of €2 chosen
according to P.



(L,R) BDPRE

Given a realization of w,

let {V;}+>0 be a continuous time Markov chain,

which waits at a state n an exponentially distributed time
with parameter 1 i/, + 5% )7 and then

jumps to m — i with probability s /(32 pl + S35 A7),
t=1,..,L

o5 it 4§ s poels s NS +F Dy g =
1,...R.

{Ni}i>0 1s called a birth and death process with bounded jump-
s in random environment ((L,R) BDPRE in short).

v

P, : quenched probability;
P : annealed probability.



Background

{N;} : continuous time analogue of random walk
with bounded jumps in random environment.

Key [K84]

Letchikov [L.89]

Brémont [B02, B09]

Hong and Zhang [HZ10]

Hong and Wang [HW13, HW14] etc.

Ritter [R80] (L = R = 1), recurrence criteria, LL-
N.
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Embedded process and Skeleton process

Tn,n > 0 : discontinuities of {NV;}.
Xn = N, .
{xn} is called the embedded process of {N;}.

Fix h > 0, and let X,, := N,.
{X,} is called the h-skeleton process of {V;}.

Recurrence criteria of embedded process
-~
Recurrence criteria of { N;}.



(C1) (2,F,P,0) forms a stationary and ergodic
system.




Condition C

(C1) (2,F,P,0) forms a stationary and ergodic
system.

(C2) the measure P is uniformly elliptic, that is,

]P><5<,ulo,>\6<M,1§l§L,1§r§R):1

for some small € > 0 and large M > 0.




Define T = inf[t > 0: N; > 0].
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Theorem 2 (LLN for (2,2) BDPRE)

Let 7(w) and D(w) be certain functions of w. Suppose L = R = 2
and yg > 0. Then P-a.s.,

(a) E(r(w)) < 0o = limy— o0
(b) E(m(w)) = 00 = limgyo0 §

Ny ]E(7r(w)(2)\(2)+)\(1)—y(1)—2u3))
¢ E(D(w)) :
Ne
t

=0.
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Let m(w) and D(w) be certain functions of w. Suppose L = R = 2
and yg > 0. Then P-a.s.,

. Ny ]E(7r(w)(2)\2+)\1—,u1—2,u2))
(a) E(m(w)) < 00 = limy 400 3t = EO(D(SJ)) ¢ — 0/,

(b) E(m(w)) = 00 = limy_,o0 &t = 0.

Idea: branching structure for (2,2) random walk.

[HW14] Hong W. M., and Wang H. M., Intrinsic branching structure

within random walk on Z, Teor. Veroyatnost. i Primenen.,
Vol.58(4), 730 - 751, 2013 (English version will appear in
Theory of Probability and Its Applications, 2014)
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For (L,1) BDPRE transient to the right, the above
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Key point:{T,, —T,,_1} is a stationary and mix-
ing sequence under P.

V.

For (L,1) BDPRE transient to the right, the above
approach still works.

But for general (L,R) BDPRE;, it does not work.
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Ty = O, T, = mf[t >T, 1 Nt > NTn_l],TL > 1;
Np =777

n

n < Nr, <nR
Inst T, <t <T,;

n—v, <Ny < (n+1)R;

n—vy, o~ Ny _ (ntD)R
Tn+1 S t = Tn )

{T,, —T,_1}n>1 is neither stationary nor ergod-
ic.
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(L,R) BDPRE-difficulties of LLN

To =0, T,
Ny, =777

n < Nr, <nR
Inst T, <t <T,;

=inf[t > T,—1: Ny > Np,_.|,n > 1;

n—v, <Ny < (n+1)R;
n—vp < Nt < (’I’H—l)R
Tn+1 - n ’

{T, — Tnfl}nzl is neither stationary nor ergod-

1C.

v

Idea: consider the skeleton process { Npp tn>o-
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nh <t<(n+1)h;
Nnh - JtL S Nt < Nnh + JtR,
where J; := #{ jumps of {NV,} in [t,t+h)};

Npn—=Je L Ny NpptJiR .
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If lim,, .. 222 = vl then

Idea to prove LLN of skeleton process { NV, }

e Approach: “the environment viewed from particle”.

e Difficulty: {Nun}n>o0 is a discrete time random walk in
random environment with unbounded jumps.
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where v} =

, with

E(T}) < 00 & E(T}) < oo.
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Define @(n) = X w.

Define the local drift d(z,w) = EZ(X; — Xo) and set
n—1
M, =X, — Xo— Y _d(Xp,w)
k=0

n—1
=X, — Xo— Y _ d(0,w(k))
k=0

Under P, {M,} is a martingale and P-a.s., lim,,_,~ Mn?l =0. \

Lesigne and Volny (SPA, 2001):

2
E(elMr=Mimil) < 00 = P(|My| > /nX) < e7e??

= P-a.s., lim, % = 0.
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Suppose that Condition (C2) is satisfied. Then for P-a.a. w,
pw<h> Z’]) < 600]16—61\]'\’
for some constant ¢y, c; > 0.

