Stein's Method: Identifying the Limiting Distribution

Qi-Man Shao

The Chinese University of Hong Kong

qmshao@cuhk.edu.hk

The research is partially supported by Hong Kong RGC GRF 603710 and 403513

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할

 $2Q$

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ 『코 │ ◆ 9 Q Q ↓

- Introduction
- Stein's method: normal approximation
- Stein's method: beyond the normal approximation
- Identifying the limiting distribution: a general result

 $2Q$

- **•** Application to the Curie-Weiss model
- Application to the random determinant?

Let W_n be a random variable of interest.

 \blacktriangleright Aim: Estimate $P(W_n \geq x)$.

Let *Wⁿ* be a random variable of interest.

 \blacktriangleright Aim: Estimate $P(W_n \geq x)$.

• Questions:

 \bullet What is the limiting distribution of W_n ?

つへへ

э

 \leftarrow \Box

Let *Wⁿ* be a random variable of interest.

 \blacktriangleright Aim: Estimate $P(W_n \geq x)$.

• Ouestions:

- \bullet What is the limiting distribution of W_n ?
- **2** Suppose that $W_n \stackrel{d}{\to} Y$. It is a common practice to use $P(Y \ge x)$ to approximate $P(W_n \ge x)$. What is the error of approximation?

Let *Wⁿ* be a random variable of interest.

 \blacktriangleright Aim: Estimate $P(W_n \geq x)$.

• Ouestions:

- \bullet What is the limiting distribution of W_n ?
- **2** Suppose that $W_n \stackrel{d}{\to} Y$. It is a common practice to use $P(Y \ge x)$ to approximate $P(W_n \ge x)$. What is the error of approximation?
	- Absolute error: Berry-Esseen type bound

$$
|P(W_n \ge x) - P(Y \ge x)| = \text{error}
$$

Let *Wⁿ* be a random variable of interest.

 \blacktriangleright Aim: Estimate $P(W_n > x)$.

• Ouestions:

- \bullet What is the limiting distribution of W_n ?
- **2** Suppose that $W_n \stackrel{d}{\to} Y$. It is a common practice to use $P(Y \ge x)$ to approximate $P(W_n > x)$. What is the error of approximation?
	- Absolute error: Berry-Esseen type bound

$$
|P(W_n \ge x) - P(Y \ge x)| = error
$$

• Relative error: Cramér type moderate deviation

$$
\frac{P(W_n \ge x)}{P(Y \ge x)} = 1 + \text{error}
$$

\triangleright Our focus:

 \bullet Identify the limiting distribution of W_n ;

 \leftarrow \Box \rightarrow

 \prec

D. Ξ Þ つへへ

活

² Estimate the absolute error

 \blacktriangleright How to identify the limiting distribution and estimate the error?

メロトメ部 トメミトメミト 299 €

 \blacktriangleright How to identify the limiting distribution and estimate the error? Two approaches:

Classical and standard method: Fourier transform.

It works well when *Wⁿ* is a sum of independent random variables, however, it may be very difficult to use under dependence structure.

 $2Q$

 \blacktriangleright How to identify the limiting distribution and estimate the error? Two approaches:

• Classical and standard method: Fourier transform.

It works well when *Wⁿ* is a sum of independent random variables, however, it may be very difficult to use under dependence structure.

Stein's method (1972):

A totally different approach. It works not only for independent variables but also for dependent variables. It can also provide accuracy of the approximation.

イロトメタトメミドメミド (ミ) の女々

Let $Z \sim N(0, 1)$, and let C_{bd} be the set of continuous and piecewise continuously differential functions $f : R \to R$ with $E[f'(Z)] < \infty$. Stein's method rests on the following observation.

Stein's identity: $W \sim N(0, 1)$ if and only if

$$
Ef'(W) - EWf(W) = 0
$$

つくい

for any $f \in \mathcal{C}_{bd}$.

Stein's equation:

$$
f'(w) - wf(w) = I_{\{w \le z\}} - \Phi(z).
$$

where $z \in R$ is fixed.

