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Donsker Theorem (Billingsley New York: Chapman Hall

1968): Consider a sequence of i.i.d random variables

{�(n)i , i = 1, 2, ...} with E�
(n)
i = 0, E(�

(n)
i )2 = 1. The Donsker

Theorem says that the sequence of processes

W
(n)
t =

1√
n

[nt]
∑

i=1

�
(n)
i , t ∈ [0, T ], n = 1, 2, ...

converges weakly, in the Skorohod topology, to a standard

Brownian motion
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BH
t =

∫ t

0
KH(t, s)dWs, t ≥ 0

where

KH(t, s) = cHs
1

2
−H

∫ t

s
(u−s)H−3/2uH−1/2 du for t > s,H >

1

2
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0
KH(t, s)dWs, t ≥ 0

where

KH(t, s) = cHs
1

2
−H

∫ t

s
(u−s)H−3/2uH−1/2 du for t > s,H >

1

2

F.Biagini, Y. Hu, B. Øksendal and T. Zhang, Stochastic

calculus for fBm and applications, Probability and its

application, Springer, Berlin (2008).
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Define

Kn
H(t, s) = n

∫ s

s− 1

n

KH(
[nt]

n
, u)du, n ≥ 1,

and let

Bn
t =

∫ t

0
Kn

H(t, s)dW (n)
s =

[nt]
∑

i=1

n

∫ i
n

i−1

n

KH(
[nt]

n
, s)ds

�
(n)
i√
n
, n ≥ 1.

Sottinen ( Finance and Stochastics 2001) proved that the

perturbed random walk Bn converges weakly to the fractional

Brownian motion.
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Fractional Brownian sheet

B�,�(t, s) =

∫ t

0

∫ s

0
K�(t, v)K�(s, u)B(dv, du),

where (t, s) ∈ [0, T ]× [0, S], B is a Brownian sheet.
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Wang, Yan and Yu (Electron. Commun. Probab. 2013 )

extend this result (Sottinen Finance and Stochastics 2001) to

fractional Brownian sheet.
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Torres and Tudor (Stoch. Anal. Appl 2009) proved that the

family of stochastic processes

Zn
t =

[nt]
∑

i,j=1,i ∕=j

n2

∫ i
n

i−1

n

∫
j

n

j−1

n

QH(
[nt]

n
, u, v)dvdu

�
(n)
i√
n

�
(n)
j√
n
, t ∈ [0, T ]

converges weakly, in the Skorohod topology, to the Rosenblatt

process.

G. Shen NSFC (11171062, 11271020)
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Hermite Processes

Hermite process is the limits of the Non-Central Limit Theorem

studied in Dobrushin and Major (1979), Taqqu (1979). Let us

briefly recall the general context.
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Hermite Processes

{�n, n ≥ 0} : a stationary Gaussian sequence with mean zero

and variance 1 such that correlation function

r(n) := E(�0�n) = n
2H−2

k L(n) (1.1)

with k ≥ 1 integer and H ∈ (12 , 1), where L is a slowly

varying function at infinity;
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Hermite Processes

{�n, n ≥ 0} : a stationary Gaussian sequence with mean zero

and variance 1 such that correlation function

r(n) := E(�0�n) = n
2H−2

k L(n) (1.1)

with k ≥ 1 integer and H ∈ (12 , 1), where L is a slowly

varying function at infinity;

Hm(x) : the Hermite polynomial of degree m;

g : a function satisfying E(g(�0)) = 0 and E(g(�0)
2) < ∞;

k : Hermite rank of g, that is, if

g(x) =
∑

j≥0

cjHj(x), cj = E(g(�0Hj(�0))),

then k = min{j ; cj ∕= 0} ≥ 1.
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Hermite Processes

Then, the Non Central Limit Theorem (see Taqqu (1975) says

that the sequence of stochastic processes, as n → ∞

1

nH

[nt]
∑

j=1

g(�j)

converges to the Hermite process Zk
H(t) in the sense of finite

dimensional distributions.
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Hermite Processes

