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Option pricing

We consider a single stock, with the unique equivalent local martingale
measure (ELMM) P, under which the deflated stock price follows

dX(s) = σ(X(s))dW(s), X(t) = x ≥ 0,

where W is a standard Brownian motion w.r.t. (Ω,F ,P,F = {Fs : s ≥ t}).

The price of an European option with maturity T and payoff f (X(T)) is

V(x, t) = Ex,t[f (X(T))].

There are two numerical methods for the computation of V: PDE numerics;
Monte-Carlo methods.



Computational methods for option pricing
Computational method 1: Use PDE representation

Suppose volatility σ and payoff f satisfy standing assumptions

(A1) σ is locally Holder continuous with exponent 1
2 satisfying σ(x) > 0 for

all x ∈ R+, σ(0) = 0.

(A2) f : R̄+ → R̄+ is a continuous payoff function with growth condition
|f (x)| ≤ K(1 + |x|γ) for some γ ∈ [0, 1].

Option price V solves PDE BS(Q, f ) in C2,1(Q) ∩ C(Q),

BS(Q, f ) :

{
ut +

1
2
σ2(x)uxx = 0 on Q := R+ × (0,T)

u(x, t) = f (x) on ∂∗Q := [0,∞)× {T} ∪ {0} × (0, T).

One can use PDE numerics to compute option price, ex Finite Difference
Methods (FDM), Finite Element Methods (FEM)



Computational methods for option pricing
Computational method 2: Monte-Carlo approximation

Monte Carlo method is a class of computational algorithms that relies on
some repeated random sampling to evaluate its deterministic value using its
probabilistic fact.
Among of many, we show Euler-Maruyama (EM) approximation as an
example below. Consider EM with step size ∆, each simulation X∆ is the
piecewise constant interpolation of {X∆

n : n ≥ 0}, i.e.

X∆(s) = X∆
[s/∆], ∀s > 0.

where

X∆
n+1 = X∆

n + σ(X∆
n )(W(n∆+∆)− W(n∆)), X∆

0 = x.

Let X∆(·) be The approximated value function simply is the average,

V∆(x, 0) := Ex,0[f (X∆(T))] → V(x, 0). �



Two examples on path-dependent value
1. Barrier option

A class of option prices are path-dependent, including look-back option,
rebate/barrier option, Asian option, Bermuda option etc. For ex.,

I (Barrier option) We consider up-and-in barrier call with strike 1/2 at
maturity T = 1, which price formula is given by

V = e−rE[(X(1)− 1
2
)+I[0,1)(τ)]

where τ = inf{s > 0 : X(s) /∈ (−∞, 1)} ∧ 1.
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Figure: No PDE representation. Thus, Monte-Carlo for the computation.



Two examples on path-dependent value
2. Discrete-monitoring-barrier option

Most works assume continuous monitoring of the barrier by default like the
previous example. However, in practice most barrier options traded in
markets are monitored at discrete time.

I (Discrete-monitoring-barrier option) The price formula of up-and-in
barrier call with strike 1/2, monitoring at discrete time instants
T = {1/m, 2/m, . . . ,m − 1/m, 1} is

V = e−rE
[(

X(1)− 1
2

)+

I[0,1)(τ̂)
]
.

where τ̂ = inf{s ∈ T : X(s) /∈ (−∞, 1)} ∧ 1.

Unlike their continuous-time counterparts, there is essentially no closed
form solution available, and even numerical pricing is more difficult; see
[BGK99] Broadie, Glasserman, Kou, Connecting discrete and continuous
path-dependent options. Finance Stoch., 3:55–82, 1999.
[Kou03] S. G. Kou. On pricing of discrete barrier options. Statistica Sinica,
13:955–964, 2003.



The path-dependent value function
General framework on 1-D

Denote C[0, 1] = C([0, 1],R) and D[0, 1] = D([0, 1],R).
Given a filtered probability space (Ω,F = F1,P,F = {Ft : t ∈ [0, 1]}),
consider an F-adapted continuous process X : [0, 1]× Ω 7→ C[0, 1] of

dX(t) = b(X(t), t)dt + σ(X(t), t)dW(t); X(0) = x.

