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1. Continuous state branching processes

• Galton-watson branching processes:

Xn+1 =

Xn∑
i=1

ξ
(n)
i ,

where ξ(n)
i = the number of children of i at generation n. {ξ(n)

i } i.i.d.

• Let m = E[ξ
(1)
1 ]:

Xn = X0 +

n∑
k=1

Xk−1∑
i=1

(ξ
(k)
i −m) +

n∑
k=1

(m− 1)Xn−1.

A scaling limit leads to a continuous state branching process (CB) as the unique
solution of stochastic equation (m− 1  γ):

Xt = X0 +

∫ t

0

∫ X(s−)

0

∫ ∞
0

ζÑ(ds, du, dζ) + γ

∫ t

0

Xsds.

See Dawson-Li (2006).
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Discrete Lamperti transformation

• Order the particles in in breadth-first order. ξi: the number of children of the
i-th particle. A certain random walk

Sn =

n∑
i=1

(ξi − 1), S0 = 0

with jumps in {−1, 0, 1, 2, · · · }.

• Galton-watson process

Xn+1 = X0 + S∑n
k=0Xk

A scaling limit leads to a CB process taking the form:

Xt = X0 + Z∫ t
0
Xsds

,

where {Zt} is a spectrally positive Lévy process with Lévy-Khinchin formula Ψ.
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•Xt is called a CBI process if its transition semigroup (Pt)t≥0 is given by∫ ∞
0

e−λyPt(x, dy) = exp{−xvt(λ)},

where vt(λ) is the unique solution of the ODE:

∂

∂t
vt(λ) = −Ψ(vt(λ)), v0(λ) = λ.

• Grey (1974) : the asymptotic behavior of a CB (Ψ)

p = Px( lim
t→∞

Xt = 0) = e−xv

where v is the largest root of Ψ(q) = 0.

Supercirtical: Ψ′(0) < 0, subcritical: Ψ′(0) > 0, critical: Ψ′(0) = 0.

In the (sub) critical case, p=1 and Grey’s condition∫ ∞
θ

dq

Ψ(q)
<∞ ⇐⇒ Px(Xt = 0 for some t > 0) = 1.
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2. Immigration processes

Kawazu and Watanabe (1971) : GW processes with immigration

Xn+1 =

Xn∑
i=1

ξ
(n)
i + ηn,

where ηn = the number of immigrants at generation n. {ηn : n ≥ 1} i.i.d.

Xn+1 = X0 + S∑n
k=0Xk

+

n∑
k=1

ηk.
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• A scaling limit leads to CB processes with immigration (CBI)

Xt = X0 + Z∫ t
0
Xsds

+ Yt,

where (Zt) is a spectrally positive Levy process with Levy-Khinchin formula

Ψ(q) = γq + 1
2
σ2q2 +

∫∞
0

(e−qu − 1 + qu1{u∈(0,1)})π(du)

and (Yt) a Levy subordinator with Levy-Khinchin formula

Φ(q) = bq +

∫ ∞
0

(1− e−qu)ν(du).

(1) Positive OU-type processes: (when Zt = −γt and Yt subordinator)

(2) Feller diffusion (when Zt: a B.M. with Ψ(q) = σ2

2
q2 and Yt = bt)

Xt = X0 + σ

∫ t

0

√
XsdBt + bt
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(3) Positive self similar Markov process (when Zt is a spectrally positive α-stable
process, Yt is a (α− 1)-stable subordinator)

Xt = X0 +

∫ t

0

α
√
Xs− dZt + Yt.

(4) A critical CB process conditioned to be non extinct (a special CBI process): a
time-changed Levy process conditioned to stay positive.

• A well-know result in Itô and Mckean (1996; book) for Feller’s diffusion:

If 2b > σ2, the process is transient, or the process is recurrent.

If 2b ≥ σ2, the point 0 is polar, i.e. for any x > 0,

Px(σ0 <∞) = 0,

where σ0 the hitting time; otherwise (Xt) hits 0 with positive probability.

In particular, if 2b = σ2, then 0 is polar and the process is recurrent.
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3. First entrance times for CBI processes

Recall that (Zt) is a spectrally positive Levy process with Levy-Khinchin formula

Ψ(q) = γq + 1
2
σ2q2 +

∫∞
0

(e−qu − 1 + qu1{u∈(0,1)})π(du)

Usually assume that the effective drift d defined by

d :=


γ +

∫ 1

0
zπ(dz) if the process Zt has bounded variation paths

∞ if the process Zt has unbounded variation paths,

belongs to (0,∞].

Recall that (Yt) a Levy subordinator with Levy-Khinchin formula

Φ(q) = bq +

∫ ∞
0

(1− e−qu)ν(du).

• lim inf
t→∞

Xt ≥ ` := b/d.
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Denote the first entrance time in [0, a] by σa :

σa := inf{t > 0;Xt ≤ a}.

