Recurrent properties of regime-switching diffusions

Jinghai Shao

Beijing Normal University

Aug. 16, 2014

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Contents

Introduction

Criteria for recurrence with switching in a finite state space

Criteria for recurrence with switching in an infinite state space

Contents

Introduction

Criteria for recurrence with switching in a finite state space

Criteria for recurrence with switching in an infinite state space

★□> ★□> ★□> ★□> ★□> □ - のへで

What is the switching diffusion?

It is a two-component process $(X(t), \Lambda(t))$, where (X(t)) describes the continuous dynamics, and $(\Lambda(t))$ describes the random switching device.

• The first component (X(t)) satisfies the following SDE

$$dX(t) = \sigma(X(t), \Lambda(t)) dB(t) + b(X(t), \Lambda(t)) dt, \quad (1)$$

with $X(0) = x \in \mathbb{R}^d$.

• the second component $(\Lambda(t))$ is a Markov chain with state space $S:=\{1,2,\ldots,N\},\ 2\leq N\leq\infty,$ such that

$$\mathbb{P}\{\Lambda(t+\delta) = l | \Lambda(t) = k\} = \begin{cases} q_{kl}\delta + o(\delta), & \text{if } k \neq l, \\ 1 + q_{kk}\delta + o(\delta), & \text{if } k = l \end{cases}$$
(2)

provided $\delta \downarrow 0$. The Q-matrix (q_{ij}) is irreducible and conservative. provided $\delta \downarrow 0$.

What is the switching diffusion?

It is a two-component process $(X(t), \Lambda(t))$, where (X(t)) describes the continuous dynamics, and $(\Lambda(t))$ describes the random switching device.

• The first component (X(t)) satisfies the following SDE

$$dX(t) = \sigma(X(t), \Lambda(t))dB(t) + b(X(t), \Lambda(t))dt, \quad (1)$$

with $X(0) = x \in \mathbb{R}^d$.

• the second component $(\Lambda(t))$ is a Markov chain with state space $S:=\{1,2,\ldots,N\},\ 2\leq N\leq\infty,$ such that

$$\mathbb{P}\{\Lambda(t\!+\!\delta) = l | \Lambda(t) = k, X_t = x\} = \begin{cases} q_{kl}(x)\delta + o(\delta), & \text{if } k \neq l, \\ 1 + q_{kk}(x)\delta + o(\delta), & \text{if } k = l \end{cases}$$

provided $\delta \downarrow 0$.

Diffusion process in a fixed environment For $k \in S$, let $(X^{(k)}(t))$ be a process satisfying the SDE:

$$dX^{(k)}(t) = \sigma(X^{(k)}(t), k)dB(t) + b(X^{(k)}(t), k)dt,$$

with $X^{(k)}(0) = x \in \mathbb{R}^d$. Then $(X^{(k)}(t))$ is called the corresponding diffusion of $(X(t), \Lambda(t))$ in the fixed environment k.

- The recurrent property of the process $(X(t), \Lambda(t))$ is obviously connected with the recurrent property of $(X^{(k)}(t))$, $k \in S$.
- Some important phenomena occur when the environment is random.

Diffusion process in a fixed environment For $k \in S$, let $(X^{(k)}(t))$ be a process satisfying the SDE:

$$dX^{(k)}(t) = \sigma(X^{(k)}(t), k)dB(t) + b(X^{(k)}(t), k)dt,$$

with $X^{(k)}(0) = x \in \mathbb{R}^d$. Then $(X^{(k)}(t))$ is called the corresponding diffusion of $(X(t), \Lambda(t))$ in the fixed environment k.

- The recurrent property of the process $(X(t), \Lambda(t))$ is obviously connected with the recurrent property of $(X^{(k)}(t))$, $k \in S$.
- Some important phenomena occur when the environment is random.

Ornstein-Uhlenbeck process in random environment

Consider the following switching diffusion

$$\mathrm{d}X_t = b_{\Lambda_t} X_t \mathrm{d}t + \sigma_{\Lambda_t} \mathrm{d}B_t, \quad X_0 = x \in \mathbb{R},$$

where (Λ_t) is a Markov chain in $S = \{1, 2, ..., N\}$, $N < \infty$, with Q-matrix (q_{ij}) . Let (π_i) be the **invariant measure** of (q_{ij}) .

- X. Guyon, S. lovleff and Jian-Feng Yao (2004):
 - When $\sum_{i \in S} \pi_i b_i < 0$, then there exists a probability measure ν such that the distribution of X_t converges weakly to ν .