Hermite process of order k with index H

Zk
H(t) = cH,k

∫

ℝk

∫ t

0
(

k
∏

j=1

(s−yj)
−( 1

2
+ 1−H

k
)1{s>yj})dsdW (y1) ⋅ ⋅ ⋅ dW (yk),
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Hermite process of order k with index H

Zk
H(t) = cH,k

∫

ℝk

∫ t

0
(

k
∏

j=1

(s−yj)
−( 1

2
+ 1−H

k
)1{s>yj})dsdW (y1) ⋅ ⋅ ⋅ dW (yk),

{W (y), y ∈ ℝ} : Brownian motion.

k = 1, Hemite process : fractional Brownian motion;

k = 2, Hemite process : Rosenblatt process.
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Rosenblatt Processes

Rosenblatt process on time interval [0, T ](H > 1
2 )

ZH(t) = dH

∫ t

0

∫ t

0

[

∫ t

y1∨y2

∂KH′

∂u
(u, y1)

∂KH′

∂u
(u, y2)du

]

dB(y1)dB(y2),

(1.2)

where KH(t, s) is given by

KH(t, s) = cHs
1

2
−H

∫ t

s
(u− s)H−3/2uH−1/2 du for t > s, (1.3)
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Rosenblatt Processes

with cH =

√

H(2H−1)

Γ(2−2H,H− 1

2
)
, H ′ = H+1

2 and d(H) = 1
H+1

√

H
2(2H−1)

For simplification, we denote

QH(t, y1, y2) = dH

∫ t

y1∨y2

∂KH′

∂u
(u, y1)

∂KH′

∂u
(u, y2)du.
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(Zk
H(t+ ℎ)− Zk

H(t), t ∈ [0, T ]) is independent of ℎ > 0;

(iv) the covariance function is

E
[

Zk
H(t)Zk

H(s)
]

=
1

2

[

t2H + s2H − ∣t− s∣2H
]

;
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Hermite Processes

The Hermite processes admit the following properties:

(i) long-range dependence;

(ii) H-selfsimilar in the sense that for any c > 0, (Zk
H(ct)) and

(cHZk
H(t)) have the same distribution;

(iii) stationary increments, that is, the joint distribution of

(Zk
H(t+ ℎ)− Zk

H(t), t ∈ [0, T ]) is independent of ℎ > 0;

(iv) the covariance function is

E
[

Zk
H(t)Zk

H(s)
]

=
1

2

[

t2H + s2H − ∣t− s∣2H
]

;

(v) Hölder continuous of order  < H.

Hermite processes(k ≥ 2): Ø´Gaussian, Ø´MarkovL§, Ø´��"
G. Shen NSFC (11171062, 11271020)
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rescaled solution”�4�©ÙkaquRosenblatt©Ù�(�(Leonenko and Woyczynski J. Stat. Phys. 2001);

Rosenblatt©ÙǑ´�b�u���ëêbootstrap�{�'��Oþ�ìC©Ù( Hardle Stat. Infer. Stoch. Process.

2001)½�§��5ëê�Oþ�ìC©Ù(Kettani and

Gubner Proc. 28th IEEE LCN03 2003)"
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Albin(Ann. Probab. 1998) studied extremal properties of the

Rosenblatt distribution;

Abry and Pipiras (Signal Process. 2006) gave the

wavelet-type expansion of the Rosenblatt process;

Tudor(ESAIM Probab. Statist. 2008) Analysis of the

Rosenblatt process;
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Rosenblatt Processes

Shieh and Xiao ( Bernoulli, 2010) studied the Hausdorff and

packing dimensions of the image sets of the Rosenblatt sheet;

Maejima and Tudor (Statist. Probab. Lett. 2013), On the

distribution of the Rosenblatt process;

Garzón, Torres and Tudor ( J. Math. Anal. Appl. 2012), A

strong convergence to the Rosenblatt process

.
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random walks

Recall that a Rosenblatt sheet with parameters � > 1
2 , � > 1

2

admits an integral representation of the form(Tudor (2014)), for

s, t ∈ [0, T ]