We are interested in the computation of the objective functional V defined
by, for some given function F : D[0, 1] 7→ R

V = E[F(X)].



Overview of computational methods
Why for MC?

To evaluate the path-dependent objective functions, a major difficulty arises
from the lack of Markovian property. This gives added difficulty to the
conventional numerical-PDE-based methods including the finite difference
or finite element methods.
Thus, one naturally turns to approximation methods using Monte Carlo
method. This includes Euler-Maruyama approximation and Markov chain
approximation, others.



The general idea of the Monte Carlo method
To compute V = E[F(X)]

We need to do

Step 1. For each sample point ω ∈ Ω, we simulate the underlying process
X(·, ω) ∈ C[0, 1] by a certain discretization method with a small
parameter h (maybe a step size), denoted by Xh(·, ω) ∈ D[0, 1].

Step 2. Then, one can approximate V by computing the average

Vh = E[F(Xh)].
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Three useful operators used in the payoff structures
Hitting time T , Projection Π, and Running Maximum M

Let Γ = (α, β) be an open interval of R.
Let T : D[0, 1] 7→ [0, 1] be the first hitting time

T (x) = inf{t > 0 : x(t) /∈ Γ} ∧ 1, ∀x ∈ D[0, 1],

Projection operator Π : D[0, 1]× [0, 1]m 7→ Rm is defined by

Π(x, ν) = (x(ν1), . . . , x(νm))
′ ∀x ∈ D[0, 1], ν ∈ [0, 1]m.

Let M : D[0, 1] 7→ D[0, 1] be the maximum process operator of

M(x)(t) =
(

sup
0≤s≤t

x(t)
)′
, ∀x ∈ D[0, 1].



Value function of our interests
The value function is designed to cover many path-dependent applications

We are interested in the computation of V = E[F(X)] with F given in the
form of

F(x) = g
(
Π(x, T (x)),Π(M(x), T (x))},Π(x, ν), T (x)

)
where g(·) is a given measurable real function, and ν = {ν1, . . . , νm} is a
given finite dimensional vector.
This value function covers many path-dependent applications, including
look-back option, rebate/barrier option, Asian option, Bermuda option, etc.
ex. Recall payoff of Discrete-Monitoring-barrier option:
F(X) = (X(1)− 1

2 )
+I[0,1](τ̂) = (Π(x, 1)− 1

2 )
+I[1,∞)(∥Π(x, ν)∥∞).

Goal. What is the sufficient condition for the convergence Vh → V?
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Intuition
Approximation of points in R1

Let X,Xh ∈ R, and F : R 7→ R.
To ensure convergence of Vh = F(Xh) to V = F(X), i.e. limh→0 Vh = V , the
usual requirements are as follows:

(H1) Xh → X as h → 0.

(H2) F is continuous.

Q. How shall one generalize the above fact to the random world for
V = E[F(X)]? Note that, X is random curve, and F : D[0, 1]× Ω → R.



Possible generalization of the usual requirement for MC

To compute V = E[F(X)] via Vh = E[F(Xh)], due to V is invariant under the
same distribution, the usual requirements for the Monte Carlo method are
intuitively given as follows:

(H1) Xh converges weakly (in distribution) to X as h → 0, denoted by
Xh ⇒ X.

(H2) F is continuous on its domain D[0, 1] (with some topology).

A couple of natural questions are as follows.

I Are (H1)-(H2) sufficient to guarantee the desired convergence
limh→0 Vh = V?

I Can (H2) be possibly weakened to some discontinuous function (like
indicator function) so that the barrier option pricing can be included?



Counter example (TP): Tangency problem
(H1)-(H2) are NOT sufficient to guarantee the desired convergence limh→0 Vh = V

Let {X(s) : 0 ≤ s ≤ 1} be a deterministic process given
The exit time of X is τ = inf{s > 0 : X(s) /∈ (−∞, 1)} ∧ 1 = 1

2 .
Define a family of processes parameterized by h with Xh(s) = X(s)− h.
Although Xh converges to X in L∞ as h → 0+, we note that

τ h = inf{s > 0 : Xh(s) /∈ (α(s), β(s))} ∧ 1 = 1

not converging to τ = 1/2.