Solution to the equation:

$$
f_z(w) = e^{w^2/2} \int_{-\infty}^w [I_{\{x \le z\}} - \Phi(z)] e^{-x^2/2} dx
$$

\n
$$
= -e^{w^2/2} \int_{w}^{\infty} [I_{\{x \le z\}} - \Phi(z)] e^{-x^2/2} dx
$$

\n
$$
= \begin{cases} \sqrt{2\pi} e^{w^2/2} \Phi(w) [1 - \Phi(z)] & \text{if } w \le z, \\ \sqrt{2\pi} e^{w^2/2} \Phi(z) [1 - \Phi(w)] & \text{if } w \ge z. \end{cases}
$$

 $\mathbf{A} \cdot \mathbf{E} \mathbf{I} \Rightarrow \mathbf{A}$ $2Q$ 活 ≣ a \rightarrow Ξ Þ × \rightarrow

The general Stein equation:

Let *h* be a real valued measurable function with $E|h(Z)| < \infty$.

$$
f'(w) - wf(w) = h(w) - Eh(Z).
$$

The solution $f = f_h$ is given by

 $\ddot{}$

$$
f_h(w) = e^{w^2/2} \int_{-\infty}^w [h(x) - Eh(Z)] e^{-x^2/2} dx
$$

=
$$
-e^{w^2/2} \int_{w}^{\infty} [h(x) - Eh(Z)] e^{-x^2/2} dx.
$$

つへへ \leftarrow \Box \rightarrow

 \triangleright Basic properties of the Stein solution:

• If *h* is bounded, then

 $||f_h|| \leq 2||h||$, $||f'_h|| \leq 4||h||$.

• If *h* is absolutely continuous, then

 $||f_h|| \leq 2||h'||$, $||f'_h|| \leq ||h'||$, $||f''_h|| \leq 2||h'||$.

 $2Q$

\triangleright Main idea of Stein's approach:

Suppose that $W := W_n$ is the variable of interest and our goal is to estimate

$$
Eh(W)-Eh(Z).
$$

By Stein's equation, we have

$$
Eh(W) - Eh(Z) = Ef'(W) - EWf(W)
$$

A key step in Stein's approach is to write $EWf(W)$ as close as possible to $Ef'(W)$.

Suppose that there exist $\hat{K}(t)$ and *R* such that the following general Stein's identity holds

$$
EWf(W) = E \int_{-\infty}^{\infty} f'(W+t) \hat{K}(t) dt + ERf(W).
$$

Suppose that there exist $\hat{K}(t)$ and *R* such that the following general Stein's identity holds

$$
EWf(W) = E \int_{-\infty}^{\infty} f'(W+t) \hat{K}(t) dt + ERf(W).
$$

Then

$$
Eh(W) - Eh(Z) = Ef'_{h}(W) - EWf_{h}(W)
$$

=
$$
E \int_{-\infty}^{\infty} (f'_{h}(W) - f'_{h}(W+t)) \hat{K}(t) dt
$$

+
$$
Ef'_{h}(W)(1 - \hat{K}_{1}) - ERf_{h}(W),
$$

 \leftarrow \Box

伊

× \rightarrow ∍

э

≣

 290

where
$$
\hat{K}_1 = E\left(\int_{-\infty}^{\infty} \hat{K}(t) dt \mid W\right)
$$
.

Suppose that there exist $\hat{K}(t)$ and *R* such that the following general Stein's identity holds

$$
EWf(W) = E \int_{-\infty}^{\infty} f'(W+t) \hat{K}(t) dt + ERf(W).
$$

Then

$$
Eh(W) - Eh(Z) = Ef'_{h}(W) - EWf_{h}(W)
$$

=
$$
E \int_{-\infty}^{\infty} (f'_{h}(W) - f'_{h}(W+t)) \hat{K}(t) dt
$$

+
$$
Ef'_{h}(W)(1 - \hat{K}_{1}) - ERf_{h}(W),
$$

where $\hat{K}_1 = E\left(\int_{-\infty}^{\infty} \hat{K}(t)dt \mid W\right)$. In particular, if $\|h'\| < \infty$, then $|Eh(W) - Eh(Z)| \leq 2||h'||\left(E \int |t\hat{K}(t)|dt + E|1 - \hat{K}_1| + E|R|\right).$ \triangleright Stein's method has been applied to