Z�,�(t, s)

=

∫ t

0

∫ s

0

∫ t

0

∫ s

0
Q�(t, y1, y2)Q�(s, u1, u2)B(dy1, du1)B(dy2, du2)

= d�d�

∫ t

0

∫ s

0

∫ t

0

∫ s

0

∫ t

y1∨y2

∂K�′

∂m
(m, y1)

∂K�′

∂m
(m, y2)dm

⋅
∫ s

u1∨u2

∂K�′

∂n
(n, u1)

∂K�′

∂n
(n, u2)dnB(dy1, du1)B(dy2, du2),

G. Shen NSFC (11171062, 11271020)
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Martingale difference

random walks

Let {�(n)i,j , i, j = 1, 2, ...} be an independent family of

identically distribution and centered random variables with

E(�
(n)
i,j ) = 1.

For n ≥ 1, (t, s) ∈ [0, T ]× [0, S], define

Bn(t, s) =
1

n

[nt]
∑

i=1

[ns]
∑

j=1

�
(n)
i,j ,

G. Shen NSFC (11171062, 11271020)
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Martingale difference

random walks

Let

Zn(t, s)

=

∫ t

0

∫ s

0

∫ t

0

∫ s

0
Q(n)

� (t, y1, y2)

Q
(n)
� (s, u1, u2)Bn(dy1, du1)Bn(dy2, du2)

= n2

[nt]
∑

i=1

[ns]
∑

j=1

[nt]
∑

k=1,k ∕=i

[ns]
∑

l=1,l ∕=j

�
(n)
i,j �

(n)
k,l

∫ i
n

i−1

n

∫
j

n

j−1

n

∫ k
n

k−1

n

∫ l
n

l−1

n

Q�(
[nt]

n
, y1, y2)Q�(

[ns]

n
, u1, u2)dy1du1dy2du2,

(2.1)

G. Shen NSFC (11171062, 11271020)
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random walks

where

Q
(n)
H (t, u, v) = n2

∫ u
n

u−1

n

∫ v
n

v−1

n

QH(
[nt]

n
, r, p)drdp, n = 1, 2, ....

G. Shen NSFC (11171062, 11271020)
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Martingale difference

main results

Theorem (Shen and Zhu (2014))

Let � > 1
2 , � > 1

2 . Then the family of process Zn(t, s) converges

weakly in the Skorohod space D, as n tends to infinity, to the

Rosenblatt sheet Z�,�(t, s) in the plane.

G. Shen NSFC (11171062, 11271020)
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Martingale difference

Poisson process

Recall that an ℱs,t Poisson process is an adapted, cadlag process

N = {N(s, t), (s, t) ∈ ℝ
2
+}, such that,

N(s, 0) = N(0, t) = 0 a.s., for all (s, t) ≤ (s′, t′) the increment

△s,tN(s′, t′) is independent of ℱ∞,t ∨ ℱs,∞ and has a Poisson law

of parameter (s′ − s)(t′ − t). Here, we denote ℱ∞,t := ∨s>0ℱs,t

and ℱs,∞ := ∨t>0ℱs,t.

G. Shen NSFC (11171062, 11271020)
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Poisson process

Stroock (1982) studied the following relationship between the

standard one-parament Poisson process and the standard

Brownian motion: the family of process

y"(t) =
1

"

∫ t

0
(−1)N(s/")ds,

where {N(t), t ≥ 0} is a standard Poisson process, converges

in law in the space of continuous functions C([0, 1]), as "
tends to zero, to the standard Brownian motion {B(t), t ≥ 0}.

G. Shen NSFC (11171062, 11271020)
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Poisson process

Bardina and Jolis (Bernoulli 2000) proved that the family of

process

y"(s, t) =

∫ t

0

∫ s

0

1

"2
√
xy(−1)N(x/",y/")dxdy, " > 0,

where {N(x, y), (x, y) ∈ ℝ
2
+} is a stand poisson process in the

plane, converges in law in the space C([0, 1]2) , as " tends to

zero, to the ordinary Brownian sheet.

