Recurrent properties of regime-switching diffusions

Jinghai Shao

Beijing Normal University

Aug. 16, 2014

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Contents

[Introduction](#page-2-0)

[Criteria for recurrence with switching in a finite state space](#page-9-0)

[Criteria for recurrence with switching in an infinite state space](#page-16-0)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

Contents

[Introduction](#page-2-0)

[Criteria for recurrence with switching in a finite state space](#page-9-0)

[Criteria for recurrence with switching in an infinite state space](#page-16-0)

K ロ X K 個 X K 결 X K 결 X (결) 2990

What is the switching diffusion?

It is a two-component process $(X(t), \Lambda(t))$, where $(X(t))$ describes the continuous dynamics, and $(\Lambda(t))$ describes the random switching device.

• The first component $(X(t))$ satisfies the following SDE

$$
dX(t) = \sigma(X(t), \Lambda(t))dB(t) + b(X(t), \Lambda(t))dt, \quad (1)
$$

with $X(0) = x \in \mathbb{R}^d$.

• the second component $(\Lambda(t))$ is a Markov chain with state space $S := \{1, 2, ..., N\}, 2 \le N \le \infty$, such that

$$
\mathbb{P}\{\Lambda(t+\delta) = l | \Lambda(t) = k\} = \begin{cases} q_{kl}\delta + o(\delta), & \text{if } k \neq l, \\ 1 + q_{kk}\delta + o(\delta), & \text{if } k = l \end{cases} \tag{2}
$$

provided $\delta \downarrow 0$. The Q-matrix (q_{ij}) is irreducible and conservative. provided $\delta \downarrow 0$. **AD A 4 4 4 5 A 5 A 5 A 4 D A 4 D A 4 P A 4 5 A 4 5 A 5 A 4 A 4 A 4 A**

What is the switching diffusion?

It is a two-component process $(X(t), \Lambda(t))$, where $(X(t))$ describes the continuous dynamics, and $(\Lambda(t))$ describes the random switching device.

• The first component $(X(t))$ satisfies the following SDE

$$
dX(t) = \sigma(X(t), \Lambda(t))dB(t) + b(X(t), \Lambda(t))dt, \quad (1)
$$

with $X(0) = x \in \mathbb{R}^d$.

• the second component $(\Lambda(t))$ is a Markov chain with state space $S := \{1, 2, \ldots, N\}, 2 \leq N \leq \infty$, such that

$$
\mathbb{P}\{\Lambda(t+\delta) = l | \Lambda(t) = k, X_t = x\} = \begin{cases} q_{kl}(x)\delta + o(\delta), & \text{if } k \neq l, \\ 1 + q_{kk}(x)\delta + o(\delta), & \text{if } k = l \end{cases}
$$

provided $\delta \downarrow 0$. **AD A 4 4 4 5 A 5 A 5 A 4 D A 4 D A 4 P A 4 5 A 4 5 A 5 A 4 A 4 A 4 A**

Diffusion process in a fixed environment For $k\in S$, let $(X^{(k)}(t))$ be a process satisfying the SDE:

$$
dX^{(k)}(t) = \sigma(X^{(k)}(t), k)dB(t) + b(X^{(k)}(t), k)dt,
$$

with $X^{(k)}(0)=x\in\mathbb{R}^d.$ Then $(X^{(k)}(t))$ is called the corresponding diffusion of $(X(t), \Lambda(t))$ in the fixed environment k.

- The recurrent property of the process $(X(t), \Lambda(t))$ is obviously connected with the recurrent property of $(X^{(k)}(t)),\,k\in S.$
- Some important phenomena occur when the environment is random.

KORKAR KERKER EL VOLO

Diffusion process in a fixed environment For $k\in S$, let $(X^{(k)}(t))$ be a process satisfying the SDE:

$$
dX^{(k)}(t) = \sigma(X^{(k)}(t), k)dB(t) + b(X^{(k)}(t), k)dt,
$$

with $X^{(k)}(0)=x\in\mathbb{R}^d.$ Then $(X^{(k)}(t))$ is called the corresponding diffusion of $(X(t), \Lambda(t))$ in the fixed environment k.