Let P_t be the semigroup corresponding to the process (X_t, Λ_t) on the space $\mathbb{R} \times S$. We have

Theorem (Shao, 2014)

(i) If $\sum_{i} \pi_{i} b_{i} < 0$, then there exists a probability measure ν on $\mathbb{R} \times S$ and constants C, c > 0 such that

 $\|P_t - \nu\|_{\operatorname{var}} \le Ce^{-ct}.$

(ii) If $\sum_i \pi_i b_i > 0$, then the process (X_t, Λ_t) is transient.

Contents

Introduction

Criteria for recurrence with switching in a finite state space

Criteria for recurrence with switching in an infinite state space

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへで

Some notation

- Let (X_t, Λ_t) be defined by (1) and (2) with $N < \infty$. $(X_t^{(i)})$ is the corresponding diffusion of (X_t) in the fixed environment *i*.
- For a diffusion process in \mathbb{R}^d with generator

$$L = \frac{1}{2} \sum_{i,j=1}^{d} a_{ij}(x) \frac{\partial^2}{\partial x_i \partial x_j} + \sum_{i=1}^{d} b_i(x) \frac{\partial}{\partial x_i},$$

we write $L \sim (a(x), b(x))$ for simplicity, where $a(x) = (a_{ij}(x))$, $b(x) = (b_i(x))$.

• The generator of $(X_t^{(i)})$ is $L^{(i)} \sim (a^{(i)}(x), b^{(i)}(x))$, where $a^{(i)}(x) = \sigma(x, i)\sigma(x, i)^*$, $b^{(i)}(x) = b(x, i)$.

Some notation

Let B be a matrix or vector.

- 1. $B \ge 0$ means: all elements of B are non-negative.
- 2. B > 0 means: $B \ge 0$ and at least one element of B is positive.
- 3. $B \gg 0$ means: all elements of B are positive.

Definition (M-matrix)

A square matrix $A = (a_{ij})_{n \times n}$ is called an M-Matrix if A can be expressed in the form A = sI - B with some $B \ge 0$ and $s \ge \operatorname{Ria}(B)$, where I is the $n \times n$ identity matrix, and $\operatorname{Ria}(B)$ the spectral radius of B. When $s > \operatorname{Ria}(B)$, A is called a nonsingular M-matrix.

A is a nonsingular M-matrix \iff every real eigenvalue of A is positive \iff all the principal minors of A are positive.

Criterion via nonsingular M-matrix

A function $V \in C^2(\mathbb{R}^d)$ is said to satisfy the condition (H1) if there exist constants $r_0 > 0$, $\beta_i \in \mathbb{R}$, $i \in S$ such that

$$V(x) > 0$$
, $L^{(i)}V(x) \le \beta_i V(x)$, for $|x| > r_0$.

Theorem 1. Suppose that there exists a function $V \in C^2(\mathbb{R}^d)$ satisfying condition (H1), and the matrix $-(Q + \operatorname{diag}(\beta_1, \ldots, \beta_N))$ is a nonsingular M-matrix.

- If $\lim_{|x|\to\infty} V(x) = 0$, then (X_t, Λ_t) is transient.
- If $\lim_{|x|\to\infty} V(x) = \infty$, then (X_t, Λ_t) is positive recurrent.

Criterion via Perron-Frobenius theorem

Theorem 2. Suppose that there exists a function $V \in C^2(\mathbb{R}^d)$ satisfying condition (H1). Let (μ_i) be the invariant probability measure of (Λ_t) . It holds

$$\sum_{i=1}^{N} \mu_i \beta_i < 0.$$

Then (X_t, Λ_t) is transient if $\lim_{|x|\to\infty} V(x) = 0$, and is positive recurrent if $\lim_{|x|\to\infty} V(x) = \infty$.

