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Ito's SDE

e 0:[0, T] x RY = R™® RY matrix-valued function,
e b:[0, T] x RY — R? vector field,

o (Wi)o<t<T: m-dimensional standard Brownian motion.

Consider It6's SDE
dX; = o(t, X;) dW; + b(t, Xp)dt, Xo=x e RY, (1)

Two types of conditions insuring existence of strong solution:
e modulus of continuity on the coefficients o, b,

e non-degenerate diffusion o and irregular drift b.
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Conditions on modulus of continuity of coefficients

e o and b are globally Lipschitz continuous in x, uniformly in t
= SDE (1) has a unique strong solution X; which is Holder
continuous w.r.t. x.

e In the 1-dim case: o is (1/2)-Hdlder continuous and b is
Lipschitz.

e For d > 1, S. Fang and T. Zhang (PTRF, 2005):
[x —y|

1
b(x)— b < Clx — y|log ———.
|b(x) = b(y)| < Clx —y| BTyl

lo(x) = a()I* < Clx — y[*log

)
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The non-degenerate case
Non-degeneracy: 3\ > 0 s.t. o(t,x)o(t,x)* > A\, V(t,x).

e Veretennikov (1979): o(t,-) is non-degenerate and bounded
Lipschitz continuous, and b is bounded measurable.

e Gyongy—Martinez (2001): o(t,-) is locally Lipschitz
continuous, and |b(t,x)| < C + F(t,x), where
F € L911([0, T] x RY).

e X. Zhang (2005): replacing the locally Lipschitz continuity of
o(t,-) with some integrability of V,o(t,-).

e Krylov—Rdckner (2005): o = Id and b € L9([0, T], LP(RY)),

- /OT </Rd Ib(t, x)|P dx)gdt < +00 (2)

where % + % < 1. (LPS-type condition).
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Regularity of Krylov—Rockner's flow
From now on, we focus on the case studied by Krylov—Rockner.
That is, we consider

dX; = dW; 4 b(t, X;)dt, Xo=x cRY, (3)

where b € Lq([O, 7], LP(Rd)) with % —|—% < 1.

e Fedrizzi—Flandoli (Stoch Anal Appl, 2013): X; is indeed a
stochastic flow of homeomorphisms on RY which are Holder
continuous, by Kolmogorov's theorem.

e Fedrizzi-Flandoli (JFA, 2013): if vp € N,>1 WL (RY), then
v(t,x) == vo(X; *(x)) is the unique weakly differentiable
solution to the stochastic transport eq.

dv + (b, Vv)dt + (Vv,odW;) =0, v|i—o = vo.
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Main result
L£9: Lebesgue measure on RY.

Since X; : RY — R? is a.s. a homeomorphisms, the push-forward
£ 0 Xt is well defined.

What is the relation between £9 o X; ! and £97?

Assume b € L9([0, T], LP(R)) with & + 2 < 1. ThenVt € [0, T],
£ 0 X1 is equivalent to L9 almost surely.

In other words, the Lebesgue measure L9 is quasi-invariant under
the flow X; of homeomorphisms generated by (3).
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Main idea
Recall that if b € L9([0, T], LP(RY)) with % +% < 1, then

dXt - th + b(t,Xt) dt

generates a flow X; of homeomorphisms on R?. Our purpose is to
show £9 0 X; 1 ~ £9. This is well known when b is smooth.

Indeed, if o(t,-), b(t,-) € C2(RY), uniformly in t, then SDE
dXt = O'(t,Xt)th + b(t,Xt) dt
generates a flow X; of diffeomorphisms on R?. Let

d(£? 0 X1)

. d(£ OXt)
Pt = dﬁd

= [det(VX; 1), pe 7

= | det(VX¢)|.

Then we have p:(x) = [ﬁt(Xt_l(x))]_l and
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ﬁt(x)—exp{/ (div(o)(s, Xs(x)), dWs)
+ /Ot [div(b) - %<VO‘, (VU)*)] (S,XS(X))dS}. (4)

If o = Id, the above identity reduces to
t
Fe(x) = exp { / div(b)(s, Xa(x)) ds}.
0

When b € L9([0, T], LP(RY)), it is natural to

e approximate b with smooth vector fields b”, and

e prove pY(x) — ? by limit theorem.
However, the divergence div(b)(s, -) does not exist. Therefore, we
cannot directly consider the approximation equations of

dXt - th + b(t,Xt) dt
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Preliminary results

Some functional spaces:

o LI(T) = L9([0, T], LP(RY)),
o HY (T) = L9([0, T], W2P(RY)).