• Normal approximation:

- **1** Stein (1972, 1986): Uniform Berry-Esseen inequality for i.i.d. random variables
- ² Chen and Shao (2001): Non-uniform Berry-Esseen inequality for independent random variables
- ³ Chen and Shao (2004): Uniform and non-uniform Berry-Esseen inequality under local dependence
- ⁴ Chen and Shao (2007): Uniform and non-uniform Berry-Esseen inequality for non-linear statistics
- ⁵ Bolthausen (1984), Bolthausen and Götze (1993), Bladi and Rinott (1989), Rinott and Rotar (1997), Goldstein and Reinert (1997), Chatterjee (2008), ...
- ⁶ Chen, L.H.Y, Goldstein, L. and Shao (2011). Normal Approximation by Stein's Method. Springer.
- ⁷ Chen, Fang, Shao (2013). Cramér type moderate deviations
- Non-normal approximation:
	- **1** Poisson approximation: Chen (1975), Arratia, Goldstein and Gordon (1989), Barbour, Holst and Janson (1992), Chatterjee, Diaconis and Meckes (2005), ...
	- ² Compound Poisson approximation: Barbour, Chen and Loh (1992), Erhardsson (2003), ...
	- Poisson process approximation: Xia (2003), ...
	- ⁴ Peccati (2009): Malliavin calculus
	- ⁵ Chatterjee (2007, 2008, 2009): Concentration inequality, strong approximation, random matrix theory, ...

∢ ロ ▶ ∢ 伊 ▶ ∢ ヨ ▶ ∢ ヨ ▶

 Ω

Let *Y* be a random variable with pdf $p(y)$. Assume that $p(-\infty) = p(\infty) = 0$ and *p* is differentiable. Observe that

$$
E\left\{\frac{(f(Y)p(Y))'}{p(Y)}\right\} = \int_{-\infty}^{\infty} (f(y)p(y))' dy = 0
$$

 Ω

In Stein's identity and equation (Stein, Diaconis, Holmes, Reinert) (2004)):

Stein's identity:

 $Ef'(Y) + Ef(Y)p'(Y)/p(Y) = 0.$

299 \leftarrow \Box 母 おす者 わす者 わく 活 ×.

In Stein's identity and equation (Stein, Diaconis, Holmes, Reinert) (2004)):

Stein's identity:

$$
Ef'(Y) + Ef(Y)p'(Y)/p(Y) = 0.
$$

• Stein's equation:

$$
f'(y) + f(y)p'(y)/p(y) = h(y) - Eh(Y)
$$
 (1)

• Stein's solution:

$$
f(y) = 1/p(y) \int_{-\infty}^{y} (h(t) - Eh(Y))p(t)dt
$$

=
$$
-1/p(y) \int_{y}^{\infty} (h(t) - Eh(Y))p(t)dt.
$$

*ロト→個→→ *目→ *目→ つへへ €

• Properties of the solution (Chatterjee and Shao (2011)):

Let *h* be a measurable function and *f^h* be the Stein's solution. Under some regular conditions on *p*

 $||f_h|| \leq C ||h||$, $||f'_h|| \leq C ||h||$,

 $||f_h|| \leq C||h'||,$ $||f'_h|| \leq C||h'||,$ $||f''_h|| \leq C||h'||$

 Ω

\blacktriangleright Identify the limiting distribution

Let $W := W_n$ be the random variable of interest. Our goal is to identify the limiting distribution of *Wⁿ* with an error of approximation.

\blacktriangleright Identify the limiting distribution

Let $W := W_n$ be the random variable of interest. Our goal is to identify the limiting distribution of *Wⁿ* with an error of approximation.