τ
1 τ

2

Figure: Demonstration of tangency problem: The sample paths of the two
processes (solid line and dotted line) are fairly close to each other, but their
first exit times are far apart indicating a loss of continuity.



Counter example (3B): Bessel process-1
(H1)-(H2) are NOT sufficient to guarantee the desired convergence limh→0 Vh = V

Let X−1(t) be a Bessel process of order 3 with initial X(0) = 1, i.e.,

X−1(t) = 1 + W(t) +
∫ t

0
ds

X−1(s) ,

which is a well known strict local martingale with E[X(1)] < 1.
A stock price which follows a strict local martingale is termed as bubble.
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Figure: A sample path of Bessel process of order 3



Counter example (3B): Bessel process-2
(H1)-(H2) are NOT sufficient to guarantee the desired convergence limh→0 Vh = V

We denote interpolation of Euler approximation of X with step size h by Xh.
Xh is a true martingale. Thus we have limh→0 E[Xh(1)] = 1 > E[X(1)].
[Q.] In the above traditional Euler method fails to be convergent. Indeed,
numerical PDE method also fails here. Then, how can one find an
apporximation of E[X(1)]?
[FK10] Daniel Fernholz and Ioannis Karatzas. On optimal arbitrage. Ann.
Appl. Probab., 20(4):11791204, 2010.



Next move?
What are we missing in (H1)-(H2)?

The above examples show that (H1)-(H2) may not be sufficient for Monte
Carlo simulation to be convergent to the right value. This suggests the
following question:

(Q1) Given Xh ⇒ X, what are sufficient conditions to ensure the
convergence limh→0 Vh = V? Is it possible to weaken the continuity of
g to cover the barrier option?

To complete the approximation of the value, one should also consider the
following question in addition to (Q1).

(Q2) Given X, how does one construct an approximating sequence of
processes Xh such that Xh ⇒ X?
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Skorohod topology

Define a uniform topology on D[0, 1] by

∥x − y∥ = sup
t∈[0,1]

|x(t)− y(t)|, ∀x, y ∈ D[0, 1].

Also, D[0, 1] can be equipped with the Skorohod topology with the metric

∥x − y∥s = inf
λ∈Λ

{∥λ− I∥, ∥x ◦ λ− y∥}, ∀x, y ∈ D[0, 1],

where x ◦ y denotes the composite function of x and y, and Λ is the collection
of all continuous increasing functions λ on [0, 1] with λ(0) = 0 and
λ(1) = 1, and I ∈ Λ is the identity mapping.

Proposition
xn → x in Skorohod topology if and only if there exists λn ∈ Λ such that

∥λn − I∥ → 0, ∥xn − x ◦ λn∥ → 0, as n → ∞.



Continuity of operators-1
Continuity of M and Π

Lemma
M is continuous on D[0, 1] in Skorohod topology.

Lemma
Π is continuous at (x, ν) ∈ D[0, 1]× [0, 1]m whenever x is continuous at
each νi of i = 1, 2, . . . ,m in Skorohod topology.

See proofs in
[SYZ13] Qingshuo Song, George Yin, Qing Zhang, Weak Convergence
Methods for Approximation of Path-dependent Functionals, SIAM J.
Control Optim., 51(5): 4189-4210, 2013.



Continuity of operators-2
The continuity of T

Let us partition the space C[0, 1] as follows:

C1 = {x ∈ C[0, 1] : T (x) < 1, x(T (x)) = β,
inf{t > T (x) : x(t) > β} = T (x)},

C2 = {x ∈ C[0, 1] : T (x) < 1, x(T (x)) = α,
inf{t > T (x) : x(t) < α} = T (x)},

and

C3 = {x ∈ C[0, 1] : T (x) = 1}, and C4 = C[0, 1] \ (∪3
i=1Ci).

Lemma
The T is continuous at each x ∈ ∪3

i=1Ci.

Proof.
See [SYZ13].



