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1. Introduction

Let Wn be a random variable of interest.

I Aim: Estimate P(Wn ≥ x).

I Questions:

1 What is the limiting distribution of Wn?

2 Suppose that Wn
d.→ Y . It is a common practice to use P(Y ≥ x)

to approximate P(Wn ≥ x). What is the error of approximation?

Absolute error: Berry-Esseen type bound

|P(Wn ≥ x)− P(Y ≥ x)| = error

Relative error: Cramér type moderate deviation

P(Wn ≥ x)

P(Y ≥ x)
= 1 + error
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I Our focus:

1 Identify the limiting distribution of Wn;
2 Estimate the absolute error



I How to identify the limiting distribution and estimate the error?

Two approaches:

Classical and standard method: Fourier transform.

It works well when Wn is a sum of independent random
variables, however, it may be very difficult to use under
dependence structure.

Stein’s method (1972):
A totally different approach. It works not only for independent
variables but also for dependent variables. It can also provide
accuracy of the approximation.
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2. Stein’s method: normal approximation

Let Z ∼ N(0, 1), and let Cbd be the set of continuous and piecewise
continuously differential functions f : R→ R with E|f ′(Z)| <∞.
Stein’s method rests on the following observation.

Stein’s identity:
W ∼ N(0, 1) if and only if

Ef ′(W)− EWf (W) = 0

for any f ∈ Cbd.



Stein’s equation:

f ′(w)− wf (w) = I{w≤z} − Φ(z).

where z ∈ R is fixed.

Solution to the equation:

fz(w) = ew2/2
∫ w

−∞
[I{x≤z} − Φ(z)]e−x2/2dx

= −ew2/2
∫ ∞

w
[I{x≤z} − Φ(z)]e−x2/2dx

=


√

2πew2/2Φ(w)[1− Φ(z)] if w ≤ z,

√
2πew2/2Φ(z)[1− Φ(w)] if w ≥ z.



The general Stein equation:

Let h be a real valued measurable function with E|h(Z)| <∞.

f ′(w)− wf (w) = h(w)− Eh(Z).

The solution f = fh is given by

fh(w) = ew2/2
∫ w

−∞
[h(x)− Eh(Z)]e−x2/2dx

= −ew2/2
∫ ∞

w
[h(x)− Eh(Z)]e−x2/2dx.



I Basic properties of the Stein solution:

If h is bounded, then

‖fh‖ ≤ 2‖h‖, ‖f ′h‖ ≤ 4‖h‖.

If h is absolutely continuous, then

‖fh‖ ≤ 2‖h′‖, ‖f ′h‖ ≤ ‖h′‖, ‖f ′′h ‖ ≤ 2‖h′‖.



I Main idea of Stein’s approach:

Suppose that W := Wn is the variable of interest and our goal is to
estimate

Eh(W)− Eh(Z).

By Stein’s equation, we have

Eh(W)− Eh(Z) = Ef ′(W)− EWf (W)

A key step in Stein’s approach is to write EWf (W) as close as
possible to Ef ′(W).



Suppose that there exist K̂(t) and R such that the following general
Stein’s identity holds

EWf (W) = E
∫ ∞
−∞

f ′(W + t)K̂(t)dt + ERf (W).

Then

Eh(W)− Eh(Z) = Ef ′h(W)− EWfh(W)

= E
∫ ∞
−∞

(f ′h(W)− f ′h(W + t))K̂(t)dt

+Ef ′h(W)(1− K̂1)− ERfh(W),

where K̂1 = E
( ∫∞
−∞ K̂(t)dt | W

)
. In particular, if ‖h′‖ <∞, then

|Eh(W)− Eh(Z)| ≤ 2‖h′‖
(

E
∫
|tK̂(t)|dt + E|1− K̂1|+ E|R|

)
.
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I Stein’s method has been applied to

Normal approximation:

1 Stein (1972, 1986): Uniform Berry-Esseen inequality for i.i.d.
random variables

2 Chen and Shao (2001): Non-uniform Berry-Esseen inequality for
independent random variables

3 Chen and Shao (2004): Uniform and non-uniform Berry-Esseen
inequality under local dependence

4 Chen and Shao (2007): Uniform and non-uniform Berry-Esseen
inequality for non-linear statistics

5 Bolthausen (1984), Bolthausen and Götze (1993), Bladi and
Rinott (1989), Rinott and Rotar (1997), Goldstein and Reinert
(1997), Chatterjee (2008), ...

