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1. Introduction

Let W, be a random variable of interest.
» Aim: Estimate P(W, > x).

» Questions:
@ What is the limiting distribution of W,,?

© Suppose that W, 4 ¥. It is a common practice to use P(Y > x)
to approximate P(W, > x). What is the error of approximation?

o Absolute error: Berry-Esseen type bound
|P(W, > x) — P(Y > x)| = error
o Relative error: Cramér type moderate deviation

P(W, > x)

P(sz) =1+ error



» Our focus:

@ Identify the limiting distribution of W,;

@ Estimate the absolute error
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» How to identify the limiting distribution and estimate the error?

Two approaches:

@ Classical and standard method: Fourier transform.

It works well when W, is a sum of independent random
variables, however, it may be very difficult to use under
dependence structure.

@ Stein’s method (1972):
A totally different approach. It works not only for independent
variables but also for dependent variables. It can also provide
accuracy of the approximation.






2. Stein’s method: normal approximation

Let Z ~ N(0, 1), and let Cpq be the set of continuous and piecewise
continuously differential functions f : R — R with E|f’(Z)| < oc.
Stein’s method rests on the following observation.

o Stein’s identity:
W ~ N(0, 1) if and only if

Ef (W) — EWF(W) = 0

for any f € Cpq.



@ Stein’s equation:

Fw) = wf(w) = Iz — 2(2).

where z € R is fixed.

Solution to the equation:

Llw) = o / peny — D) 2dx

N _eWZ/z/ Txesy — O(2)]e™2dx

V2re” Pe(w)[1 — ®(z)]  ifw <z,

V27 2B (2)[1 — d(w)]  ifw >z



@ The general Stein equation:

Let & be a real valued measurable function with E|h(Z)| < oo.
f'(w) = wf(w) = h(w) — ER(Z).
The solution f = fj, is given by
2 2 w _ 2 2
falw) = & / (h(x) — ER(Z)]e—*"2dx
—0o

= —"? / Oo[h(x) — Eh(Z)]e™"dx.



» Basic properties of the Stein solution:

o If /1 is bounded, then

il < 21l [If]] < 4llAll.

o If & is absolutely continuous, then

Wl < 20870, Wl < 1AW 1671 < 21141



» Main idea of Stein’s approach:

Suppose that W := W, is the variable of interest and our goal is to
estimate
Eh(W) — Eh(Z).

By Stein’s equation, we have
Eh(W) — Eh(Z) = Ef' (W) — EWf(W)

A key step in Stein’s approach is to write EWf (W) as close as
possible to Ef'(W).



Suppose that there exist K (¢) and R such that the following general
Stein’s identity holds

EWF(W / F'(W + 0)K(1)dt + ERF(W).



Suppose that there exist K (¢) and R such that the following general
Stein’s identity holds

EWf(W / f (W +1) )dl—l—ERf(W).
Then
EnW) —EnZ) = Efy,(W)— EWfi(W)

- /(fh W+ )R (1)dr

+Ef(W)(1 — K1) — ERfi(W),

where K| = E(ffooo K(t)dt | W).



Suppose that there exist K (¢) and R such that the following general
Stein’s identity holds

EWF(W / F'(W + 0)K(1)dt + ERF(W).

Then
ER(W) — E(Z) = Efj(W) — EWi(W)
- / (W) — LW + 0)K(1)ds

+Ef(W)(1 — K1) — ERfi(W),

where K| = E( [ K(1)dt | W). In particular, if |#'|| < oo, then

[ER(W) — ER(Z)] < 2]h’|(E/\tf((t)|dt+E|1 k| +E|Ry).



» Stein’s method has been applied to

@ Normal approximation:

@ Stein (1972, 1986): Uniform Berry-Esseen inequality for i.i.d.
random variables

© Chen and Shao (2001): Non-uniform Berry-Esseen inequality for
independent random variables

@ Chen and Shao (2004): Uniform and non-uniform Berry-Esseen
inequality under local dependence

© Chen and Shao (2007): Uniform and non-uniform Berry-Esseen
inequality for non-linear statistics

© Bolthausen (1984), Bolthausen and Gotze (1993), Bladi and
Rinott (1989), Rinott and Rotar (1997), Goldstein and Reinert
(1997), Chatterjee (2008), ...