Continuity of operators-3
Illustration of the continuity of T

C[0, 1] = ∪4
i=1Ci and Ci ∩ Cj = ∅ for i ̸= j. As for the illustration, one can

see that the four curves depicted in the Figure belong to four different
subsets separately, that is, Li ∈ Ci for i = 1, 2, 3, 4.
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Figure: Illustration for the partition of C[0, 1]
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Convergence results

We make the following assumptions.

(A1) Xh ⇒ X.

(A2) P{X ∈ ∪3
i=1Ci} = 1.

(A3) g is an almost surely continuous function.

(A4) One of the following conditions holds:

1. g is a bounded function;
2. g is a function with linear growth and {Xh(t) : h > 0, t ∈ [0, 1]} is

uniformly integrable.

Theorem (see [SYZ13])
Assume (A1)-(A4). Then, limh→0 Vh = V.

Proof.
Use continuous mapping theorem.



Discussion on (A2)
Reason behind ex. (TP)

(A2) P{X ∈ ∪3
i=1Ci} = 1.

In fact, (A2) is a requirement on the regularity of the boundary ∂Γ with
respect to the process X, and it is referred to as τ ′-regularity for simplicity.
Note that since X in ex.(TP) violates τ ′-regularity (A2), by observing

inf{t > τ : X(t) /∈ Γ} ∧ 1 = 1 > 1/2 = τ,

it yields the convergence to the wrong value. In other words, (A2) is crucial
for the investigation of the convergence.



Discussion on (A3)
Allows discontinuous payoff functions

(A3) g is an almost surely continuous function.

is the requirement on the function g.
First of all, it allows discontinuity of g, but it cannot be too bad in the sense
of (A3). However, it is already enough to include barrier option pricing.
Recall its payoff

g(x) = e−r(x(1)− 1
2 )

+I[0,1)(T (x)) = e−r(x(1)− 1
2 )

+I[0,1)(T ′(x))

where T ′(x) = inf{t > 0 : x(t) /∈ Γ}. In fact, g is discontinuous only at
{T ′(x) = 1}.
Suppose the stock price X follows a geometric Brownian motion, then the
probability measure P satisfies P{T ′(X) = 1} = P{M(X)(1) = 1} = 0,
and g is continuous almost surely.



Discussion on (A4)
Explanation on ex. (3B)

[Fact] Let Yh ⇒ Y . Then E[Yh] → E[Y] if {Yh} is uniformly integrable (UI).
[Q.] Can we replace if with if and only if?
Note that (A1-A3) ensures F(Xh) ⇒ F(X). To have E[F(Xh)] → E[F(X)],
we need the growth condition of g, i.e.

(A4) One of the following conditions holds:

1. g is a bounded function;
2. g is a function with linear growth and {Xh(t) : h > 0, t ∈ [0, 1]} is

uniformly integrable.

to further ensure UI of {F(Xh)}.
In particular, if g is of linearly growth function of the underlying price like in
the call type option, then one must verify the uniform integrability. We have
already seen that, in Example (3B) of Bessel process, the approximation
converges to a wrong value by violating uniform integrability.
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Stochastic differential equation
Unique solvability

Let Y = {Y(t) : t ∈ [0, 1]} be the unique solution of

dY(t) = b(Y(t), t)dt + σ(Y(t), t)dW(t); Y(0) = y,

where b : Rd+1 7→ Rd, W is a standard Rd1 BM, and σ : Rd+1 7→ Rd×d1 .
Unique solvability holds under the standing assumption

(A5) b and σ are Lipschitz in y and Hölder-1/2 continuous in t.



MC approximation of SDE

Let th
0 = 0 ≤ th

1 ≤ · · · ≤ th
N = 1 be a sequence of increasing predictable (i.e.,

th
i is Fh

i−1-measurable.) random times with respect to a discrete filtration
{Fh

i : i = 0, 1, . . .}, and {Yh
i : i = 1, 2, . . .N} be a sequence of

{Fh
i }-adapted Markov chain in Rd with transition probability

P{Yh
i+1 ∈ dy|Yh

i = x, th
i = t} = ph(t, x, y).

