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Motivation Superprocesses Assumptions Main Results

For discrete time critical branching processes {Z (n), n ≥ 0}, it is
known that P(Z (n) > 0)→ 0 as n→∞.

Kesten, Ney and Spitzer (1966) proved that if Z has finite second
moment, then

lim
n→∞

nP(Z (n) > 0) =
1
σ2 (1)

and

lim
n→∞

P
(

1
n

Z (n) >
σ2

2
x |Z (n) > 0

)
= e−x , x ≥ 0, (2)

where σ2 is the variance of the offspring distribution.

For probabilistic proofs of these results, see Lyons, Pemantle and
Peres (1995)
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For continuous time critical branching processes {Z (t), t ≥ 0},
Athreya and Ney proved in their book (Branching Processes, 1972)
the following limit theorem: Under the finite second moment condition,

lim
t→∞

P
(

1
t

Z (t) >
σ2

2
x |Z (t) > 0

)
= e−x , x ≥ 0, (3)

where σ2 is a positive constant determined by the branching rate and
the variance of the offspring distribution.
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For discrete time multi-type critical branching processes
{Z(n), n ≥ 0}, Athreya and Ney (1972) gave three limit theorems
under the finite second moment condition.
Here Z(n) = (Z1(n),Z2(n), · · ·Zd (n)) (d-type BP).

Let u and v be a positive right and left eigenvectors of the mean
matrix associated with the eigenvalue 1, respectively.
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(1) limn→∞ nP(Z(n) 6= 0|Z(0) = i) = c−1(i · u), where c is a positive
constant.

(2) If w · v > 0, then

lim
n→∞

P
(

Z(n) ·w
n

> x |Z(n) > 0
)

=

∫ ∞

x
f (y)dy , x ≥ 0, (4)

where f (y) = 1
γ1

e−y/γ1 , y ≥ 0, and γ1 is a positive constant.

(3) If w · v = 0, then

lim
n→∞

P
(

Z(n) ·w√
n

> x |Z(n) > 0
)

=

∫ ∞

x
f2(y)dy , x ∈ R, (5)

where f2(y) = 1
2γ2

e−|y |/γ2 , y ∈ R, and γ2 is a positive constant.



Motivation Superprocesses Assumptions Main Results

(1) limn→∞ nP(Z(n) 6= 0|Z(0) = i) = c−1(i · u), where c is a positive
constant.

(2) If w · v > 0, then

lim
n→∞

P
(

Z(n) ·w
n

> x |Z(n) > 0
)

=

∫ ∞

x
f (y)dy , x ≥ 0, (4)

where f (y) = 1
γ1

e−y/γ1 , y ≥ 0, and γ1 is a positive constant.

(3) If w · v = 0, then

lim
n→∞

P
(

Z(n) ·w√
n

> x |Z(n) > 0
)

=

∫ ∞

x
f2(y)dy , x ∈ R, (5)

where f2(y) = 1
2γ2

e−|y |/γ2 , y ∈ R, and γ2 is a positive constant.



Motivation Superprocesses Assumptions Main Results

(1) limn→∞ nP(Z(n) 6= 0|Z(0) = i) = c−1(i · u), where c is a positive
constant.

(2) If w · v > 0, then

lim
n→∞

P
(

Z(n) ·w
n

> x |Z(n) > 0
)

=

∫ ∞

x
f (y)dy , x ≥ 0, (4)

where f (y) = 1
γ1

e−y/γ1 , y ≥ 0, and γ1 is a positive constant.

(3) If w · v = 0, then

lim
n→∞

P
(

Z(n) ·w√
n

> x |Z(n) > 0
)

=

∫ ∞

x
f2(y)dy , x ∈ R, (5)

where f2(y) = 1
2γ2

e−|y |/γ2 , y ∈ R, and γ2 is a positive constant.



Motivation Superprocesses Assumptions Main Results

For continuous time multi-type critical branching processes, Athreya
and Ney(1974) proved two limit theorems, similar to results (4) and
(5) respectively, under the finite second moment condition.