@ Chen, L.H.Y, Goldstein, L. and Shao (2011). Normal
Approximation by Stein’s Method. Springer.

@ Chen, Fang, Shao (2013). Cramér type moderate deviations



@ Non-normal approximation:

@ Poisson approximation: Chen (1975), Arratia, Goldstein and
Gordon (1989), Barbour, Holst and Janson (1992), Chatterjee,
Diaconis and Meckes (2005), ...

© Compound Poisson approximation: Barbour, Chen and Loh
(1992), Erhardsson (2003), ...

© Poisson process approximation: Xia (2003), ...

© Peccati (2009): Malliavin calculus

© Chatterjee (2007, 2008, 2009): Concentration inequality, strong
approximation, random matrix theory, ...



3. Stein’s Method: beyond the normal approximation

Let Y be a random variable with pdf p(y). Assume that
p(—00) = p(co) = 0 and p is differentiable. Observe that

E{ Y)p(Y / (FOIp0))dy =0



» Stein’s identity and equation (Stein, Diaconis, Holmes, Reinert
(2004)):

e Stein’s identity:

Ef'(Y) + Ef(Y)p'(Y)/p(Y) = 0.



» Stein’s identity and equation (Stein, Diaconis, Holmes, Reinert
(2004)):

e Stein’s identity:

Ef'(Y) + Ef(Y)p'(Y)/p(Y) = 0.

@ Stein’s equation:

F'3)+f0P' () /p(y) = h(y) — ER(Y) (1)

@ Stein’s solution:
fy) = l/p(y)/_y (h(t) — ER(Y))p(r)dt
= —1/pb) [ (hto) ~ ER(Y)p(o)
y



@ Properties of the solution (Chatterjee and Shao (2011)):

Let & be a measurable function and f;, be the Stein’s solution.
Under some regular conditions on p

Wl < CliRll, el < ClAll,

il < CIAN, el < CIFL 1671 < ClIR|
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Let W := W, be the random variable of interest. Our goal is to
identify the limiting distribution of W,, with an error of approximation.

Exchangeable pair approach:
Let (W, W*) be an exchangeable pair. Assume that
E(W — W* | W) = g(W) + ri(W)
Let ,
G(1) :/0 g(s)ds and p(r) = ;e 0%,

where co > Oandc; =1/ [* e—<0G() gy,



Let Y have pdf p(y) and A = W — W*.

Theorem (Chatterjee and Shao (2011))

Under some regular conditions on g
o Assume that coE|ri(W)| — 0, coE|A|? — 0 and
coE(A2|W) 25 2. 2)

Then
Wy,



Let Y have pdf p(y) and A = W — W*.

Theorem (Chatterjee and Shao (2011))

Under some regular conditions on g

o Assume that coE|ri(W)| — 0, coE|A|? — 0 and
coE(A2|W) 25 2. 2)

Then
Wy,

o If|A| < 0, then

P(W > x) — P(Y > x)|
— 0(1) (Eyl — (co/2)E(A2|W)| + cod® + 6 + coE|r1(W)]> .



» How was the limiting distribution identified?

Observe that for any absolutely continuous function f

0 = EW-—-WH)([F(W") +f(W))
= 2Ef(W)(W — W") + E(W — W*)(f(W") — f(W))

= 2E{f(W)E(W — W")|W)} — E(W — W*) / f'(W +1)dr

— 2Ef(W)g(W) + 2Ef(W / (W + 0K

K(t) = E{A(I{-A <t <0} —I{0 <t < —A})|W}.



Thus, we have
BW)eW) = 5E [ 7V 0R(a - BEWIn(W). 3)
Recall the Stein equation
ER(W) — ER(Y) = Ef'(W) + Ef(W)) (W) /p(W) &)
Comparing (4) with (3), one should choose

P'(w)/p(w) = —cog(w)



» Application to the Curie-Weiss model at the critical temperature

The Curie-Weiss model of ferromagnetic interaction is a simple
statistical mechanical model of spin systems.

Leto = (01,02, -+ ,0,) € {—1,1}". The joint density function of &
is given by

Aglexp(B > oioj /),

1<i<j<n

where [ is called the inverse of temperature.