Exchangeable pair approach:

Let (W, W^*) be an exchangeable pair. Assume that

$$
E(W - W^* | W) = g(W) + r_1(W)
$$

Let

$$
G(t) = \int_0^t g(s)ds
$$
 and $p(t) = c_1 e^{-c_0 G(t)}$,

 QQ

おぼぼおぼ 重め

where $c_0 > 0$ and $c_1 = 1 / \int_{-\infty}^{\infty} e^{-c_0 G(t)} dt$.

Let *Y* have pdf $p(y)$ and $\Delta = W - W^*$.

Theorem (Chatterjee and Shao (2011))

Under some regular conditions on g

• Assume that
$$
c_0E|r_1(W)| \to 0
$$
, $c_0E|\Delta|^3 \to 0$ and

$$
c_0 E(\Delta^2 | W) \xrightarrow{p} 2. \tag{2}
$$

イロトス個人 スミトスミト

Έ

 299

Then

$$
W \stackrel{d.}{\longrightarrow} Y.
$$

Let *Y* have pdf $p(y)$ and $\Delta = W - W^*$.

Theorem (Chatterjee and Shao (2011))

Under some regular conditions on g

*Assume that c*₀ $E|r_1(W)| \rightarrow 0$, *c*₀ $E|\Delta|^3 \rightarrow 0$ *and*

$$
c_0 E(\Delta^2 | W) \xrightarrow{p} 2. \tag{2}
$$

Then

$$
W \stackrel{d.}{\longrightarrow} Y.
$$

If |∆| ≤ δ*, then*

 $|P(W > x) - P(Y > x)|$ $= O(1) \Big(E |1 - (c_0/2) E(\Delta^2 |W)| + c_0 \delta^3 + \delta + c_0 E |r_1(W)| \Big) \ .$ \blacktriangleright How was the limiting distribution identified?

Observe that for any absolutely continuous function *f*

$$
0 = E(W - W^*)(f(W^*) + f(W))
$$

\n
$$
= 2Ef(W)(W - W^*) + E(W - W^*)(f(W^*) - f(W))
$$

\n
$$
= 2Ef(W)E((W - W^*)|W) - E(W - W^*) \int_{-\Delta}^{0} f'(W + t)dt
$$

\n
$$
= 2Ef(W)g(W) + 2Ef(W)r_1(W) - E \int_{-\infty}^{\infty} f'(W + t)\hat{K}(t)dt,
$$

where

$$
\hat{K}(t) = E\{\Delta(I\{-\Delta \le t \le 0\} - I\{0 < t \le -\Delta\})|W\}.
$$

 \leftarrow \Box つへへ \prec 母 重 活 \rightarrow ∍ \rightarrow Þ. ×.

Thus, we have

$$
Ef(W)g(W) = \frac{1}{2}E \int_{-\infty}^{\infty} f'(W+t)\hat{K}(t)dt - Ef(W)r_1(W).
$$
 (3)

Recall the Stein equation

$$
Eh(W) - Eh(Y) = Ef'(W) + Ef(W)p'(W)/p(W)
$$
 (4)

 \leftarrow \Box \rightarrow

つへへ

∍

э

Comparing ([4](#page-32-0)) with ([3](#page-32-1)), one should choose

 $p'(w)/p(w) = -c_0g(w)$

 \triangleright Application to the Curie-Weiss model at the critical temperature

The Curie-Weiss model of ferromagnetic interaction is a simple statistical mechanical model of spin systems.

