[10th Workshop on Markov Processes and Related Topics, August 14, 2014]

On the hitting times of continuous-state branching processes with immigration

Chunhua Ma

Nankai University

(A joint work with Xan Duhalde, Clément Foucart)

1. Continuous state branching processes

• Galton-watson branching processes:

$$X_{n+1} = \sum_{i=1}^{X_n} \xi_i^{(n)},$$

where $\xi_i^{(n)}$ = the number of children of *i* at generation *n*. $\{\xi_i^{(n)}\}$ i.i.d.

• Let $m = E[\xi_1^{(1)}]$:

$$X_n = X_0 + \sum_{k=1}^n \sum_{i=1}^{X_{k-1}} (\xi_i^{(k)} - m) + \sum_{k=1}^n (m-1)X_{n-1}.$$

A scaling limit leads to a continuous state branching process (CB) as the unique solution of stochastic equation $(m - 1 \rightsquigarrow \gamma)$:

$$X_t = X_0 + \int_0^t \int_0^{X(s-)} \int_0^\infty \zeta \tilde{N}(ds, du, d\zeta) + \gamma \int_0^t X_s ds.$$

See Dawson-Li (2006).

Discrete Lamperti transformation

• Order the particles in in breadth-first order. ξ_i : the number of children of the i-th particle. A certain random walk

$$S_n = \sum_{i=1}^n (\xi_i - 1), \quad S_0 = 0$$

with jumps in $\{-1, 0, 1, 2, \dots\}$.

Galton-watson process

$$X_{n+1} = X_0 + S_{\sum_{k=0}^n X_k}$$

A scaling limit leads to a CB process taking the form:

$$X_t = X_0 + Z_{\int_0^t X_s ds},$$

where $\{Z_t\}$ is a spectrally positive Lévy process with Lévy-Khinchin formula Ψ .

• X_t is called a CBI process if its transition semigroup $(P_t)_{t>0}$ is given by

$$\int_0^\infty e^{-\lambda y} P_t(x,dy) = \exp\{-x v_t(\lambda)\},$$

where $v_t(\lambda)$ is the unique solution of the ODE:

$$rac{\partial}{\partial t}v_t(\lambda)=-\Psi(v_t(\lambda)), \hspace{1em} v_0(\lambda)=\lambda.$$

ullet Grey (1974) : the asymptotic behavior of a CB (Ψ)

$$p = \mathbb{P}_x(\lim_{t o \infty} X_t = 0) = e^{-xv}$$

where v is the largest root of $\Psi(q) = 0$.

Supercirtical: $\Psi'(0) < 0$, subcritical: $\Psi'(0) > 0$, critical: $\Psi'(0) = 0$.

In the (sub) critical case, p=1 and Grey's condition

$$\int_{ heta}^{\infty} rac{dq}{\Psi(q)} < \infty \iff \mathbb{P}_x(X_t=0 ext{ for some } t>0)=1.$$

2. Immigration processes

Kawazu and Watanabe (1971) : GW processes with immigration

$$X_{n+1} = \sum_{i=1}^{X_n} \xi_i^{(n)} + \eta_n,$$

where η_n = the number of immigrants at generation n. { $\eta_n : n \ge 1$ } i.i.d.

$$X_{n+1} = X_0 + S_{\sum_{k=0}^n X_k} + \sum_{k=1}^n \eta_k.$$

A scaling limit leads to CB processes with immigration (CBI)

$$X_t = X_0 + Z_{\int_0^t X_s ds} + Y_t,$$

where (Z_t) is a spectrally positive Levy process with Levy-Khinchin formula

$$\Psi(q) = \gamma q + rac{1}{2}\sigma^2 q^2 + \int_0^\infty (e^{-qu} - 1 + qu \mathbb{1}_{\{u \in (0,1)\}}) \pi(du)$$

and (Y_t) a Levy subordinator with Levy-Khinchin formula

$$\Phi(q) = bq + \int_0^\infty (1 - e^{-qu})\nu(du).$$

(1) Positive OU-type processes: (when $Z_t = -\gamma t$ and Y_t subordinator)

(2) Feller diffusion (when Z_t : a B.M. with $\Psi(q) = \frac{\sigma^2}{2}q^2$ and $Y_t = bt$)

$$X_t = X_0 + \sigma \int_0^t \sqrt{X_s} dB_t + bt$$

(3) Positive self similar Markov process (when Z_t is a spectrally positive α -stable process, Y_t is a $(\alpha - 1)$ -stable subordinator)

$$X_t = X_0 + \int_0^t \sqrt[\infty]{X_{s-}} \, dZ_t + Y_t.$$

(4) A critical CB process conditioned to be non extinct (a special CBI process): a time-changed Levy process conditioned to stay positive.