We will consider the law of σa when (Xt) starts from x ≥ a.

Remark that the process has no downward jumps, therefore Xσa = a almost
surely.

Theorem 1 Let x > a ≥ `. For every λ > 0 and µ ≥ 0, we have

Ex
[

exp
{
− λσa − µ

∫ σa

0

Xtdt
}]

=

∫∞
q(µ)

dz
Ψ(z)−µ exp

(
−xz +

∫ z
θ

Φ(u)+λ
Ψ(u)−µdu

)
∫∞
q(µ)

dz
Ψ(z)−µ exp

(
−az +

∫ z
θ

Φ(u)+λ
Ψ(u)−µdu

) ,
where q(µ) := sup{q ≥ 0 : Ψ(q) = µ}, and θ is an arbitrary constant larger
than q(µ).
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Corollary 1 For all λ ∈ (0,∞), and x > a ≥ `

Ex
[
e−λσa

]
=
fλ(x)

fλ(a)
,

where

fλ(x) =

∫ ∞
q(0)

e−xz

Ψ(z)
exp

[∫ z

θ

Φ(u) + λ

Ψ(u)
du

]
.

Corollary 2 In the critical, or sub-critical case, for all x > a ≥ `,

Ex [σa] =

∫ ∞
0

dz

Ψ(z)

(
e−az − e−xz

)
exp

(∫ z

0

Φ(u)

Ψ(u)
du

)
.
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Theorem 2 (Pinsky (1972))

i) If
∫ 1

0
Φ(u)
Ψ(u)

du < ∞, then the CBI(Ψ,Φ) process, (Xt, t ≥ 0), has an
invariant probability distribution. In the subcritical case (Ψ′(0+) > 0), this
integral condition is equivalent to∫ ∞

1

log(u)ν(du) <∞.

ii) If
∫ 1

0
Φ(u)
Ψ(u)

du =∞, then for all x, b ∈ R+,

lim
t→∞

Px(Xt ≤ b) = 0.

Case (i): Ex[σa] <∞; Case (ii): Ex[σa] =∞
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We adopt the following definition of recurrence and transience.

Definition 1 We say that the process (Xt, t ≥ 0) is recurrent if there exists x ∈ R+

such that

Px(lim inf
t→∞

|Xt − x| = 0) = 1.

On the other hand, we say that the process is transient if

Px( lim
t→∞

Xt =∞) = 1 for every x ∈ R+.
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4. A recurrence criterion for CBI processes

Theorem 3 (a) In the critical or subcritical case, the CBI(Ψ,Φ) process is
recurrent or transient accordingly as∫ 1

0

dz

Ψ(z)
exp

[
−
∫ 1

z

Φ(x)

Ψ(x)
dx

]
=∞ or <∞.

(b) In the supercritical case, the CBI(Ψ,Φ) process is transient.
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For a critical CBI process with finite variance, we have a simpler criterion for its
recurrence and transience, which somehow is reminiscent of the Feller diffusion.

Corollary 3 Assume
∫∞
1
u2 log uπ(du) < ∞ and

∫∞
1
u2ν(du) < ∞ and

consider

Ψ(q) =
1

2
σ2q2 +

∫ ∞
0

(e−qu − 1 + qu)π(du),

Φ(q) = bq +

∫ ∞
0

(1− e−qu)ν(du).

Let σ̃2 := Ψ′′(0) and b̃ := Φ′(0). The process is transient if and only if

2b̃ > σ̃2.
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5. 0 is polar or not

Theorem 4 The only point that may be polar is `. If d < ∞ then ` is polar. In
the unbounded variation case, ` = 0 and 0 is polar or hit with positive probability
accordingly as∫ ∞

θ

dz

Ψ(z)
exp

[∫ z

θ

Φ(x)

Ψ(x)
dx

]
=∞ or <∞.

• Foucart and Uribe Bravo (2013) proved the result for ` = 0 based on a con-
nection between the zero set of a CBI and the random cutout sets defined by
Mandelbrot (1972)

•We recover and complete the results of Foucart and Uribe Bravo (2013) through
more classic techniques.
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Example 1 Consider Ψ(q) = dqα, Φ(q) = d′qβ with α ∈ (1, 2] and β ∈ (0, 1].

• If β > α− 1, the process is recurrent and 0 is polar.

• If β < α− 1, the process is transient and 0 is not polar.

• If β = α − 1 and α ∈ (1, 2], the process is recurrent if d′/d ≤ α−1 and
transient if d′/d > α−1.

The point 0 is polar if and only if d′/d ≥ α−1.

In particular if d′/d = α−1, then 0 is polar but lim inf
t→∞

Xt = 0.

Patie (2009) obtained the condition for 0 to be polar via other arguments.
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——————

Thanks!

——————