Let $\sigma = (\sigma_1, \sigma_2, \dots, \sigma_n) \in \{-1, 1\}^n$. The joint density function of σ is given by

$$
A_{\beta}^{-1}\exp(\beta\sum_{1\leq i
$$

where β is called the inverse of temperature. Let $\beta = 1$ and

$$
W = \frac{1}{n^{3/4}} \sum_{i=1}^{n} \sigma_i
$$

Ellis and Newman (1978):

$$
W \xrightarrow{d.} Y,
$$

where *Y* has pdf $c_1 e^{-y^4/12}$ $c_1 e^{-y^4/12}$ $c_1 e^{-y^4/12}$ $c_1 e^{-y^4/12}$ $c_1 e^{-y^4/12}$, where $c_1 = 2^{1/2}/(3^{1/4}\Gamma(1/4))$ $c_1 = 2^{1/2}/(3^{1/4}\Gamma(1/4))$ [.](#page-47-0) റെ ര Chatterjee and Shao (2011):

$$
|P(W \ge x) - P(Y \ge x)| = O(n^{-1/2})
$$

by constructing an exchangeable pair (*W*, *W*[∗]) such that

$$
E(W - W^*|W) = \frac{1}{3}n^{-3/2}W^3 + O(n^{-2}),
$$

$$
E((W - W^*)^2|W) = 2n^{-3/2} + O(n^{-2}),
$$

$$
|W^* - W| = O(n^{-3/4}).
$$

つへへ \leftarrow \Box

Let $W := W_n$ be the random variable of interest. Recall in Theorem (C-S (2011)), a key assumption is

 $c_0 E(\Delta^2 | W) \stackrel{p}{\longrightarrow} 2.$

 $2Q$

Question: Can the above assumption be removed?

\triangleright Exchangeable pair approach:

Let (W, W^*) be an exchangeable pair. Assume that

$$
E(W - W^* | W) = g(W) + r_1(W)
$$

and

$$
E((W - W^*)^2|W) = v(W) + r_2(W)
$$

Let

$$
g_{\nu}(w) = 2g(w)/\nu(w), \ \ G_{\nu}(w) = \int_0^w g_{\nu}(t)dt.
$$

Put

$$
p(y) = c_1^* \exp(-G_v(y)),
$$
 $c_1^* = \frac{1}{\int_{-\infty}^{\infty} \exp(-G_v(y))dy}$

Let *Y* be a random variable with pdf $p(y)$.

Let $\Delta = W - W^*$ and $h_v(w) = h(w)/v(w)$.

Theorem (Shao (2014))

Under some regular conditions for g and v.

(i) *For absolutely continuous function h*

 $|Eh(W) - Ev(W)Eh_v(Y)| ≤ C||h'_v||(E|∆|³ + E|r_1(W)|+E|r_2(W)|)$

(ii) If
$$
|\Delta| \le \delta
$$
, $v(w) \ge c_2$ and $|v'(w)/v(w)| \le c_3$, then
\n
$$
|P(W \le z) - E\Delta^2 E(I(Y \le z)/v(Y))|
$$
\n
$$
\le \frac{C \delta^3}{c_2} (1 + c_3 + E|g_v(W)|) + \frac{C}{c_2} (E|r_1(W)| + E|r_2(W)|)
$$

5. Application to the Curie-Weiss model at the critical temperature

Let $\sigma = (\sigma_1, \sigma_2, \dots, \sigma_n) \in \{-1, 1\}^n$. The joint density function of σ is given by

$$
A \exp(\sum_{1 \leq i < j \leq n} \sigma_i \sigma_j / n).
$$

Let

$$
W = \frac{1}{n^{3/4}} \sum_{i=1}^{n} \sigma_i
$$

Recall

$$
|P(W \le z) - P(Y \le z)| = O(n^{-1/2})
$$

where the p.d.f. of *Y* is given by $c_1 \exp(-y^4/12)$.