By Lemma 2,
E,(elXn=Xn1l) < ¢4
which implies
E(elMn—Mn-1ly < o0,
What left to prove is only
P-as., limg, e £ 3720 d(0,@(k)) = vl
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Define
Kh(w, dw’) = ZjEZ pw(h) O) j)éw’zejw‘

Under either P or P, {w(n)},>0 is a Markov chain with transi-
tion kernel K" (w,w’).

Whenever E(TP) < oo, define the measures

. Th-1
ThZ

h — Q" —
Q (dw) =F Z P XTh _ z Z 1 (k)edw | » (dw) - E(Tlh) :

1>1



Lemma 4
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Suppose that conditions (C1), (C2) hold and E(T}) < co. Then
Q" is invariant under the kernel K", that is

Q"(B) = [[ LuenK" (w, du')Q" (dw).

Moreover, Q" ~ P and

dQ" b : h
P ZZE%%(U;C |XT{1 =) = m"(w),

k<0 i>1

where Ul = #{n < T} : X,, = k}.

| \

Lemma 5
Under the conditions of Lemma 4, {w(n)} is stationary and er-

godic under the probability measure @h X P,.

A\




Using Birkhoff’s ergodic theorem, we have that for @h—a.a. or
P-a.a. w, P,-a.s.,

—~h

Jim % D d(Xp,w) = Jim % > d(0,w(k)) = / d(0,w)dQ".
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nlggoﬁzcz(xk,w) _nan;OHZd(OM(k)) = /d(O,w)dQ .
k=0 k=0
Then P-a.s.,
. Xn . —=~h _n
nh_}n;()? = /d(O,w)dQ =: Up.

~h

v = /d(O,w)dQ

E (252 Sco Bo-ro U1 X)) ez ipa(h,0,))
2t E(T1h|XT1h =) .
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Recurrence criteria

Given w, define for i € Z,

R Y
73:1*;;“ Lif1<k<R,

bi(k) = L
—=Er i R+1<k<R+L-1,
and let
0 1 0
A; = : R :
o 0 --- 1

bz(l) 52(2) cee bl(L + R — 1)
be an (L+ R—1) x (L + R — 1) matrix.

The Lyapunov exponents (Oseledec’s multiplicative ergodic the-
orem) of the sequence {A;};cz are

—00 <7 <7 < K YRyL-1 < 0.
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Suppose that (C1) and (C2) are satisfied. Let 73 < 79 < ... <
YR+L—1 be the Lyapunov exponents of the sequence {4;};cz un-
der P. Then

(2)yr=0=P (—OO = lim; , N; < limy_yoo Ny = 00) =1

(3) Yr < 0= P(hmt_mo Ny = —OO) =1.

Proof. Since the recurrence criteria for {N;} is the same as it-
s embedded process {x,}, Proposition 1 is just a corollary of
Theorem A in Letchikov [L89]. O

[L89] Letchikov, A. V., Localization of one-dimensional random
walks in random environments, Sov. Sci. Rev. C. Math.
Phys., Vol. 8, pp 173-220, 1989
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(B1) and (B2) ensure the existence.

Under (B3) and (B4), we could use the multiplicative ergodic
theorem for the following random matrices.
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Introduce matrices

Fi
Ai P
1 L
1+ 5 e
Mi — i i
Ml “.L_l
o1

L 1
For i € Z, let a(k) = Sl

L 1
bi(k) = Z=kotbs b _o T

(3

ST

= =
- R

L icZ.



Introduce matrices

b
/\i 1 éll
14+ My M
M; = i A
e
My i
X o1+ e

L !
For i € Z, let ai(k) = 25tk =

L !
bi(k) = EZLL‘””, k =2, ..., L. Introduce matrices
M,

= =
- R

L icZ.



Theorem 4 (Recurrence criteria)

Suppose that (B1-B4) are all satisfied. Let 73 < v2 < ... <~ be
the Lyapunov exponents of the sequence (M;);cz. Then

v < 0= P(hmt_wo Ny = OO) =1;

YL = 0= P(—OO = li_mt—>ooNt < Et—)ooNt = OO) =1;

v > 0= P(hmt_wo N; = —OO) =1.
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Theorem 4 (Recurrence criteria)

Suppose that (B1-B4) are all satisfied. Let 73 < v2 < ... <~ be
the Lyapunov exponents of the sequence (M;);cz. Then

v < 0= P(hmt_wo Ny = OO) =1;

v =0 = P(—OO :h_mt_)ooNt < Et—)ooNt = OO) =1;

v > 0= P(hmt_>oo N; = —OO) =1.

Define T;, = inf[t > 0 : Ny = n].

Theorem 5 (LLN)

Suppose that (B1-B4) are all satisfied and v, < 0. Then
(a) ET} < 0o = limy,oo 8t = (ETy) 7}, P-as;
(b) ET} = 00 = limy—,0e & = 0, P-as..

Idea: {T,, —T,—1}n>1 is a mixing sequence under P. An applica-
tion of ergodic theorem yields that P-a.s., lim,, . T, /n = E(T1).