Let 5 =1and
1 n
W=—5D o
i=1

o Ellis and Newman (1978):
w Ly,
where Y has pdf ¢; e"/12, where ¢; = 2!/2/(31/4T(1/4)).
I



@ Chatterjee and Shao (2011):

IP(W > x) — P(Y > x)| = O(n~'/?)

by constructing an exchangeable pair (W, W*) such that
1
E(W — W W) = gn—3/2W3 +0(n7?),

E(W = W*?W) =202 4+ 0(n?),
W* —W| = 0(n3/*%).



4. Identifying the limiting distribution: a general result

Let W := W, be the random variable of interest. Recall in Theorem
(C-S (2011)), a key assumption is

coE(A?|W) £ 2,

Question: Can the above assumption be removed?



» Exchangeable pair approach:

Let (W, W*) be an exchangeable pair. Assume that

E(W —W* | W) = g(W) +ri(W)

and
E(W =W)X |W) = v(W) + r(W)
Let "
gv(w) = 28(w)/v(w), Gy(w) = /0 (1),
Put

1
JZo exp(=Gu(y))dy

* —
1

p(y) = ciexp(=Gy(y)), ¢ =

Let Y be a random variable with pdf p(y).



Let A = W — W* and h,(w) = h(w)/v(w).

Theorem (Shao (2014))

Under some regular conditions for g and v.

(1) For absolutely continuous function h

|[ER(W)—Ev(W)Ehy(Y)| < C|I}||(EIA]+Elri(W)|+Elr(W)|)

() If|A] <6, v(w) > caand |V (w)/v(w)| < c3, then

[P(W < 2) — EA’E(I(Y < 2)/v(Y))]

3
< Cc‘j<1+C3+E|gv<w>|>+f2<E|n<W>|+E|r2<W>|>



5. Application to the Curie-Weiss model at the critical

temperature

Leto = (01,02, -+ ,0n) € {—1, 1}". The joint density function of
is given by

Aexp( Z oioj | n).

1<i<j<n

1 n
W= WZO‘;’
i=1

Let

Recall
IP(W <z2)=P(Y <z)|=0(n'/?)

where the p.d.f. of Y is given by ¢ exp(—y*/12).



Observe that |W — W*| < 2n—3/4,

E(W — W W) = n_3/2(%W3 —n7V2W) + o(n I PYWA,

E(W = W2W) =201 = n~ ' 2W2) + 0(n /%) (1 + W?),



Set .
glw) = 1173/2(§w3 - n*1/2w)

and
v(w) = 2n732(1 — n7 1202,

Applying the general result, we have

Theorem

[P(W < 2) - F(z)| = O(n™*/*),

where .
F2) = o1 / (14 n~eo(t))e "1 i,

_ 6V3TI(3/4) w2 oW
CO(W)__W (SF ot



6. Application to the random determinant?

Let M,, = (Xjj)nxn be a random matrix. Assume that Xj; are i.i.d. with
EX;j = 0and EX; = 1.

Some well-known facts:

o Edet(M?) =n!



6. Application to the random determinant?

Let M,, = (Xjj)nxn be a random matrix. Assume that Xj; are i.i.d. with
EX;j = 0and EX; = 1.

Some well-known facts:

o Edet(M?) =n!

o If X;; ~ N(0, 1), then
det M2 Hn]

where 7; are independent with 2 distribution.
T/] p XJ



» The central limit theorem

o Girko (1997): Claimed that if E|X;;|**° < oo for some § > 0,
then
logdet(M?2) —log(n — 1)! 4

T 4 N0, 1)




» The central limit theorem

o Girko (1997): Claimed that if E|X;;|**° < oo for some § > 0,
then 5
1 M) —1 - 1!
v2logn
@ Tao and Vu (2012): “there are several points which are not clear
in these papers" (Girko, 1979, 1997)

@ Costello and Vu (2009): “We believe that this statement is true,
but could not understand Girko’s proof."



@ Nguyen and Vu (2012): If
P(|Xij| > 1) < coexp(—1'), ¢1 > 0,c2 >0

for all ¢ > 0, then

lo detan—log n—1)!
(B0 sl 1) g
< log /3o,

Can the general theorem be applied to prove the above conjecture?
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