- The recurrent property of the process $(X(t), \Lambda(t))$ is obviously connected with the recurrent property of $(X^{(k)}(t)),\,k\in S.$
- Some important phenomena occur when the environment is random.

KORKAR KERKER EL VOLO

Ornstein-Uhlenbeck process in random environment

Consider the following switching diffusion

$$
dX_t = b_{\Lambda_t} X_t dt + \sigma_{\Lambda_t} dB_t, \quad X_0 = x \in \mathbb{R},
$$

where (Λ_t) is a Markov chain in $S = \{1, 2, ..., N\}$, $N < \infty$, with Q-matrix (q_{ij}) . Let (π_i) be the invariant measure of (q_{ij}) .

- X. Guyon, S. Iovleff and Jian-Feng Yao (2004):
	- \bullet When $\sum_{i\in S}\pi_ib_i < 0$, then there exists a probability measure ν such that the distribution of X_t converges weakly to ν .

4 0 > 4 4 + 4 3 + 4 3 + 5 + 9 4 0 +

Let P_t be the semigroup corresponding to the process (X_t, Λ_t) on the space $\mathbb{R} \times S$. We have

Theorem (Shao, 2014)

(i) If $\sum_i \pi_i b_i < 0$, then there exists a probability measure ν on $\mathbb{R} \times S$ and constants $C, c > 0$ such that

$$
||P_t - \nu||_{\text{var}} \le Ce^{-ct}.
$$

KORK ERKER ADE YOUR

(ii) If $\sum_i \pi_i b_i > 0$, then the process (X_t, Λ_t) is transient.

Contents

[Introduction](#page-2-0)

[Criteria for recurrence with switching in a finite state space](#page-9-0)

[Criteria for recurrence with switching in an infinite state space](#page-16-0)

K ロ > K @ > K 할 > K 할 > → 할 → ⊙ Q Q*

Some notation

- Let (X_t, Λ_t) be defined by (1) and (2) with $N < \infty$. $(X_t^{(i)})$ $t^{(i)}$) is the corresponding diffusion of (X_t) in the fixed environment i.
- $\bullet\,$ For a diffusion process in \mathbb{R}^d with generator

$$
L = \frac{1}{2} \sum_{i,j=1}^{d} a_{ij}(x) \frac{\partial^2}{\partial x_i \partial x_j} + \sum_{i=1}^{d} b_i(x) \frac{\partial}{\partial x_i},
$$

we write $L \sim (a(x), b(x))$ for simplicity, where $a(x) = (a_{ij}(x))$, $b(x) = (b_i(x)).$

 $\bullet~$ The generator of $(X_t^{(i)}$ $\mathcal{H}_t^{(i)}$) is $L^{(i)} \sim (a^{(i)}(x), b^{(i)}(x))$, where $a^{(i)}(x) = 0$ $\sigma(x,i)\sigma(x,i)^*, b^{(i)}(x) = b(x,i).$

4 0 > 4 4 + 4 3 + 4 3 + 5 + 9 4 0 +

Some notation

Let B be a matrix or vector.

- 1. $B > 0$ means: all elements of B are non-negative.
- 2. $B > 0$ means: $B \ge 0$ and at least one element of B is positive.
- 3. $B \gg 0$ means: all elements of B are positive.

Definition (M-matrix)

A square matrix $A = (a_{ij})_{n \times n}$ is called an M-Matrix if A can be expressed in the form $A = sI - B$ with some $B \ge 0$ and $s > \text{Ria}(B)$, where I is the $n \times n$ identity matrix, and $\text{Ria}(B)$ the spectral radius of B. When $s > \text{Ria}(B)$, A is called a nonsingular M-matrix.