Asmussen and Hering(Branching Processes,1983) discussed similar
questions for critical branching Markov processes {Yt , t ≥ 0}.
(i)Under some conditions, it was shown that

lim
t→∞

tPν(‖Yt‖ 6= 0) = c−1
∫

E
φ0(x)ν(dx).

uniformly in ν with ν satisfying supp(ν) = n for any integer n, where c
is a positive constant and φ0 is the first eigenfunction of the mean
semigroup of {Yt , t ≥ 0}.
(ii)They gave results similar to (4) and (5), under some condition.
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We also would like to mention that the conditions for the results of
Asmussen and Hering (1983) are not very easy to check.

The main purpose of this paper is to consider similar types of limit
theorems for critical superprocesses, under very general but easy to
check conditions.
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Superprocesses

E : a locally compact separable metric space.
m: a σ-finite Borel measure on E with full support.
∂: a separate point not contained in E . ∂ will be interpreted as the
cemetery point.

ξ = {ξt ,Πx}: a Hunt process on E .
ζ := inf{t > 0 : ξt = ∂} is the lifetime of ξ.
{Pt : t ≥ 0}: the semigroup of ξ.
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The superprocess X = {Xt : t ≥ 0} we are going to work with is
determined by three parameters:
(i) a spatial motion ξ = {ξt ,Πx} on E ,
(ii) a branching rate function β(x) on E which is a non-negative
bounded measurable function.
(iii) a branching mechanism ϕ of the form

ϕ(x , z) = −a(x)z+b(x)z2+

∫

(0,+∞)

(e−zy−1+zy)n(x , dy), x ∈ E , z > 0,

(6)
where a ∈ Bb(E), b ∈ B+

b (E) and n is a kernel from E to (0,∞)
satisfying

sup
x∈E

∫

(0,+∞)

y2n(x , dy) <∞. (7)
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MF (E) denote the space of finite measures on E .
〈f , µ〉 :=

∫
E f (x)µ(dx) and ‖µ‖ := 〈1, µ〉 = µ(E).

The superprocess X is a Markov process taking values inMF (E).
For any µ ∈ MF (E), we denote the law of X with initial configuration
µ by Pµ. Then for every f ∈ B+

b (E) and µ ∈MF (E),

− logPµ

(
e−〈f ,Xt〉

)
= 〈uf (t , ·), µ〉, (8)

where uf (t , x) is the unique positive solution to the equation

uf (t , x) + Πx

∫ t∧ζ

0
ϕ(ξs , uf (t − s, ξs))β(ξs)ds = Πx f (ξt ), (9)

Define

α(x) := β(x)a(x) and A(x) := β(x)
(

2b(x) +
∫ ∞

0
y2n(x , dy)

)
.
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For any f ∈ Bb(E) and (t , x) ∈ (0,∞)× E , define

Tt f (x) := Πx

[
e
∫ t

0 α(ξs) ds f (ξt )
]
.

First moment: For any f ∈ Bb(E),

Pµ〈f ,Xt 〉 = 〈Tt f , µ〉.

Second moment: For any f ∈ Bb(E),

Varµ〈f ,Xt 〉 = 〈Varδ
·

〈f ,Xt 〉, µ〉 =
∫

E

∫ t

0
Ts[A(Tt−s f )2](x)dsµ(dx),

(10)
where Varµ stands for the variance under Pµ.
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Assumptions on the spatial process

We assume that that there exists a family of continuous strictly
positive functions {pt(x , y) : t > 0} on E × E such that

Pt f (x) =
∫

E
p(t , x , y)f (y)m(dy).

Define

at (x) :=
∫

E
p(t , x , y)2 m(dy), ât(x) :=

∫

E
p(t , y , x)2 m(dy).

Assumption 1

(i) For any t > 0,
∫

E p(t , x , y)m(dx) ≤ 1.

(ii) For any t > 0, we have at (x), ât(x) ∈ L1(E ,m(dx))
Moreover, the functions x → at(x) and x → ât (x) are
continuous on E .
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∫

E
p(t , y , x)2 m(dy).

Assumption 1

(i) For any t > 0,
∫

E p(t , x , y)m(dx) ≤ 1.

(ii) For any t > 0, we have at (x), ât(x) ∈ L1(E ,m(dx))
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∫

E
p(t , y , x)2 m(dy).