Criterion via Fredholm alternative

Theorem 3. Suppose that there exist $g, h \in C^2(\mathbb{R}^d)$ such that $\exists r_0 > 0, \beta_i \in \mathbb{R}$,

$$h(x), \ g(x) > 0, \ L^{(i)}h(x) \le \beta_i g(x), \ |x| > r_0,$$
(H2)
$$\lim_{|x| \to \infty} \frac{g(x)}{h(x)} = 0, \quad \lim_{|x| \to \infty} \frac{L^{(i)}g(x)}{g(x)} = 0.$$

Let (μ_i) be the invariant probability measure of (Λ_t) . Assume

$$\sum_{i=1}^{N} \mu_i \beta_i < 0.$$

Then (X_t, Λ_t) is recurrent if $\lim_{|x|\to\infty} h(x) = \infty$, and is transient if $\lim_{|x|\to\infty} h(x) = 0.$

Application

Corollary

Let (X_t, Λ_t) be a regime-switching diffusion on $[0, \infty)$ with reflecting boundary at 0. (X_t) satisfies

$$\mathrm{d}X_t = b_{\Lambda_t} X_t^{\delta} \mathrm{d}t + \sigma_{\Lambda_t} \mathrm{d}B_t, \quad \delta \in [-1, 1),$$

where b_i , σ_i are constants for i in a finite set S. Then (X_t, Λ_t) is recurrent if and only if $\sum_{i \in S} \mu_i b_i \leq 0$.

Contents

Introduction

Criteria for recurrence with switching in a finite state space

Criteria for recurrence with switching in an infinite state space

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ 二副 - のへで

In this part, we consider the situation that S is an infinite countable space. So the process (Λ_t) itself could be transient or recurrent. Its Q-matrix is still irreducible.

We provide two methods:

 Finite partition method based on the criterion of nonsingular M-matrix.

2. Principal eigenvalue of a bilinear form.

Finite partition method

- Assume that the Q-matrix of (Λ_t) is bounded, i.e. (q_i(x))_{i∈S,x∈ℝ^d} is bounded.
- Assume there exists a function $V \in C^2(\mathbb{R}^d)$ such that $\exists r_0 > 0, \ \beta_i \in \mathbb{R}, \ i \in S$,

$$V(x) > 0, \ L^{(i)}V(x) \le \beta_i V(x), \ |x| > r_0.$$

(日) (日) (日) (日) (日) (日) (日) (日)

• Assume $(\beta_i)_{i \in S}$ is upper bounded, i.e. $M = \sup_{i \in S} \beta_i < \infty$.

Finite partition method

Let $\Gamma = \{-\infty = k_0 < k_1 < \cdots < k_{m-1} < k_m = M\}$ be a finite partition of $(-\infty, M]$. Corresponding to Γ , define a finite partition $F = \{F_1, \ldots, F_m\}$ of S by setting

$$F_i = \{j \in S; \ \beta_j \in (k_{i-1}, k_i]\}, \quad i = 1, 2, \dots, m.$$

$$\begin{split} \beta_i^F &= \sup_{j \in F_i} \beta_j, \quad q_{ii}^F = -\sum_{k \neq i} q_{ik}^F, \\ q_{ik}^F &= \left\{ \begin{array}{ll} \sup_{x \in \mathbb{R}^d} \sup_{r \in F_i} \sum_{j \in F_k} q_{rj}(x), & \text{ for } k < i, \\ \inf_{x \in \mathbb{R}^d} \inf_{r \in F_i} \sum_{j \in F_k} q_{rj}(x), & \text{ for } k > i. \end{array} \right. \end{split}$$

Then

$$\beta_j \leq \beta_i^F, \; \forall \, j \in F_i, \; \text{and} \; \beta_{i-1}^F < \beta_i^F, \; i = 2, \dots, m.$$

Finite partition method

Theorem

Using the notation defined above, if the matrix

 $-(\operatorname{diag}(\beta_1^F,\ldots,\beta_m^F)+Q^F)H_m$ is a nonsingular M-matrix, where

$$H_m = \begin{pmatrix} 1 & 1 & 1 & \cdots & 1 \\ 0 & 1 & 1 & \cdots & 1 \\ 0 & 0 & 1 & \cdots & 1 \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix}_{m \times m}$$

Then (X_t, Λ_t) is recurrent if $\lim_{|x|\to\infty} V(x) = \infty$, and is transient if $\lim_{|x|\to\infty} V(x) = 0$.

Example:

Let (Λ_t) be a birth-death process on $S = \{1, 2, ...\}$ with $b_i \equiv b > 0$ and $a_i \equiv a > 0$. Let (X_t) be a random diffusion process on $[0, \infty)$ with reflecting boundary at 0 and satisfies

$$\mathrm{d}X_t = \beta_{\Lambda_t} X_t \mathrm{d}t + \sqrt{2} \mathrm{d}B_t,$$

where $\beta_i = \kappa - i^{-1}$ for $i \ge 1$.