A is a nonsingular M-matrix \Longleftrightarrow every real eigenvalue of A is posi[tiv](#page-12-0)[e](#page-10-0) \iff all the principal minors of A are p[os](#page-10-0)itive[.](#page-11-0)

Criterion via nonsingular M-matrix

A function $V\in C^2(\mathbb{R}^d)$ is said to satisfy the condition $(\mathsf{H1})$ if there exist constants $r_0 > 0$, $\beta_i \in \mathbb{R}$, $i \in S$ such that

$$
V(x) > 0, \quad L^{(i)}V(x) \le \beta_i V(x), \text{ for } |x| > r_0.
$$

Theorem 1. Suppose that there exists a function $V \in C^2(\mathbb{R}^d)$ satisfying condition (H1), and the matrix $-(Q + \mathrm{diag}(\beta_1, \dots, \beta_N))$ is a nonsingular M-matrix.

- If $\lim_{|x|\to\infty}V(x)=0$, then (X_t,Λ_t) is transient.
- • If $\lim_{|x|\to\infty}V(x)=\infty$, then (X_t,Λ_t) is positive recurrent.

KORKAR KERKER EL VOLO

Criterion via Perron-Frobenius theorem

Theorem 2. Suppose that there exists a function $V\in C^2(\mathbb{R}^d)$ satisfying condition (H1). Let (μ_i) be the invariant probability measure of (Λ_t) . It holds

$$
\sum_{i=1}^{N} \mu_i \beta_i < 0.
$$

Then (X_t, Λ_t) is transient if $\lim_{|x|\to\infty} V(x)\,=\,0,$ and is positive recurrent if $\lim_{|x|\to\infty} V(x) = \infty$.

4 0 > 4 4 + 4 3 + 4 3 + 5 + 9 4 0 +

Criterion via Fredholm alternative

Theorem 3. Suppose that there exist $g,\,h \,\in\, C^2(\mathbb{R}^d)$ such that $\exists r_0 > 0, \beta_i \in \mathbb{R}$,

$$
h(x), g(x) > 0, L^{(i)}h(x) \le \beta_i g(x), |x| > r_0,
$$

\n
$$
\lim_{|x| \to \infty} \frac{g(x)}{h(x)} = 0, \quad \lim_{|x| \to \infty} \frac{L^{(i)}g(x)}{g(x)} = 0.
$$
 (H2)

Let (μ_i) be the invariant probability measure of (Λ_t) . Assume

$$
\sum_{i=1}^{N} \mu_i \beta_i < 0.
$$

Then (X_t, Λ_t) is recurrent if $\lim\limits_{|x|\to\infty}h(x)=\infty$, and is transient if $\lim_{|x| \to \infty} h(x) = 0.$

Application

Corollary

Let (X_t, Λ_t) be a regime-switching diffusion on $[0, \infty)$ with reflecting boundary at $0.$ (X_t) satisfies

$$
dX_t = b_{\Lambda_t} X_t^{\delta} dt + \sigma_{\Lambda_t} dB_t, \quad \delta \in [-1, 1),
$$

where $b_i,\,\sigma_i$ are constants for i in a finite set $S.$ Then (X_t,Λ_t) is recurrent if and only if $\sum_{i \in S} \mu_i b_i \leq 0$.

KOD KAR KED KED E YORA

Contents

[Introduction](#page-2-0)

[Criteria for recurrence with switching in a finite state space](#page-9-0)

[Criteria for recurrence with switching in an infinite state space](#page-16-0)

K ロ > K @ > K 할 > K 할 > → 할 → ⊙ Q Q*

In this part, we consider the situation that S is an infinite countable space. So the process (Λ_t) itself could be transient or recurrent. Its Q-matrix is still irreducible.

