[10th Workshop on Markov Processes and Related Topics, August 14, 2014]

On the hitting times of continuous-state branching processes with immigration

Chunhua Ma

Nankai University

(A joint work with Xan Duhalde, Clément Foucart)

1. Continuous state branching processes

• Galton-watson branching processes:

$$
X_{n+1} = \sum_{i=1}^{X_n} \xi_i^{(n)},
$$

where $\xi_i^{(n)}=$ the number of children of i at generation $n. \ \{\xi_i^{(n)}\}$ $\binom{n}{i}$ i.i.d.

 \bullet Let $m=\mathrm{E}[\xi_1^{(1)}]$:

$$
X_n = X_0 + \sum_{k=1}^n \sum_{i=1}^{X_{k-1}} (\xi_i^{(k)} - m) + \sum_{k=1}^n (m-1)X_{n-1}.
$$

A scaling limit leads to a continuous state branching process (CB) as the unique solution of stochastic equation $(m - 1 \leadsto \gamma)$:

$$
X_t=X_0+\int_0^t\int_0^{X(s-)}\int_0^\infty\zeta \tilde N(ds,du,d\zeta)+\gamma\int_0^tX_sds.
$$

See Dawson-Li (2006).

Discrete Lamperti transformation

• Order the particles in in breadth-first order. ξ_i : the number of children of the i-th particle. A certain random walk

$$
S_n=\sum_{i=1}^n(\xi_i-1),\quad S_0=0
$$

with jumps in $\{-1, 0, 1, 2, \dots\}$.

• Galton-watson process

$$
X_{n+1}=X_0+S_{\sum_{k=0}^n X_k}
$$

A scaling limit leads to a CB process taking the form:

$$
X_t=X_0+Z_{\int_0^t X_s ds},
$$

where $\{Z_t\}$ is a spectrally positive Lévy process with Lévy-Khinchin formula Ψ .

• X_t is called a CBI process if its transition semigroup $(P_t)_{t\geq 0}$ is given by

$$
\int_0^\infty e^{-\lambda y} P_t(x, dy) = \exp\{-xv_t(\lambda)\},
$$

where $v_t(\lambda)$ is the unique solution of the ODE:

$$
\frac{\partial}{\partial t}v_t(\lambda)=-\Psi(v_t(\lambda)),\quad v_0(\lambda)=\lambda.
$$

• Grey (1974) : the asymptotic behavior of a CB (Ψ)

$$
p = \mathbb{P}_x(\lim_{t\to\infty}X_t=0) = e^{-xv}
$$

where v is the largest root of $\Psi(q) = 0$.

Supercirtical: $\Psi'(0) < 0$, subcritical: $\Psi'(0) > 0$, critical: $\Psi'(0) = 0$.

In the (sub) critical case, p=1 and Grey's condition

$$
\int_{\theta}^{\infty} \frac{dq}{\Psi(q)} < \infty \iff \mathbb{P}_x(X_t = 0 \text{ for some } t > 0) = 1.
$$

2. Immigration processes

Kawazu and Watanabe (1971) : GW processes with immigration

$$
X_{n+1} = \sum_{i=1}^{X_n} \xi_i^{(n)} + \eta_n,
$$

where $\eta_n =$ the number of immigrants at generation n. $\{\eta_n : n \geq 1\}$ i.i.d.

$$
X_{n+1} = X_0 + S_{\sum_{k=0}^n X_k} + \sum_{k=1}^n \eta_k.
$$

• A scaling limit leads to CB processes with immigration (CBI)

$$
X_t=X_0+Z_{\int_0^tX_sds}+Y_t,
$$

where (Z_t) is a spectrally positive Levy process with Levy-Khinchin formula

$$
\Psi(q) = \gamma q + \frac{1}{2}\sigma^2 q^2 + \int_0^\infty (e^{-qu} - 1 + qu1_{\{u \in (0,1)\}})\pi(du)
$$

and (Y_t) a Levy subordinator with Levy-Khinchin formula

$$
\Phi(q) = bq + \int_0^\infty (1 - e^{-qu}) \nu(du).
$$

(1) Positive OU-type processes: (when $Z_t = -\gamma t$ and Y_t subordinator)

(2) Feller diffusion (when Z_t : a B.M. with $\Psi(q) = \frac{\sigma^2}{2}$ $\frac{\sigma^2}{2}q^2$ and $Y_t=bt)$

$$
X_t=X_0+\sigma\int_0^t\sqrt{X_s}dB_t+bt
$$

(3) Positive self similar Markov process (when Z_t is a spectrally positive α -stable process, Y_t is a $(\alpha - 1)$ -stable subordinator)

$$
X_t=X_0+\int_0^t\sqrt[n]{X_{s-}}\,dZ_t+Y_t.
$$

(4) A critical CB process conditioned to be non extinct (a special CBI process): a time-changed Levy process conditioned to stay positive.