Theorem 6 (Decomposition of 7)

Suppose that conditions (B1-B4) are all satisfied and v; < 0.
Then P(T) < o0) =1 and
Uii+...+U;

Z g0+ > me + > Z Eiv1 ks

i<—1k=1 1i<—1

Uii,...,U; 1)i<o forms an L-type branching process in random
(Ui, L)i< y g
environment ([HW13]) and
- L
Po(&rp>1t)=P,(&r>1t) = e_()\i‘l'Zi:l ui)t, t > 0.

Moreover, 0

1
Ele = E xelMOM—l s Mi+11.
. %
1=—00




Theorem 6 (Decomposition of 7)

Suppose that conditions (B1-B4) are all satisfied and v; < 0.
Then P(T) < o0) =1 and
Uii+...+U;

Z g0+ > Zfzk-i- > Z Eiv1 ks

i<—1k=1 1i<—1

Uii,...,U; 1)i<o forms an L-type branching process in random
(Ui, L)i< y g
environment ([HW13]) and
- L
Po(&rp>1t)=P,(&r>1t) = e_()\i‘l'Zi:l ui)t, t > 0.

Moreover, 0

1
Ele = E xelMOM—l s Mi+11.
. %
1=—00
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[HW13] Hong, W. M. and Wang, H. M., Intrinsic branching structure
within (L-1) random walk in random environment and its

applications, Infin. Dimens. Anal. Quantum Probab. Relat.
Top., Vol. 16, 1350006, 2013
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Consider (1,R) BDP in fixed environment on positive half lattice.
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Consider (1,R) BDP in fixed environment on positive half lattice.

Recall that (i, A, ..., A\f);>¢ is the environment for BDP {N,}.
In order to limit the walker on ZT, set po = 0.

Ry
For ¢ > 1, let af = %, k=1,..., R, and introduce matrices

.al

M= . . . . (1)

1 R-1 R
i .. az



(1,R) BDP in fixed environment

Consider (1,R) BDP in fixed environment on positive half lattice.
Recall that (i, A, ..., A\f);>¢ is the environment for BDP {N,}.

R

In order to limit the walker on Z™, set 9 = 0.

Ry
Fori > 1, let af = %, k=1,..., R, and introduce matrices

ol
1--- 0 0

M; = TR (1)
0 1 0

Let



Theorem 7

Suppose that there are small k > 0 and large K > 0 such that
for all n > 0, /<;<;Ln+ER < K.

r=1"'n




Theorem 7

Suppose that there are small x > 0 and large K > 0 such that
forall n >0, k < p, + Zle Al < K.. Then

(a) If limy, oo €1 M1 My - - - Mpel = 0, then {N;} is recurrent.
(b) If 3", ielMlMg -« Mpel < oo, then {N;} is positive re-
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Theorem 7

Suppose that there are small x > 0 and large K > 0 such that
forallm >0, Kk < pp + Zle Al < K.. Then

(a) If limy, oo €1 M1 My - - - Mpel = 0, then {N;} is recurrent.
(b) If Y, ielMlMg -« Mpel < oo, then {N;} is positive re-
current and the limits

(s )™

@Z)O = lim Pt(Z,O) =
o0 (S M)+ 0 mel My My - M, _s€]

1 T
anelMlMg cee Mk_lel

Y = lim P(i, k) = -
t00 (SR )+ 02, el My My - - My, €]

define a stationary distribution for {/N;} in the sense that for all
t>0,

vk =Y YnPin,k), k> 0.

n=0




The existence of { Ny}

Given w, let Q = (¢;j) be a matrix with

AL, ifj=i4+r,r=1., R;
il ifj=i—1,1=1,..1L;
qij = L R - .
N (X 2 A, i 5 =4
0, else.

Then (@ is obviously a conservative Q-matrix.



The existence of { Ny}

Given w, let Q = (¢;j) be a matrix with

AL, ifj=i4+r,r=1., R;
il ifj=i—1,1=1,..1L;
qij = L R - .
N (X 2 A, i 5 =4
0, else.

Then (@ is obviously a conservative Q-matrix.

We have from classical argument that there exists at least one
transition matrix (p,,(¢,4,j)) such that

lim pw(t7 1, j) - 67,]

Jm ¢ = qij, 1,) € 7. (2)



The existence of { Ny}

Theorem 8 (The existence)
Suppose that P( SE b+ N > 0) =1 and

P(;(lglkiXR{ZAnR k+ZM”R ’“}> :oo) =1

P ({3 e o) =) 1.

n=—oo

Then for P-a.a. w, there is a unique transition matrix
(pw(h, i, 7)) which satisfies (2), that is {NV;} exists.

4




Idea of the proof

Ta, N> ¢ cdhiscontinuities of Nt
Xai= Ng, . +he embedded prowss
%= “2;? [/@
~
P(Z, Ix, = @) = |
= P(vl\.‘;"éo_('” zw0) =
>P-a.s. PBulh,i,§) Ts unique
. ¥ ¢ . ¥, ¢ L
o R 23 3R 4R IR (R
For example, 4f Xa ts transient 4o the vight,

Gt (east one point £n each o‘f: CkR, kmR) would
be visited.

A\ 2
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