Observe that $|W - W^*| \le 2n^{-3/4}$,

$$
E(W - W^*|W) = n^{-3/2}(\frac{1}{3}W^3 - n^{-1/2}W) + O(n^{-5/2})W^3,
$$

$$
U(W' - W)^2|W| - 2n^{-3/2}(1 - n^{-1/2}W^2) + O(n^{-5/2})(1 + W^4)
$$

$$
E((W'-W)^2|W) = 2n^{-3/2}(1-n^{-1/2}W^2) + O(n^{-5/2})(1+W^4),
$$

*ロト→個ト→重ト→重ト→重 OQ Set

$$
g(w) = n^{-3/2} \left(\frac{1}{3}w^3 - n^{-1/2}w\right)
$$

and

$$
v(w) = 2n^{-3/2}(1 - n^{-1/2}w^2).
$$

Applying the general result, we have

Theorem

$$
|P(W \le z) - F(z)| = O(n^{-3/4}),
$$

where

$$
F(z) = c_1 \int_{-\infty}^{z} (1 + n^{-1/2} c_0(t)) e^{-t^4/12} dt,
$$

$$
c_0(w) = -\frac{6\sqrt{3} \Gamma(3/4)}{\Gamma(1/4)} + w + \frac{w^2}{2} - \frac{w^5}{15}.
$$

イロトメ 倒っ スミトスミトル È 299

6. Application to the random determinant?

Let $M_n = (X_{ij})_{n \times n}$ be a random matrix. Assume that X_{ij} are i.i.d. with $EX_{ij} = 0$ and $EX_{ij}^2 = 1$.

 $2Q$

Some well-known facts:

 $E \det(M_n^2) = n!$

6. Application to the random determinant?

Let $M_n = (X_{ij})_{n \times n}$ be a random matrix. Assume that X_{ij} are i.i.d. with $EX_{ij} = 0$ and $EX_{ij}^2 = 1$.

Some well-known facts:

- $E \det(M_n^2) = n!$
- \bullet If X_{ii} ∼ $N(0, 1)$, then

$$
\det(M_n^2) \stackrel{d.}{=} \prod_{j=1}^n \eta_j
$$

 $2Q$

where η_j are independent with χ_j^2 distribution.

 \blacktriangleright The central limit theorem

Girko (1997): Claimed that if $E|X_{ij}|^{4+\delta} < \infty$ for some $\delta > 0$, then

$$
\frac{\log \det(M_n^2) - \log(n-1)!}{\sqrt{2 \log n}} \xrightarrow{d} N(0, 1)
$$

 \leftarrow \Box

 299

活

э

\blacktriangleright The central limit theorem

Girko (1997): Claimed that if $E|X_{ij}|^{4+\delta} < \infty$ for some $\delta > 0$, then log det(*M*²

$$
\frac{\log \det(M_n^2) - \log(n-1)!}{\sqrt{2 \log n}} \xrightarrow{d} N(0, 1)
$$

- Tao and Vu (2012): "*there are several points which are not clear in these papers*" (Girko, 1979, 1997)
- Costello and Vu (2009): "*We believe that this statement is true, but could not understand Girko's proof.*"

 \bullet Nguyen and Vu (2012): If

$$
P(|X_{ij}| > t) \le c_2 \exp(-t^{c_1}), c_1 > 0, c_2 > 0
$$

for all $t > 0$, then

$$
|P\left(\frac{\log \det(M_n)^2 - \log((n-1)!)}{\sqrt{2\log n}} \le x\right) - \Phi(x)|
$$

\$\le \log^{-1/3 + o(1)} n\$

Can the general theorem be applied to prove the above conjecture?

- 量 Chen, L.H.Y, Goldstein, L. and Shao (2011). Normal Approximation by Stein's Method. Springer.
- 晶 Stein, C. (1972). A bound for the error in the normal approximation to the distribution of a sum of dependent random variables. *Proc. Sixth Berkeley Symp. Math. Stat. Prob.* 2, 583-602, Univ. California Press. Berkeley, Calif.
- Stein, C. (1986) *Approximation Computation of Expectations.* 靠 Lecture Notes 7, Inst. Math. Statist., Hayward, Calif.
- 晶 Chatterjee, S. and Shao, Q.M. (2011). Non-normal approximation by Stein's method of exchangeable pairs with application to the Curie-Weiss model. *Ann. Appl. Probab.* 21, 464-483.

イロト 4 個 ト 4 差 ト 4 差 ト - 差 - 約 9 Q Q