• A well-know result in Itô and Mckean (1996; book) for Feller's diffusion:

If $2b > \sigma^2$, the process is transient, or the process is recurrent.

If $2b \ge \sigma^2$, the point 0 is polar, i.e. for any x > 0,

$$\mathbb{P}_x(\sigma_0<\infty)=0,$$

where σ_0 the hitting time; otherwise (X_t) hits 0 with positive probability.

In particular, if $2b = \sigma^2$, then 0 is polar and the process is recurrent.

3. First entrance times for CBI processes

Recall that (Z_t) is a spectrally positive Levy process with Levy-Khinchin formula

$$\Psi(q) = \gamma q + rac{1}{2}\sigma^2 q^2 + \int_0^\infty (e^{-qu} - 1 + qu \mathbb{1}_{\{u \in (0,1)\}}) \pi(du)$$

Usually assume that the effective drift d defined by

 $\mathbf{d} := \begin{cases} \gamma + \int_0^1 z \pi(dz) \text{ if the process } Z_t \text{ has bounded variation paths} \\ \infty \text{ if the process } Z_t \text{ has unbounded variation paths,} \end{cases}$

Recall that (Y_t) a Levy subordinator with Levy-Khinchin formula

$$\Phi(q)=bq+\int_0^\infty(1-e^{-qu})
u(du).$$

• $\liminf_{t \to \infty} X_t \ge \ell := b/\mathsf{d}.$

Denote the first entrance time in [0, a] by σ_a :

$$\sigma_a := \inf\{t > 0; X_t \le a\}.$$

We will consider the law of σ_a when (X_t) starts from $x \ge a$.

Remark that the process has no downward jumps, therefore $X_{\sigma_a} = a$ almost surely.

Theorem 1 Let $x > a \ge \ell$. For every $\lambda > 0$ and $\mu \ge 0$, we have

$$\mathbb{E}_x\Big[\exp\Big\{-\lambda\sigma_a-\mu\int_0^{\sigma_a}X_t\mathrm{d}t\Big\}\Big] \ =rac{\int_{q(\mu)}^\inftyrac{\mathrm{d}z}{\Psi(z)-\mu}\exp\left(-xz+\int_ heta^zrac{\Phi(u)+\lambda}{\Psi(u)-\mu}\mathrm{d}u
ight)}{\int_{q(\mu)}^\inftyrac{\mathrm{d}z}{\Psi(z)-\mu}\exp\left(-az+\int_ heta^zrac{\Phi(u)+\lambda}{\Psi(u)-\mu}\mathrm{d}u
ight)},$$

where $q(\mu) := \sup\{q \ge 0 : \Psi(q) = \mu\}$, and θ is an arbitrary constant larger than $q(\mu)$.

Corollary 1 For all $\lambda \in (0,\infty)$, and $x > a \ge \ell$

$$\mathbb{E}_x\left[e^{-\lambda\sigma_a}
ight]=rac{f_\lambda(x)}{f_\lambda(a)},$$

where

$$f_{\lambda}(x) = \int_{q(0)}^{\infty} rac{e^{-xz}}{\Psi(z)} \exp\left[\int_{ heta}^{z} rac{\Phi(u)+\lambda}{\Psi(u)} \mathrm{d}u
ight].$$

Corollary 2 In the critical, or sub-critical case, for all $x > a \ge \ell$,

$$\mathbb{E}_x\left[\sigma_a
ight] = \int_0^\infty rac{\mathrm{d}z}{\Psi(z)} \left(e^{-az} - e^{-xz}
ight) \exp\left(\int_0^z rac{\Phi(u)}{\Psi(u)} \mathrm{d}u
ight).$$