G. Shen NSFC (11171062, 11271020)



Motivation
Main results
Further work

random walks
Poisson process
Martingale difference

Poisson process

Bardina et al. (Statist. Probab. Lett. 2003)extend this result

to fractional Brownian sheet.

y"(s, t) =

∫ t

0

∫ s

0
KH(s, u)KH(t, v)

1

"2
√
uv(−1)N(u/",v/")dudv, " > 0

converges in law in the space C([0, 1]2) , as " tends to zero, to

the fractional Brownian sheet.

G. Shen NSFC (11171062, 11271020)
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Poisson process

We define for any " > 0,

Z�,�
" (t, s)

=

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0
Q�(t, y1, y2)Q�(s, u1, u2)

1

"4
√
y1y2u1u2

× (−1)N(y1/",u1/")+N(y2/",u2/")dy1dy2du1du2.

(2.2)

G. Shen NSFC (11171062, 11271020)
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Poisson process

To simplify, put n = 1
"2 , Nn(x, y) := N(x/", y/"), then

Nn(x, y) is a Poisson process with intensity n, denote

�n(x, y, u, v) = n2√xyuv(−1)Nn(x,u)+Nn(y,v).

Thus, (2.2) can be rewritten as

Z�,�
n (t, s)

=

∫

[0,1]4
Q�(t, y1, y2)Q�(s, u1, u2)�n(y1, y2, u1, u2)dy1dy2du1du2.

(2.3)

G. Shen NSFC (11171062, 11271020)
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main results

Theorem (Shen and Zhu (2014))

Let � > 1
2 , � > 1

2 . Then the family of process Z�,�
n (t, s) given by

(2.3) converges weakly in the space C([0, 1]2), as n tends to

infinity, to the Rosenblatt sheet Z�,�(t, s) in the plane.
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Lemma (Shen and Zhu (2014))

For any f, g ∈ L2([0, 1] × [0, 1]), There exits a constant C > 0,

such that

E

[

∫

[0,1]4
f(x, y)g(u, v)�n(x, y, u, v)dxdydudv

]2

≤ C

∫

[0,1]4
f2(x, y)g2(u, v)dxdydudv.
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Martingale difference

Let (Ω,ℱ , P ) be a complete probability space and let

{ℱs,t; (s, t) ∈ [0, S] × [0, T ]} be a family of sub-�-fields of ℱ such

that:

(i) ℱs,t ⊆ ℱs′,t′ for any s ≤ s′, t ≤ t′;

(ii)ℱ0,0 contains all null sets of ℱ ;

(iii) for each z ∈ [0, S]× [0, T ],ℱz =
∩

z<z′ ℱz′ , where

z = (s, t) < z′ = (s′, t′) denotes the partial order on [0, S] × [0, T ],

meaning that s < s′, t < t′.

G. Shen NSFC (11171062, 11271020)



Motivation
Main results
Further work

random walks
Poisson process
Martingale difference

martingale differences

Denote G(n)
i,j := ℱ (n)

i,n

⋁

ℱ (n)
n,j , where ℱ (n)

i,n ,ℱ (n)
n,j denote the �-fields

generated by �
(n)
i,n and �

(n)
n,j respectively for i, j = 1, 2, .., n and

n ≥ 1. Let {�(n)}n≥1 := {�(n)i,j ,G
(n)
i,j }n≥1, i, j = 1, 2, ..., n be a

sequence such that

E[�
(n)
i+1,j+1∣G

(n)
i,j ] = 0

for all n ≥ 1. Then we will call it a martingale differences sequence.
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Poisson process

Nieminen (Statist. Probab. Lett. 2004) Fractional Brownian

motion and martingale-differences.
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Poisson process

Nieminen (Statist. Probab. Lett. 2004) Fractional Brownian

motion and martingale-differences.