- If $\kappa < b + 1$, $\kappa^2 (b + a + 1)\kappa + a > 0$, then (X_t, Λ_t) is recurrent.
- If $\kappa + b 1 > 0$, $\kappa^2 + (b + a 1)\kappa a > 0$, then (X_t, Λ_t) is transient.

Remark: The process (Λ_t) and (X_t, Λ_t) may own very different recurrent property. Precisely, take b = 2, a = 1, then (Λ_t) is transient; but take $\kappa < 2 - \sqrt{3}$, then (X_t, Λ_t) is recurrent. If take b = 1, a = 2, then (Λ_t) is exponentially ergodic, but take $\kappa > \sqrt{3} - 1$, (X_t, Λ_t) is transient.

Principal eigenvalue method

Let $V \in C^2(\mathbb{R}^d)$ satisfying

$$V(x) > 0, \ L^{(i)}V(x) \le \beta_i V(x), \quad |x| > r_0, \quad \beta_{\cdot} \not\equiv 0.$$

No boundedness assumption on Q-matrix and β_i , but (q_{ij}) is state-independent.

Assume that (Λ_t) is reversible w.r.t. a probability measure (π_i) . Define

$$D(f) = \frac{1}{2} \sum_{ij}^{N} \pi_i q_{ij} (f_j - f_i)^2 - \sum_i^{N} \pi_i \beta_i f_i^2, \quad f \in L^2(\pi).$$
$$\mathscr{D}(D) = \{ f \in L^2(\pi); \ D(f) < \infty \}.$$

Define the principal eigenvalue of D(f) by

 $\lambda_0 = \inf\{D(f); f \in \mathscr{D}(D), \|f\|_{L^2(\pi)} = 1\}.$

Principal eigenvalue method

Theorem

- 1. When $N < \infty$. Assume $\lambda_0 > 0$, then (X_t, Λ_t) is positive recurrent if $\lim_{|x|\to\infty} V(x) = \infty$, and is transient if $\lim_{|x|\to\infty} V(x) = 0$.
- 2. When $N = \infty$. Assume $\lambda_0 > 0$ and $\exists g \in L^2(\pi)$ such that $D(g) = \lambda_0 \|g\|_{L^2(\pi)}^2$. Then (X_t, Λ_t) is transient if $\lim_{|x|\to\infty} V(x) = 0$. Assume further that $\liminf_{i\to\infty} g_i \neq 0$, then (X_t, Λ_t) is recurrent if $\lim_{|x|\to\infty} V(x) = \infty$.

Principal eigenvalue method

Example:

Let (X_t) satisfy the following SDE:

$$\mathrm{d}X_t = \mu_{\Lambda_t} X_t \mathrm{d}t + \mathrm{d}B_t, \quad X_0 = x_0 \in \mathbb{R},$$

where (Λ_t) is a birth-death process on $S = \{0, 1, 2, ...\}$ with $b_i = b(i+1)$, $a_i = a(i+1)$, and a > b > 0. Assume $\mu_0 = c$, $\mu_i = \gamma$ for $i \ge 1$. Then (X_t, Λ_t) is recurrent if c - b > 0 and $a - b - \gamma > 0$.

References:

- X. Mao, C. Yuan, Stochastic differential equations with Markovian switching. Imperial College Press, London. 2006.
- G. G. Yin, C. Zhu, Hybrid switching diffusions: properties and applications, Vol. 63, Stochastic Modeling and Applied Probability, Springer, New York. 2010.
- B. Cloez, M. Hairer, Exponential ergodicity for Markov processes with random switching, arXiv: 1303.6999, 2013.
- M. Pinsky, R. Pinsky, Transience recurrence and central limit theorem behavior for diffusions in random temporal environments. Ann. Probab. 21, 433-452, 1993.

References:

- J. Shao, F. Xi, Strong ergodicity of the regime-switching diffusion processes. Stoch. Proc. Appl. 123, 3903-3918, 2013.
- J. Shao, Ergodicity of regime-switching diffusions in Wasserstein distances. arXiv: 1403.0291.
- J. Shao, Criteria for transience and recurrence of regime-switching diffusion processes. arXiv: 1403.3135.
- J. Shao, F. Xi, Stability and recurrence of regime-switching diffusion processes. preprint.
- J. Shao, C. Yuan, Transportation-cost inequalities for regimeswitching processes. preprint.

Introduction Criteria for recurrence with switching in a finite state space Criteria for recurrence with switching in an infinite state s

Thank You !