6 Chen, L.H.Y, Goldstein, L. and Shao (2011). Normal
Approximation by Stein’s Method. Springer.

7 Chen, Fang, Shao (2013). Cramér type moderate deviations



Non-normal approximation:
1 Poisson approximation: Chen (1975), Arratia, Goldstein and

Gordon (1989), Barbour, Holst and Janson (1992), Chatterjee,
Diaconis and Meckes (2005), ...

2 Compound Poisson approximation: Barbour, Chen and Loh
(1992), Erhardsson (2003), ...

3 Poisson process approximation: Xia (2003), ...
4 Peccati (2009): Malliavin calculus
5 Chatterjee (2007, 2008, 2009): Concentration inequality, strong

approximation, random matrix theory, ...



3. Stein’s Method: beyond the normal approximation

Let Y be a random variable with pdf p(y). Assume that
p(−∞) = p(∞) = 0 and p is differentiable. Observe that

E
{(f (Y)p(Y)

)′
p(Y)

}
=

∫ ∞
−∞

(f (y)p(y))′dy = 0



I Stein’s identity and equation (Stein, Diaconis, Holmes, Reinert
(2004)):

Stein’s identity:

Ef ′(Y) + Ef (Y)p′(Y)/p(Y) = 0.

Stein’s equation:

f ′(y) + f (y)p′(y)/p(y) = h(y)− Eh(Y) (1)

Stein’s solution:

f (y) = 1/p(y)

∫ y

−∞
(h(t)− Eh(Y))p(t)dt

= −1/p(y)

∫ ∞
y

(h(t)− Eh(Y))p(t)dt.
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Properties of the solution (Chatterjee and Shao (2011)):

Let h be a measurable function and fh be the Stein’s solution.
Under some regular conditions on p

‖fh‖ ≤ C‖h‖, ‖f ′h‖ ≤ C‖h‖,

‖fh‖ ≤ C‖h′‖, ‖f ′h‖ ≤ C‖h′‖, ‖f ′′h ‖ ≤ C‖h′‖



I Identify the limiting distribution

Let W := Wn be the random variable of interest. Our goal is to
identify the limiting distribution of Wn with an error of approximation.

Exchangeable pair approach:

Let (W,W∗) be an exchangeable pair. Assume that

E(W −W∗ |W) = g(W) + r1(W)

Let

G(t) =

∫ t

0
g(s)ds and p(t) = c1e−c0G(t),

where c0 > 0 and c1 = 1/
∫∞
−∞ e−c0G(t)dt.
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Let Y have pdf p(y) and ∆ = W −W∗.

Theorem (Chatterjee and Shao (2011))
Under some regular conditions on g

Assume that c0E|r1(W)| → 0, c0E|∆|3 → 0 and

c0E(∆2|W)
p.−→ 2. (2)

Then
W d.−→ Y .

If |∆| ≤ δ, then

|P(W ≥ x)− P(Y ≥ x)|

= O(1)
(

E|1− (c0/2)E(∆2|W)|+ c0δ
3 + δ + c0E|r1(W)|

)
.
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I How was the limiting distribution identified?

Observe that for any absolutely continuous function f

0 = E(W −W∗)(f (W∗) + f (W))

= 2Ef (W)(W −W∗) + E(W −W∗)(f (W∗)− f (W))

= 2E{f (W)E((W −W∗)|W)} − E(W −W∗)
∫ 0

−∆
f ′(W + t)dt

= 2Ef (W)g(W) + 2Ef (W)r1(W)− E
∫ ∞
−∞

f ′(W + t)K̂(t)dt,

where

K̂(t) = E{∆(I{−∆ ≤ t ≤ 0} − I{0 < t ≤ −∆})|W}.



Thus, we have

Ef (W)g(W) =
1
2

E
∫ ∞
−∞

f ′(W + t)K̂(t)dt − Ef (W)r1(W). (3)

Recall the Stein equation

Eh(W)− Eh(Y) = Ef ′(W) + Ef (W)p′(W)/p(W) (4)

Comparing (4) with (3), one should choose

p′(w)/p(w) = −c0g(w)



I Application to the Curie-Weiss model at the critical temperature

The Curie-Weiss model of ferromagnetic interaction is a simple
statistical mechanical model of spin systems.

