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Itô’s SDE

• σ : [0,T ]× Rd → Rm ⊗ Rd matrix-valued function,

• b : [0,T ]× Rd → Rd vector field,

• (Wt)0≤t≤T : m-dimensional standard Brownian motion.

Consider Itô’s SDE

dXt = σ(t,Xt) dWt + b(t,Xt) dt, X0 = x ∈ Rd . (1)

Two types of conditions insuring existence of strong solution:

• modulus of continuity on the coefficients σ, b,

• non-degenerate diffusion σ and irregular drift b.
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Conditions on modulus of continuity of coefficients

• σ and b are globally Lipschitz continuous in x , uniformly in t
=⇒ SDE (1) has a unique strong solution Xt which is Hölder
continuous w.r.t. x .

• In the 1-dim case: σ is (1/2)-Hölder continuous and b is
Lipschitz.

• For d ≥ 1, S. Fang and T. Zhang (PTRF, 2005):

‖σ(x)− σ(y)‖2 ≤ C |x − y |2 log
1

|x − y |
,

|b(x)− b(y)| ≤ C |x − y | log
1

|x − y |
.

• ......
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The non-degenerate case

Non-degeneracy: ∃λ > 0 s.t. σ(t, x)σ(t, x)∗ ≥ λ, ∀ (t, x).

• Veretennikov (1979): σ(t, ·) is non-degenerate and bounded
Lipschitz continuous, and b is bounded measurable.

• Gyöngy–Martinez (2001): σ(t, ·) is locally Lipschitz
continuous, and |b(t, x)| ≤ C + F (t, x), where
F ∈ Ld+1([0,T ]× Rd).

• X. Zhang (2005): replacing the locally Lipschitz continuity of
σ(t, ·) with some integrability of ∇xσ(t, ·).

• Krylov–Röckner (2005): σ ≡ Id and b ∈ Lq
(
[0,T ], Lp(Rd)

)
,

i.e. ∫ T

0

(∫
Rd

|b(t, x)|p dx

) q
p

dt < +∞ (2)

where d
p + 2

q < 1. (LPS-type condition).
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Regularity of Krylov–Röckner’s flow

From now on, we focus on the case studied by Krylov–Röckner.
That is, we consider

dXt = dWt + b(t,Xt) dt, X0 = x ∈ Rd , (3)

where b ∈ Lq
(
[0,T ], Lp(Rd)

)
with d

p + 2
q < 1.

• Fedrizzi–Flandoli (Stoch Anal Appl, 2013): Xt is indeed a
stochastic flow of homeomorphisms on Rd which are Hölder
continuous, by Kolmogorov’s theorem.

• Fedrizzi–Flandoli (JFA, 2013): if v0 ∈ ∩r≥1W 1,r (Rd), then
v(t, x) := v0

(
X−1t (x)

)
is the unique weakly differentiable

solution to the stochastic transport eq.

dv + 〈b,∇v〉 dt + 〈∇v , ◦ dWt〉 = 0, v |t=0 = v0.
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Main result

Ld : Lebesgue measure on Rd .

Since Xt : Rd → Rd is a.s. a homeomorphisms, the push-forward
Ld ◦ X−1t is well defined.

What is the relation between Ld ◦ X−1t and Ld?

Theorem 1

Assume b ∈ Lq
(
[0,T ], Lp(Rd)

)
with d

p + 2
q < 1. Then ∀ t ∈ [0,T ],

Ld ◦ X−1t is equivalent to Ld almost surely.

In other words, the Lebesgue measure Ld is quasi-invariant under
the flow Xt of homeomorphisms generated by (3).
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Main idea

Recall that if b ∈ Lq
(
[0,T ], Lp(Rd)

)
with d

p + 2
q < 1, then

dXt = dWt + b(t,Xt) dt

generates a flow Xt of homeomorphisms on Rd . Our purpose is to
show Ld ◦ X−1t ∼ Ld . This is well known when b is smooth.

Indeed, if σ(t, ·), b(t, ·) ∈ C 2
b (Rd), uniformly in t, then SDE

dXt = σ(t,Xt) dWt + b(t,Xt) dt

generates a flow Xt of diffeomorphisms on Rd . Let

ρt =
d(Ld ◦ X−1t )

dLd
=
∣∣ det(∇X−1t )

∣∣, ρ̄t =
d(Ld ◦ Xt)

dLd
=
∣∣ det(∇Xt)

∣∣.
Then we have ρt(x) =

[
ρ̄t
(
X−1t (x)

)]−1
and
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ρ̄t(x) = exp

{∫ t

0

〈
div(σ)(s,Xs(x)), dWs

〉
+

∫ t

0

[
div(b)− 1

2
〈∇σ, (∇σ)∗〉

]
(s,Xs(x)) ds

}
. (4)

If σ ≡ Id , the above identity reduces to

ρ̄t(x) = exp

{∫ t

0
div(b)(s,Xs(x)) ds

}
.

When b ∈ Lq
(
[0,T ], Lp(Rd)

)
, it is natural to

• approximate b with smooth vector fields bn, and

• prove ρ̄nt (x)→ ? by limit theorem.