We provide two methods:

1. Finite partition method based on the criterion of nonsingular M-matrix.

KORK ERKER ADE YOUR

2. Principal eigenvalue of a bilinear form.

Finite partition method

- Assume that the Q-matrix of (Λ_t) is bounded, i.e. $(q_i(x))_{i\in S,x\in\mathbb{R}^d}$ is bounded.
- \bullet Assume there exists a function $V\in C^2(\mathbb{R}^d)$ such that $\exists\, r_0>0$ 0, $\beta_i \in \mathbb{R}, i \in S$.

$$
V(x) > 0, \ L^{(i)}V(x) \le \beta_i V(x), \quad |x| > r_0.
$$

KORK ERKER ADE YOUR

• Assume $(\beta_i)_{i \in S}$ is upper bounded, i.e. $M = \sup_{i \in S} \beta_i < \infty$.

Finite partition method

Let $\Gamma = \{-\infty = k_0 < k_1 < \cdots < k_{m-1} < k_m = M\}$ be a finite partition of $(-\infty, M]$. Corresponding to Γ, define a finite partition $F = \{F_1, \ldots, F_m\}$ of S by setting

$$
F_i = \{j \in S; \ \beta_j \in (k_{i-1}, k_i]\}, \quad i = 1, 2, \dots, m.
$$

$$
\beta_i^F = \sup_{j \in F_i} \beta_j, \quad q_{ii}^F = -\sum_{k \neq i} q_{ik}^F,
$$

$$
q_{ik}^F = \begin{cases} \sup_{x \in \mathbb{R}^d} \sup_{r \in F_i} \sum_{j \in F_k} q_{rj}(x), & \text{for } k < i, \\ \inf_{x \in \mathbb{R}^d} \inf_{r \in F_i} \sum_{j \in F_k} q_{rj}(x), & \text{for } k > i. \end{cases}
$$

Then

$$
\beta_j \leq \beta_i^F, \ \forall \ j \in F_i, \ \text{and} \ \beta_{i-1}^F < \beta_i^F, \ i = 2, \dots, m.
$$

Finite partition method

Theorem

Using the notation defined above, if the matrix

 $-(\text{diag}(\beta_1^F,\ldots,\beta_m^F)+Q^F)H_m$ is a nonsingular M-matrix, where

$$
H_m = \begin{pmatrix} 1 & 1 & 1 & \cdots & 1 \\ 0 & 1 & 1 & \cdots & 1 \\ 0 & 0 & 1 & \cdots & 1 \\ \vdots & \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix}_{m \times m}
$$

.

KORK ERKER ADE YOUR

Then (X_t, Λ_t) is recurrent if $\lim_{|x| \to \infty} V(x) = \infty$, and is transient if $\lim_{|x|\to\infty} V(x) = 0$.

Example:

Let (Λ_t) be a birth-death process on $S = \{1, 2, ...\}$ with $b_i \equiv b > 0$ and $a_i \equiv a > 0$. Let (X_t) be a random diffusion process on $[0, \infty)$ with reflecting boundary at 0 and satisfies

$$
dX_t = \beta_{\Lambda_t} X_t dt + \sqrt{2} dB_t,
$$

where $\beta_i = \kappa - i^{-1}$ for $i \geq 1$.

- If $\kappa < b+1$, $\kappa^2 (b+a+1)\kappa + a > 0$, then (X_t, Λ_t) is recurrent.
- If $\kappa + b 1 > 0$, $\kappa^2 + (b + a 1)\kappa a > 0$, then (X_t, Λ_t) is transient.

 ${\sf Remark:}$ The process (Λ_t) and (X_t,Λ_t) may own very different recurrent property. Precisely, take $b = 2$, $a = 1$, then (Λ_t) is √ transient; but take κ $<$ 2 3 , then (X_t, Λ_t) is recurrent. If take $b = 1$, $a = 2$, then (Λ_t) is exponentially ergodic, but take $\kappa > \sqrt{3} - 1$, (X_t, Λ_t) is transient. K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Principal eigenvalue method

Let $V\in C^2(\mathbb{R}^d)$ satisfying

$$
V(x) > 0, \ L^{(i)}V(x) \le \beta_i V(x), \quad |x| > r_0, \quad \beta \ne 0.
$$

No boundedness assumption on Q -matrix and β_i , but (q_{ij}) is stateindependent.