Theorem 2

Fix A > 0. Assume b € L}(T) with % + % < 1. Then 3 a unique
solution in Hg’ o(T) to the backward parabolic system

1
Oeu+ 5Au+b-Vu=\u—b, u(T,x)=0. (5)

Moreover, 4 C > 0 depending on d,p,q, T, \ and ||bHLg(T) s.t.

19eull gy + lullmg 7y < Cllbllg(m-
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Some properties of the solution

Let uy be the solution of (5). Then

sup [[Vuplloo = 0 as A — o0,
t<T

where || - || is the supremum norm in C(RY).

In view of the above lemma, we fix A > 0 such that

1
sup [|[Vuyrlloo < 5>
t<T

Define oa(t,x) = x + ux(t,x), (t,x)€[0, T] x RY.
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Zvonkin type transform

Proposition 4

The following statements hold:

(1) uniformly in t € [0, T], ¢a(t,-) has bounded first derivatives
which are Holder continuous;

(ii) for every t € [0, T], ¢a(t,-) is a CL-diffeomorphism on RY;
(iii) qb;l(t, ) := (¢a(t,-)) " has bounded first spatial derivatives,
uniformly in t;

(iv) ¢x and gb;l are jointly continuous in (t, x).

In the following, we omit A and write ¢:(x) = x + u(t, x). Define
Yt = ¢t(Xt) = Xt + U(t,Xt).

As ¢ is smooth, it is enough to show £ o Yt_1 ~ L9
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Equation for Y;

Since u(t, x) solves the equation (5):

1
6tu+§Au—i—b-Vu:)\u—b,
1td’'s formula leads to

dYt ( + VU(t Xt))th + )\U(t,Xt)dt
= 5(t, Yy) dW; + b(t, Yy) dt, (6)

where  G(t,y) = Id + Vul(t, qﬁt_l(y)), b(t,y) = Au((t, ¢t_1(Y))-

Proposition 5

We have Vb € C([0, T}, Co(R9)) and

C([0, T], Gp(RY)) N L9(0, T, WHP(RY)).
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We still cannot directly apply density formula (4) to SDE (6) for
Y:. Nevertheless, div(&) and div(b) make sense.

We need an approximation argument.

Let b" be a sequence of smooth compactly supported vector fields
converging to b in L}(T). Consider

dX{" = dW; + b"(t, X{")dt.
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An approximation result

Lemma 6

Let b" be a sequence of smooth compactly supported vector fields
converging to b in L}(T), and u" the solution to

1
Oru" + EAU" +b"-Vu" = A" — b".
Then we have

(i) as n — oo, u"(t,x) — u(t,x) and Vu"(t,x) — Vu(t,x)
locally uniformly;

(11) ||mn_>oo ”Un — u |H¢27,p(7—) = 0,'

(iil) sup,>1Sups [Vu(t,x)| < % for X big enough;

We fix A > 0 s.t. (iii) holds.
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Approximating SDEs
Let ¢7(x) = x + u"(t,x) and Y{ = ¢7(X{). Then we have

dY =5"(t, YI)dW; + b"(t, ;) dt
with

F"(t,y) = Id + Vu"(t, 6P (). B(t,y) = A" (t. 7 (y)).

Let
d(cd oyt e
pr = —( doﬁdt ):‘det(VYt’ 1)‘,
d n
= ) e ()1
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Convergence of densities
We have

pr(x) = exp { /0 (div(c")(s, Y (x)),dWs)
+/0 [div(i)") - %(v&", (v&n)*ﬁ (s, Ys"(x))ds}.
Using Lemma 6, we can show that
7100 e { [ (an(a)(s, Vit am)
+/O [iv() - %Wa, (va))| (s, Ys(x))ds}.
which implies £9 0 Y, 1 ~ £d
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Thanks for your attention!

20/20



	Backgrounds and Main Result
	Sketch of Proof