However, the divergence div(b)(s, ·) does not exist. Therefore, we
cannot directly consider the approximation equations of

dXt = dWt + b(t,Xt) dt.
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Preliminary results

Some functional spaces:

• Lq
p(T ) := Lq

(
[0,T ], Lp(Rd)

)
,

• Hq
2,p(T ) = Lq

(
[0,T ],W 2,p(Rd)

)
.

Theorem 2

Fix λ > 0. Assume b ∈ Lq
p(T ) with d

p + 2
q < 1. Then ∃ a unique

solution in Hq
2,p(T ) to the backward parabolic system

∂tu +
1

2
∆u + b · ∇u = λu − b, u(T , x) = 0. (5)

Moreover, ∃C > 0 depending on d , p, q,T , λ and ‖b‖Lqp(T ) s.t.

‖∂tu‖Lqp(T ) + ‖u‖Hq
2,p(T ) ≤ C‖b‖Lqp(T ).
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Some properties of the solution

Lemma 3

Let uλ be the solution of (5). Then

sup
t≤T
‖∇uλ‖∞ → 0 as λ→∞,

where ‖ · ‖∞ is the supremum norm in C (Rd).

In view of the above lemma, we fix λ > 0 such that

sup
t≤T
‖∇uλ‖∞ ≤

1

2
.

Define φλ(t, x) = x + uλ(t, x), (t, x) ∈ [0,T ]× Rd .
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Zvonkin type transform

Proposition 4

The following statements hold:

(i) uniformly in t ∈ [0,T ], φλ(t, ·) has bounded first derivatives
which are Hölder continuous;

(ii) for every t ∈ [0,T ], φλ(t, ·) is a C 1-diffeomorphism on Rd ;

(iii) φ−1λ (t, ·) := (φλ(t, ·))−1 has bounded first spatial derivatives,
uniformly in t;

(iv) φλ and φ−1λ are jointly continuous in (t, x).

In the following, we omit λ and write φt(x) = x + u(t, x). Define

Yt = φt(Xt) = Xt + u(t,Xt).

As φt is smooth, it is enough to show Ld ◦ Y−1t ∼ Ld .
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Equation for Yt

Since u(t, x) solves the equation (5):

∂tu +
1

2
∆u + b · ∇u = λu − b,

Itô’s formula leads to

dYt = (Id +∇u(t,Xt)) dWt + λu(t,Xt) dt

= σ̃(t,Yt) dWt + b̃(t,Yt) dt, (6)

where σ̃(t, y) = Id +∇u
(
t, φ−1t (y)

)
, b̃(t, y) = λu

(
t, φ−1t (y)

)
.

Proposition 5

We have ∇b̃ ∈ C
(
[0,T ],Cb(Rd)

)
and

σ̃ ∈ C
(
[0,T ],Cb(Rd)

)
∩ Lq

(
0,T ,W 1,p(Rd)

)
.
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We still cannot directly apply density formula (4) to SDE (6) for
Yt . Nevertheless, div(σ̃) and div(b̃) make sense.

We need an approximation argument.

Let bn be a sequence of smooth compactly supported vector fields
converging to b in Lq

p(T ). Consider

dX n
t = dWt + bn(t,X n

t ) dt.
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An approximation result

Lemma 6

Let bn be a sequence of smooth compactly supported vector fields
converging to b in Lq

p(T ), and un the solution to

∂tu
n +

1

2
∆un + bn · ∇un = λun − bn.

Then we have

(i) as n→∞, un(t, x)→ u(t, x) and ∇un(t, x)→ ∇u(t, x)
locally uniformly;

(ii) limn→∞ ‖un − u‖Hq
2,p(T ) = 0;

(iii) supn≥1 supt,x |∇un(t, x)| ≤ 1
2 for λ big enough;

We fix λ > 0 s.t. (iii) holds.
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Approximating SDEs

Let φnt (x) = x + un(t, x) and Y n
t = φnt (X n

t ). Then we have

dY n
t = σ̃n(t,Y n

t ) dWt + b̃n(t,Y n
t ) dt

with

σ̃n(t, y) = Id +∇un
(
t, φn,−1t (y)

)
, b̃n(t, y) = λun

(
t, φn,−1t (y)

)
.

Let

ρnt :=
d(Ld ◦ Y n,−1

t )

dLd
=
∣∣ det

(
∇Y n,−1

t

)∣∣,
ρ̄nt :=

d(Ld ◦ Y n
t )

dLd
=
∣∣ det

(
∇Y n

t

)∣∣.
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Convergence of densities

We have

ρ̄nt (x) = exp

{∫ t

0

〈
div(σ̃n)(s,Y n

s (x)), dWs

〉
+

∫ t

0

[
div(b̃n)− 1

2
〈∇σ̃n, (∇σ̃n)∗〉

]
(s,Y n

s (x)) ds

}
.

Using Lemma 6, we can show that

ρ̄nt (x)→ exp

{∫ t

0

〈
div(σ̃)(s,Ys(x)), dWs

〉
+

∫ t

0

[
div(b̃)− 1

2
〈∇σ̃, (∇σ̃)∗〉

]
(s,Ys(x)) ds

}
.

which implies Ld ◦ Y−1t ∼ Ld
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Thanks for your attention!
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