Wang, Yan and Yu (Statist. Probab. Lett. 2014) Weak

approximation of the fractional Brownian sheet using

martingale differences

G. Shen NSFC (11171062, 11271020)
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martingale differences

Morkvenas (Liet. Mat. Rink. 1984) if the martingale differences

sequence �(n) satisfies the following condition

[nt]
∑

i=1

[ns]
∑

j=1

(�
(n)
i,j )

2 → ts

in the sense of L1, then

Bn(t, s) =

[nt]
∑

i=1

[ns]
∑

j=1

�
(n)
i,j ,

converges weakly to the Brownian sheet B(t, s) in D as n tends to

infinity.
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martingale differences

Define

Zn(t, s)

=

∫ t

0

∫ s

0

∫ t

0

∫ s

0
Q(n)

� (t, y1, y2)Q
(n)
� (s, u1, u2)Bn(dy1, du1)Bn(dy2, du2)

= n4

[nt]
∑

i=1

[ns]
∑

j=1

[nt]
∑

k=1,k ∕=i

[ns]
∑

l=1,l ∕=j

�
(n)
i,j �

(n)
k,l

∫ i
n

i−1

n

∫
j

n

j−1

n

∫ k
n

k−1

n

∫ l
n

l−1

n

Q�(
[nt]

n
, y1, y2)

⋅Q�(
[ns]

n
, u1, u2)dy1du1dy2du2,

(2.4)

Q
(n)
H (t, u, v) = n2

∫ u
n

u−1

n

∫ v
n

v−1

n

QH(
[nt]

n
, r, p)drdp, n = 1, 2, ....
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Theorem (Shen and Yan (2014))

Let � > 1
2 , � > 1

2 , and {�(n)i,j , i, j = 1, 2, ..., n} be a square

integrable martingale differences sequence such that for all

1 ≤ i, j ≤ n

lim
n→∞

n�
(n)
i,j = 1 a.s. (2.5)

and

max
1≤i,j≤n

∣�(n)i,j ∣ ≤
C

n
a.s. (2.6)

for some C ≥ 1. Then, {Zn} converges weakly to the Rosenblatt

sheet Z�,� in the Skorohod space D as n tends to infinity.
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Lemma (Shen and Yan (2014))

Let Zn(t, s) be the family of processes defined by (2.4). Then for

any (t, s) < (t′, s′), there exists a constant C such that

sup
n

E[(△t,sZn(t
′, s′))2] ≤ C(t′ − t)2�(s′ − s)2� .
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Lemma (Shen and Yan (2014))

Let 1/2 < �, � < 1, (tk, sk), (tl, sl) ∈ [0, T ]× [0, S], and

{�(n)i,j , i, j = 1, 2, ..., n} be a martingale differences sequence satisify

(2.5) and (2.6). Then we have

n8

[nT ]
∑

i=1

[nS]
∑

j=1

[nT ]
∑

k=1,k ∕=i

[nS]
∑

l=1,l ∕=j

∫ i
n

i−1

n

∫
j

n

j−1

n

∫ k
n

k−1

n

∫ l
n

l−1

n

Q�(
[ntk]

n
, y1, y2)

Q�(
[nsk]

n
, u1, u2)du2dy2du1dy1 ×

∫ i
n

i−1

n

∫
j

n

j−1

n

∫ k
n

k−1

n

∫ l
n

l−1

n

Q�(
[ntl]

n
, y1, y2)Q�(

[nsl]

n
, u1, u2)du2dy2du1dy1(�

(n)
i,j �

(n)
k,l )

2
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converges to

∫ T

0

∫ T

0
Q�(tk, y1, y2)Q�(tl, y1, y2)dy1dy2

∫ S

0

∫ S

0
Q�(sk, u1, u2)Q�(tl, u1, u2)du1du2

as n tends to infinity.
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□ Approximation of multidimensional parameter Rosenblatt

sheet in Skorohord space. Preprint.
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Thank You!
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