Assumption 1

(i) For any t > 0,
∫

E p(t , x , y)m(dx) ≤ 1.

(ii) For any t > 0, we have at (x), ât(x) ∈ L1(E ,m(dx))
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One can check that there exists a family {qt(x , y) : t > 0} of
continuous strictly positive symmetric functions on E × E such that

Tt f (x) = Πx

[
e
∫ t

0 α(ξs) dsf (ξt )
]
=

∫

E
qt (x , y)f (y)m(dy).

Let {T̂t , t > 0} be the adjoint operators on L2(E ,m) of {Tt , t > 0} ,
that is, for f , g ∈ L2(E ,m),

∫

E
f (x)Ttg(x)m(dx) =

∫

E
g(x)T̂t f (x)m(dx)

and

T̂t f (x) =
∫

E
q(t , y , x)f (y)m(dy).
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It follows from (i) above that, for any t > 0, Tt is a Hilbert-Schmidt
operator and thus a compact operator. Let L and L̂ be the infinitesimal
generators of the semigroups {Tt} and {T̂t} in L2(E ,m) respectively.

Define λ0 := supℜ(σ(L)) = supℜ(σ(L̂)).
By Jentzsch’s theorem, λ0 is an eigenvalue of multiplicity 1 for both L
and L̂.

Assume that φ0 and ψ0 are the eigenfunctions of L and L̂ respectively
associated with λ0. ψ0 and φ0 can be chosen to be continuous and
strictly positive satisfying ‖φ0‖2 = 1 and 〈φ0, ψ0〉m = 1.
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More Assumptions

Assumption 2

(i) φ0 is bounded.

(ii) The semigroup {Tt , t > 0} is intrinsically
ultracontractive, that is, there exists ct > 0 such that

q(t , x , y) ≤ ctφ0(x)ψ0(y). (11)

Assumption 3 The superprocess is critical: λ0 = 0.

Assumption 4 Define qt (x) := Pδx (‖Xt‖ = 0). We also assume
that There exists t0 > 0 such that,

inf
x∈E

qt0(x) > 0. (12)
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Remarks on our assumptions

In Liu, Ren and Song (2011), quite a few examples of Hunt processes
satisfying Assumptions 1 and 3 were given.

If E consists of finitely many points, and ξ = {ξt : t ≥ 0} is a
conservative irreducible Markov process on E , then ξ satisfies the
Assumptions 1 and 3 for some finite measure m on E with full
support. So, as special cases, our results give the analogs of the
results of Athreya and Ney (1974) for critical super-Markov chains.
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Main Result

Theorem 1 For any non-zero µ ∈ MF (E),

lim
t→∞

tPµ (‖Xt‖ 6= 0) = ν−1〈φ0, µ〉. (13)
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Main Result

Define Pt,µ(·) := Pµ (· | ‖Xt‖ 6= 0) .

Assume that Yt , t > 0, and Y are random variables on (Ω,G). We
write

Yt |Pt,µ→Y in probability,

if, for any ǫ > 0,
lim

t→∞
Pt,µ(|Yt − Y | ≥ ǫ) = 0.

Suppose that Z is a random variable on a probability space (Ω̃, G̃,P),
we write

Yt |Pt,µ

d→ Z ,

if, for all a ∈ R with P(Z = a) = 0,

lim
t→∞

Pt,µ(Yt ≤ a) = P(Z ≤ a).
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Define Pt,µ(·) := Pµ (· | ‖Xt‖ 6= 0) .

Assume that Yt , t > 0, and Y are random variables on (Ω,G). We
write

Yt |Pt,µ→Y in probability,

if, for any ǫ > 0,
lim

t→∞
Pt,µ(|Yt − Y | ≥ ǫ) = 0.

Suppose that Z is a random variable on a probability space (Ω̃, G̃,P),
we write

Yt |Pt,µ

d→ Z ,

if, for all a ∈ R with P(Z = a) = 0,

lim
t→∞

Pt,µ(Yt ≤ a) = P(Z ≤ a).