• A well-know result in Itô and Mckean (1996; book) for Feller's diffusion:

If $2b > \sigma^2$, the process is transient, or the process is recurrent.

If $2b \geq \sigma^2$, the point 0 is polar, i.e. for any $x > 0$,

$$
\mathbb{P}_x(\sigma_0<\infty)=0,
$$

where σ_0 the hitting time; otherwise (X_t) hits 0 with positive probability.

In particular, if $2b = \sigma^2$, then 0 is polar and the process is recurrent.

3. First entrance times for CBI processes

Recall that (Z_t) is a spectrally positive Levy process with Levy-Khinchin formula

$$
\Psi(q) = \gamma q + \frac{1}{2}\sigma^2 q^2 + \int_0^\infty (e^{-qu} - 1 + qu1_{\{u \in (0,1)\}})\pi(du)
$$

Usually assume that the effective drift **d** defined by

d := $\sqrt{ }$ \int $\overline{\mathcal{L}}$ $\gamma + \int_0^1 z \pi(dz)$ if the process Z_t has bounded variation paths ∞ if the process Z_t has unbounded variation paths,

belongs to $(0, \infty]$.

Recall that (Y_t) a Levy subordinator with Levy-Khinchin formula

$$
\Phi(q)=bq+\int_0^\infty(1-e^{-qu})\nu(du).
$$

 \bullet $\liminf_{t\to\infty} X_t \geq \ell := b/\mathsf{d}.$

Denote the first entrance time in [0, a] by σ_a :

$$
\sigma_a := \inf\{t > 0; X_t \leq a\}.
$$

We will consider the law of σ_a when (X_t) starts from $x > a$.

Remark that the process has no downward jumps, therefore $X_{\tau} = a$ almost surely.

Theorem 1 *Let* $x > a \ge \ell$ *. For every* $\lambda > 0$ *and* $\mu \ge 0$ *, we have*

$$
\mathbb{E}_x\Big[\exp\Big\{-\lambda\sigma_a-\mu\int_0^{\sigma_a}X_t\mathrm{d}t\Big\}\Big]\\=\frac{\int_{q(\mu)}^{\infty}\frac{\mathrm{d}z}{\Psi(z)-\mu}\exp\Big(-xz+\int_{\theta}^z\frac{\Phi(u)+\lambda}{\Psi(u)-\mu}\mathrm{d}u\Big)}{\int_{q(\mu)}^{\infty}\frac{\mathrm{d}z}{\Psi(z)-\mu}\exp\Big(-az+\int_{\theta}^z\frac{\Phi(u)+\lambda}{\Psi(u)-\mu}\mathrm{d}u\Big)},
$$

where $q(\mu) := \sup\{q \geq 0 : \Psi(q) = \mu\}$, and θ *is an arbitrary constant larger than* $q(\mu)$ *.*

Corollary 1 *For all* $\lambda \in (0, \infty)$ *, and* $x > a \ge \ell$

$$
\mathbb{E}_x\left[e^{-\lambda \sigma_a}\right] = \frac{f_\lambda(x)}{f_\lambda(a)},
$$

where

$$
f_{\lambda}(x)=\int_{q(0)}^{\infty}\frac{e^{-xz}}{\Psi(z)}\exp\left[\int_{\theta}^{z}\frac{\Phi(u)+\lambda}{\Psi(u)}\mathrm{d}u\right].
$$

Corollary 2 *In the critical, or sub-critical case, for all* $x > a > \ell$,

$$
\mathbb{E}_x\left[\sigma_a\right] = \int_0^\infty \frac{\mathrm{d}z}{\Psi(z)}\left(e^{-az} - e^{-xz}\right)\exp\left(\int_0^z \frac{\Phi(u)}{\Psi(u)}\mathrm{d}u\right).
$$