Let σ = (σ1, σ2, · · · , σn) ∈ {−1, 1}n. The joint density function of σ
is given by

A−1
β exp(β

∑
1≤i<j≤n

σiσj / n),

where β is called the inverse of temperature.
Let β = 1 and

W =
1

n3/4

n∑
i=1

σi

Ellis and Newman (1978):

W d.−→ Y,

where Y has pdf c1 e−y4/12, where c1 = 21/2/(31/4Γ(1/4)).



Chatterjee and Shao (2011):

|P(W ≥ x)− P(Y ≥ x)| = O(n−1/2)

by constructing an exchangeable pair (W,W∗) such that

E(W −W∗|W) =
1
3

n−3/2W3 + O(n−2),

E((W −W∗)2|W) = 2n−3/2 + O(n−2),

|W∗ −W| = O(n−3/4).



4. Identifying the limiting distribution: a general result

Let W := Wn be the random variable of interest. Recall in Theorem
(C-S (2011)), a key assumption is

c0E(∆2|W)
p.−→ 2.

Question: Can the above assumption be removed?



I Exchangeable pair approach:

Let (W,W∗) be an exchangeable pair. Assume that

E(W −W∗ | W) = g(W) + r1(W)

and
E((W −W∗)2|W) = v(W) + r2(W)

Let
gv(w) = 2g(w)/v(w), Gv(w) =

∫ w

0
gv(t)dt.

Put

p(y) = c∗1 exp(−Gv(y)), c∗1 =
1∫∞

−∞ exp(−Gv(y))dy

Let Y be a random variable with pdf p(y).



Let ∆ = W −W∗ and hv(w) = h(w)/v(w).

Theorem (Shao (2014))
Under some regular conditions for g and v.

(i) For absolutely continuous function h

|Eh(W)−Ev(W)Ehv(Y)| ≤ C‖h′v‖(E|∆|3+E|r1(W)|+E|r2(W)|)

(ii) If |∆| ≤ δ, v(w) ≥ c2 and |v′(w)/v(w)| ≤ c3, then

|P(W ≤ z)− E∆2E(I(Y ≤ z)/v(Y))|

≤ C δ3

c2
(1 + c3 + E|gv(W)|) +

C
c2

(E|r1(W)|+ E|r2(W)|)



5. Application to the Curie-Weiss model at the critical
temperature

Let σ = (σ1, σ2, · · · , σn) ∈ {−1, 1}n. The joint density function of σ
is given by

A exp(
∑

1≤i<j≤n

σiσj / n).

Let

W =
1

n3/4

n∑
i=1

σi

Recall
|P(W ≤ z)− P(Y ≤ z)| = O(n−1/2)

where the p.d.f. of Y is given by c1 exp(−y4/12).



Observe that |W −W∗| ≤ 2n−3/4,

E(W −W∗|W) = n−3/2(
1
3

W3 − n−1/2W) + O(n−5/2)W3,

E((W ′ −W)2|W) = 2n−3/2(1− n−1/2W2) + O(n−5/2)(1 + W4),



Set
g(w) = n−3/2(

1
3

w3 − n−1/2w)

and
v(w) = 2n−3/2(1− n−1/2w2).

Applying the general result, we have

Theorem

|P(W ≤ z)− F(z)| = O(n−3/4),

where

F(z) = c1

∫ z

−∞
(1 + n−1/2c0(t))e−t4/12 dt,

c0(w) = −6
√

3 Γ(3/4)

Γ(1/4)
+ w +

w2

2
− w5

15
.



6. Application to the random determinant?

Let Mn = (Xij)n×n be a random matrix. Assume that Xij are i.i.d. with
EXij = 0 and EX2

ij = 1.

Some well-known facts:

E det(M2
n) = n!

If Xij ∼ N(0, 1), then

det(M2
n)

d.
=

n∏
j=1

ηj

where ηj are independent with χ2
j distribution.
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I The central limit theorem

Girko (1997): Claimed that if E|Xij|4+δ <∞ for some δ > 0,
then

log det(M2
n)− log(n− 1)!√
2 log n

d.→ N(0, 1)

Tao and Vu (2012): “there are several points which are not clear
in these papers" (Girko, 1979, 1997)

Costello and Vu (2009): “We believe that this statement is true,
but could not understand Girko’s proof."
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Nguyen and Vu (2012): If

P(|Xij| > t) ≤ c2 exp(−tc1), c1 > 0, c2 > 0

for all t > 0, then

|P
( log det(Mn)2 − log((n− 1)!)√

2 log n
≤ x
)
− Φ(x)|

≤ log−1/3+o(1) n

Can the general theorem be applied to prove the above conjecture?
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