Motivation Superprocesses Assumptions Main Results

Main Result

Define

ν :=
1
2
〈A(φ0)

2, ψ0〉m. (14)

It is easy to see that 0 < ν <∞. Define

Cp := {f ∈ B(E) : 〈|f |p, ψ0〉m <∞}.

Theorem 2 If f ∈ C2 then, for any non-zero µ ∈MF (E), we have

t−1〈f ,Xt 〉|Pt,µ

d→ 〈f , ψ0〉mW , (15)

where W is an exponential random variable with parameter 1/ν. In
particular, we have

t−1〈φ0,Xt 〉|Pt,µ

d→W . (16)
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Main Result

Remark Our assumptions imply that 1 ∈ C2. Thus the limit result
above implies that

t−1〈1,Xt 〉|Pt,µ

d→ 〈1, ψ0〉mW ,

which says that, conditioned on no-extinction at time t, the growth
rate of the total mass 〈1,Xt 〉 is t as t →∞.

Note that, when 〈f , ψ0〉m = 0, t−1〈f ,Xt 〉|Pt,µ → 0 in probability.
Therefore it is natural to consider central limit type theorems for
〈f ,Xt 〉.
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Main Result

Define

σ2
f =

∫ ∞

0
〈A(Tsf )2, ψ0〉m ds. (17)

Theorem 3

Suppose that f ∈ C2 and 〈f , ψ0〉m = 0, then we have, σ2
f <∞ and for

any non-zero µ ∈ MF (E),
(

t−1〈φ0,Xt 〉, t−1/2〈f ,Xt 〉
)
|Pt,µ

d→
(

W ,G(f )
√

W
)
, (18)

where G(f ) ∼ N (0, σ2
f ) is a normal random variable and W is the

random variable defined in Theorem 2. Moreover, W and G(f ) are
independent.
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As a consequence of Theorem 3, we immediately get the following
central limit theorem.

Corollary Suppose that f ∈ C2 and 〈f , ψ0〉m = 0, then we have,
σ2

f <∞ and for any non-zero µ ∈ MF (E),

(
t−1〈φ0,Xt〉,

〈f ,Xt 〉√
〈φ0,Xt 〉

)
|Pt,µ

d→ (W ,G(f )) , (19)

where G(f ) ∼ N (0, σ2
f ) is a normal random variable and W is the

random variable defined in Theorem 2. Moreover, W and G(f ) are
independent.
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Sketch of the proof of Theorem 3

We need to consider the limit of the following R
2-valued random

variable:
U1(t) :=

(
t−1〈φ0,Xt 〉, t−1/2〈f ,Xt 〉

)
.

Which is equivalent to consider the limit of

U1(s + t) =
(
(t + s)−1〈φ0,Xt+s〉, (t + s)−1/2〈f ,Xs+t 〉

)
as t →∞.

First, we consider
U2(s, t) =

(
t−1〈φ0,Xt 〉, t−1/2 (〈f ,Xs+t 〉 − 〈Tsf ,Xt 〉)

)
. We prove that

U2(s, t)|Pt,µ

d→
(

W ,
√

W G1(s)
)
, as t →∞, (20)

where G1(s) ∼ N (0, σ2
f (s)) with σ2

f (s) = 〈Varδ
·

〈f ,Xs〉, ψ0〉m and W is
the random variable defined in Theorem 3.
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The characteristic function of U2(s, t) is

Pt,µ(exp{iθ1t−1〈φ0,Xt 〉+ iθ2t−1/2 (〈f ,Xs+t 〉 − 〈Tsf ,Xt 〉)})
= Pt,µ

(
exp{iθ1t−1〈φ0,Xt 〉 − iθ2t−1/2〈Tsf ,Xt 〉+

〈logPδ
·

exp{−iθ2t−1/2〈f ,Xs〉},Xt 〉}
)

= Pt,µ
(
exp{iθ1t−1〈φ0,Xt 〉

+

∫

E

∫

D

(
eiθ2t−1/2〈f ,ωs〉 − 1− iθ2t−1/2〈f , ωs〉

)
Nx (dω)Xt (dx)}

)
,

where Pδx ←→ Nx for each x ∈ E . For the definition of Nx , see Z. Li’s
book (Measure-valued Branching Markov Processes, 2011)
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Thank you!
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