We use Yh = {Yh(t) : t ∈ [0, 1]} to denote piecewise constant interpolation

Yh(t) =
n−1∑
i=0

Yh
i I{th

i ≤t<th
i+1}. (1)



Convergence of MC approximation

The interpolation of the Markov chain process Yh is said to be locally
consistent, if

(LC1) Eh
n[∆Yh

n ] = Eh
n[∆th

n] · (b(Yh
n , th

n) + O(h)),

(LC2) cov(∆Yh
n |Fh

n ) = Eh
n[∆th

n] · ((σσ′)(Yh
n , th

n) + O(h)), where O(h) is either
a d-dimensional vector or d × d dimensional matrix that is
Fh

n -measurable with each element being O(h).

To proceed, we also require quasi-uniform step size.

(QU) The step size {∆th
i } satisfies h

K ≤ infi ∆th
i ≤ supn ∆th

n ≤ Kh.

Theorem (see [SYZ13])
Locally consistent MC approximation with quasi-uniform step size is weakly
convergent to solution of SDE, i.e. Yh ⇒ Y as h → 0.



Convergence of MC approximation

The above construction of Markov chain approximation is based on the local
consistency, which is slightly different from the local consistency given by
[Theorem 10.4.1] of the book
[KD01] H.J. Kushner and P. Dupuis. Numerical Methods for Stochastic
Control Problems in Continuous Time, Springer, 2001.
As a result, the convergence result of the Markov chain approximation is
generalized in the following sense. σ and b may be unbounded but have
linear growth. Therefore, the geometric Brownian motion is covered by
weak convergence result of Theorem 3.1 as an important application. In fact,
locally consistent MC approximation is flexible for its various choices, since
it covers Euler approximation, Binomial approximation, and so on.



Can We Expect the Strong Convergence for MC?
Classical result

We consider a special case of Euler approximation.
Suppose Ŷh is a continuous interpolation of Euler approximation

Ŷh(t) = Ŷh
nh+b(nh, Ŷh

nh)(t−nh)+σ(nh, Ŷh
nh)(W(t)−W(nh)), for t ∈ [nh, nh+h).

Then a classical result on a strong convergence shows that:

E
[

sup
0≤t≤T

|Y(t)− Ŷh(t)|
]
≤ Kh1/2.

Q. Can We Expect the Strong Convergence in the similar fashion for locally
consistent MC?



Can We Expect the Strong Convergence for MC?
Counter example: When b = 0 and σ = 1.

Locally consistent MC allows constant interpolation of Markov chain.
However, the above inequality on strong convergence fails for the constant
interpolation.
Consider EM of Wt on [0, 1] by equal step size h = 1/N. Then, center

E
[

sup
0≤t≤1

|W(t)−W([Nt]/N)|
]
= E

[
sup

1≤n≤N
sup

(n−1)/N≤t<n/N
|W(t)−W(

n − 1
N

)|
]
.

Note that, W̄(t) =
√

NW(t/N) is a standard Brownian motion w.r.t. a
time-scaled filtration. So one can reduce the above equality as

E
[

sup0≤t≤1 |W(t)− W([Nt]/N)|
]
= 1√

N
E
[

sup1≤n≤N Λn

]
,

where {Λn} are i.i.d. random variables defined by

Λn = sup
n−1≤t<n

|W̄(t)− W̄(n − 1)|.

Since, Λn’s are unbounded iid random variables, E
[

sup1≤n≤N Λn

]
goes to

infinity with as N → ∞. This shows that

E
[

sup
0≤t≤1

|W(t)− W([Nt]/N)|
]
> O(N−1/2).

In conclusion, one cannot expect more than weak convergence merely under
local consistency.
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Summary

This work has been devoted to analyzing approximation to
path-dependent functionals. Using the methods of weak convergence,
we have provided a unified approach for proving the convergence of
numerical approximation of path-dependent functionals for a wide
range of applications.
As byproduct, approximation of value in the presence of bubble can
be answered, see
[SY13] Qingshuo Song, Pengfei Yang, Approximating Functional of
Local Martingale Under the Lack of Uniqueness of Black-Scholes
PDE, Quantitative Finance, (2013)
Further development can be done in multi-dimensional problem.
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