Assume that (Λ_t) is reversible w.r.t. a probability measure (π_i) . Define

$$
D(f) = \frac{1}{2} \sum_{ij}^{N} \pi_i q_{ij} (f_j - f_i)^2 - \sum_{i}^{N} \pi_i \beta_i f_i^2, \quad f \in L^2(\pi).
$$

$$
\mathscr{D}(D) = \{ f \in L^2(\pi); \ D(f) < \infty \}.
$$

Define the principal eigenvalue of $D(f)$ by

 $\lambda_0 = \inf \{D(f); \ f \in \mathscr{D}(D), \|f\|_{L^2(\pi)} = 1\}.$

Principal eigenvalue method

Theorem

- 1. When $N<\infty$. Assume $\lambda_0>0$, then (X_t,Λ_t) is positive recurrent if $\lim_{|x|\to\infty} V(x) = \infty$, and is transient if $\lim_{|x|\to\infty} V(x) =$ 0.
- 2. When $N=\infty.$ Assume $\lambda_0>0$ and $\exists\, g\,\in\,L^2(\pi)$ such that $D(g)=\lambda_0\|g\|_{L^2(\pi)}^2.$ Then (X_t,Λ_t) is transient if $\lim_{|x|\to\infty}V(x)=0$ $0.$ Assume further that $\liminf_{i\to\infty}g_i\neq 0$, then (X_t,Λ_t) is recurrent if $\lim_{|x|\to\infty} V(x) = \infty$.

KORK ERKER ADE YOUR

Principal eigenvalue method

Example:

Let (X_t) satisfy the following SDE:

$$
dX_t = \mu_{\Lambda_t} X_t dt + dB_t, \quad X_0 = x_0 \in \mathbb{R},
$$

where (Λ_t) is a birth-death process on $S = \{0, 1, 2, \ldots\}$ with $b_i =$ $b(i+1)$, $a_i = a(i+1)$, and $a > b > 0$. Assume $\mu_0 = c$, $\mu_i = \gamma$ for $i\geq 1.$ Then (X_t, Λ_t) is recurrent if $c-b>0$ and $a-b-\gamma>0.$

KOD KAR KED KED E YORA

References:

- X. Mao, C. Yuan, Stochastic differential equations with Markovian switching. Imperial College Press, London. 2006.
- G. G. Yin, C. Zhu, Hybrid switching diffusions: properties and applications, Vol. 63, Stochastic Modeling and Applied Probability, Springer, New York. 2010.
- B. Cloez, M. Hairer, Exponential ergodicity for Markov processes with random switching, arXiv: 1303.6999, 2013.
- M. Pinsky, R. Pinsky, Transience recurrence and central limit theorem behavior for diffusions in random temporal environments. Ann. Probab. 21, 433-452, 1993.

4 D > 4 P + 4 B + 4 B + B + 9 Q O

References:

- J. Shao, F. Xi, Strong ergodicity of the regime-switching diffusion processes. Stoch. Proc. Appl. 123, 3903-3918, 2013.
- J. Shao, Ergodicity of regime-switching diffusions in Wasserstein distances. arXiv: 1403.0291.
- J. Shao, Criteria for transience and recurrence of regime-switching diffusion processes. arXiv: 1403.3135.
- J. Shao, F. Xi, Stability and recurrence of regime-switching diffusion processes. preprint.
- J. Shao, C. Yuan, Transportation-cost inequalities for regimeswitching processes. preprint.

KORK STRATER STRAKER

Thank You !

K ロ X イロ X K ミ X K ミ X ミ → S V Q Q Q