Theorem 2 *(Pinsky (1972))*

i) If \int_0^1 $\Phi(u)$ $\frac{\Psi(u)}{\Psi(u)}\mathrm{d}u\,<\,\infty,$ then the CBI($\Psi,\Phi)$ process, $(X_t,t\,\geq\,0)$, has an *invariant probability distribution. In the subcritical case* $(\Psi'(0+) > 0)$, this *integral condition is equivalent to*

$$
\int_1^\infty \log(u)\nu(\mathrm{d} u)<\infty.
$$

ii) If
$$
\int_0^1 \frac{\Phi(u)}{\Psi(u)} du = \infty
$$
, then for all $x, b \in \mathbb{R}_+$,

$$
\lim_{t \to \infty} \mathbb{P}_x(X_t \le b) = 0.
$$

Case (i): $\mathbb{E}_x[\sigma_a] < \infty$; Case (ii): $\mathbb{E}_x[\sigma_a] = \infty$

We adopt the following definition of recurrence and transience.

Definition 1 We say that the process $(X_t, t \geq 0)$ is recurrent if there exists $x \in \mathbb{R}_+$ such that

$$
\mathbb{P}_x(\liminf_{t\to\infty}|X_t-x|=0)=1.
$$

On the other hand, we say that the process is transient if

$$
\mathbb{P}_x(\lim_{t\to\infty}X_t=\infty)=1\text{ for every }x\in\mathbb{R}_+.
$$

4. A recurrence criterion for CBI processes

Theorem 3 *(a) In the critical or subcritical case, the CBI*(Ψ, Φ) *process is recurrent or transient accordingly as*

$$
\int_0^1 \frac{\mathrm{d} z}{\Psi(z)} \exp\left[-\int_z^1 \frac{\Phi(x)}{\Psi(x)} \mathrm{d} x\right] = \infty \text{ or } <\infty.
$$

(b) In the supercritical case, the CBI(Ψ, Φ) *process is transient.*

For a critical CBI process with finite variance, we have a simpler criterion for its recurrence and transience, which somehow is reminiscent of the Feller diffusion.

Corollary 3 Assume $\int_1^\infty u^2 \log u \, \pi(\mathrm{d}u) < \infty$ and $\int_1^\infty u^2 \nu(\mathrm{d}u) < \infty$ and *consider*

$$
\Psi(q) = \frac{1}{2}\sigma^2 q^2 + \int_0^\infty (e^{-qu} - 1 + qu)\pi(\mathrm{d}u),
$$

$$
\Phi(q) = bq + \int_0^\infty (1 - e^{-qu})\nu(\mathrm{d}u).
$$

Let $\tilde{\sigma}^2 := \Psi''(0)$ and $\tilde{b} := \Phi'(0)$. The process is transient if and only if

$$
2\tilde{b}>\tilde{\sigma}^2.
$$

5. 0 **is polar or not**

Theorem 4 *The only point that may be polar is* ℓ *. If* $d < \infty$ *then* ℓ *is polar. In the unbounded variation case,* $\ell = 0$ *and* 0 *is polar or hit with positive probability accordingly as*

$$
\int_{\theta}^{\infty} \frac{\mathrm{d}z}{\Psi(z)} \exp\left[\int_{\theta}^{z} \frac{\Phi(x)}{\Psi(x)} \mathrm{d}x\right] = \infty \text{ or } < \infty.
$$

• Foucart and Uribe Bravo (2013) proved the result for $\ell = 0$ based on a connection between the zero set of a CBI and the random cutout sets defined by Mandelbrot (1972)

• We recover and complete the results of Foucart and Uribe Bravo (2013) through more classic techniques.

Example 1 Consider $\Psi(q) = dq^{\alpha}$, $\Phi(q) = d'q^{\beta}$ with $\alpha \in (1, 2]$ and $\beta \in (0, 1]$.

- If $\beta > \alpha 1$, the process is recurrent and 0 is polar.
- If $\beta < \alpha 1$, the process is transient and 0 is not polar.
- If $\beta = \alpha 1$ and $\alpha \in (1, 2]$, the process is recurrent if $d'/d \leq \alpha 1$ and transient if $d'/d > \alpha - 1$.

The point 0 is polar if and only if $d'/d \ge \alpha - 1$.

In particular if $d'/d = \alpha - 1$, then 0 is polar but $\liminf_{t \to \infty} X_t = 0$.

Patie (2009) obtained the condition for 0 to be polar via other arguments.