Theorem 2 (Pinsky (1972))

i) If $\int_0^1 \frac{\Phi(u)}{\Psi(u)} du < \infty$, then the $CBl(\Psi, \Phi)$ process, $(X_t, t \ge 0)$, has an invariant probability distribution. In the subcritical case $(\Psi'(0+) > 0)$, this integral condition is equivalent to

$$\int_1^\infty \log(u)
u(\mathrm{d} u) < \infty.$$

ii) If
$$\int_0^1 rac{\Phi(u)}{\Psi(u)} \mathrm{d} u = \infty$$
, then for all $x, b \in \mathbb{R}_+$, $\lim_{t o \infty} \mathbb{P}_x(X_t \le b) = 0.$

Case (i): $\mathbb{E}_x[\sigma_a] < \infty$; Case (ii): $\mathbb{E}_x[\sigma_a] = \infty$

We adopt the following definition of recurrence and transience.

Definition 1 We say that the process $(X_t, t \ge 0)$ is recurrent if there exists $x \in \mathbb{R}_+$ such that

$$\mathbb{P}_x(\liminf_{t o\infty}|X_t-x|=0)=1.$$

On the other hand, we say that the process is transient if

$$\mathbb{P}_x(\lim_{t o\infty}X_t=\infty)=1$$
 for every $x\in\mathbb{R}_+.$

4. A recurrence criterion for CBI processes

Theorem 3 (a) In the critical or subcritical case, the $CBI(\Psi, \Phi)$ process is recurrent or transient accordingly as

$$\int_0^1 rac{\mathrm{d} z}{\Psi(z)} \exp\left[-\int_z^1 rac{\Phi(x)}{\Psi(x)} \mathrm{d} x
ight] = \infty \; ext{or} \; <\infty.$$

(b) In the supercritical case, the $CBI(\Psi, \Phi)$ process is transient.

For a critical CBI process with finite variance, we have a simpler criterion for its recurrence and transience, which somehow is reminiscent of the Feller diffusion.

Corollary 3 Assume $\int_1^\infty u^2 \log u \, \pi(\mathrm{d} u) < \infty$ and $\int_1^\infty u^2 \nu(\mathrm{d} u) < \infty$ and consider

$$\Psi(q) = rac{1}{2}\sigma^2 q^2 + \int_0^\infty (e^{-qu} - 1 + qu)\pi(\mathrm{d}u),$$

 $\Phi(q) = bq + \int_0^\infty (1 - e^{-qu})
u(\mathrm{d}u).$

Let $ilde{\sigma}^2 := \Psi''(0)$ and $ilde{b} := \Phi'(0)$. The process is transient if and only if

$$2 \tilde{b} > \tilde{\sigma}^2.$$

5. 0 is polar or not

Theorem 4 The only point that may be polar is ℓ . If $d < \infty$ then ℓ is polar. In the unbounded variation case, $\ell = 0$ and 0 is polar or hit with positive probability accordingly as

$$\int_{ heta}^{\infty}rac{\mathrm{d}z}{\Psi(z)}\exp\left[\int_{ heta}^{z}rac{\Phi(x)}{\Psi(x)}\mathrm{d}x
ight]=\infty ext{ or }<\infty.$$

• Foucart and Uribe Bravo (2013) proved the result for $\ell = 0$ based on a connection between the zero set of a CBI and the random cutout sets defined by Mandelbrot (1972)

• We recover and complete the results of Foucart and Uribe Bravo (2013) through more classic techniques.

Example 1 Consider $\Psi(q) = dq^{\alpha}$, $\Phi(q) = d'q^{\beta}$ with $\alpha \in (1, 2]$ and $\beta \in (0, 1]$.

- If $\beta > \alpha 1$, the process is recurrent and 0 is polar.
- If $\beta < \alpha 1$, the process is transient and 0 is not polar.
- If $\beta = \alpha 1$ and $\alpha \in (1, 2]$, the process is recurrent if $d'/d \le \alpha 1$ and transient if $d'/d > \alpha 1$.

The point 0 is polar if and only if $d'/d \ge \alpha - 1$.

In particular if $d'/d = \alpha - 1$, then 0 is polar but $\liminf_{t \to \infty} X_t = 0$.

Patie (2009) obtained the condition for 0 to be polar via other arguments.

