Quasi-invariance of the stochastic flow associated to Itô's SDE with singular time-dependent drift

Dejun Luo (罗 德 军)

中科院 数学院 应用数学所

10th Workshop on Markov Processes and Related Topics

Xidian and BNU, Aug 16, 2014

Backgrounds and Main Result Sketch of Proof

Itô's SDE

- $\sigma: [0, T] \times \mathbb{R}^d \to \mathbb{R}^m \otimes \mathbb{R}^d$ matrix-valued function,
- $b: [0,T] imes \mathbb{R}^d o \mathbb{R}^d$ vector field,
- $(W_t)_{0 \le t \le T}$: *m*-dimensional standard Brownian motion.

Consider Itô's SDE

$$dX_t = \sigma(t, X_t) dW_t + b(t, X_t) dt, \quad X_0 = x \in \mathbb{R}^d.$$
(1)

Two types of conditions insuring existence of strong solution:

- modulus of continuity on the coefficients σ , b,
- non-degenerate diffusion σ and irregular drift *b*.

Conditions on modulus of continuity of coefficients

- σ and b are globally Lipschitz continuous in x, uniformly in t ⇒ SDE (1) has a unique strong solution X_t which is Hölder continuous w.r.t. x.
- In the 1-dim case: σ is (1/2)-Hölder continuous and b is Lipschitz.
- For $d \ge 1$, S. Fang and T. Zhang (PTRF, 2005):

$$egin{aligned} |\sigma(x)-\sigma(y)||^2 &\leq C|x-y|^2\lograc{1}{|x-y|},\ |b(x)-b(y)|&\leq C|x-y|\lograc{1}{|x-y|}. \end{aligned}$$

The non-degenerate case

Non-degeneracy: $\exists \lambda > 0 \text{ s.t. } \sigma(t, x)\sigma(t, x)^* \geq \lambda, \forall (t, x).$

- Veretennikov (1979): $\sigma(t, \cdot)$ is non-degenerate and bounded Lipschitz continuous, and b is bounded measurable.
- Gyöngy–Martinez (2001): $\sigma(t, \cdot)$ is locally Lipschitz continuous, and $|b(t, x)| \leq C + F(t, x)$, where $F \in L^{d+1}([0, T] \times \mathbb{R}^d)$.
- X. Zhang (2005): replacing the locally Lipschitz continuity of *σ*(t, ·) with some integrability of ∇_x *σ*(t, ·).
- Krylov-Röckner (2005): $\sigma \equiv Id$ and $b \in L^q([0, T], L^p(\mathbb{R}^d))$, i.e.

$$\int_0^T \left(\int_{\mathbb{R}^d} |b(t,x)|^p \, \mathrm{d}x \right)^{\frac{q}{p}} \mathrm{d}t < +\infty$$
 (2)

where $\frac{d}{p} + \frac{2}{q} < 1$. (LPS-type condition).

Regularity of Krylov-Röckner's flow

From now on, we focus on the case studied by Krylov–Röckner. That is, we consider

$$dX_t = dW_t + b(t, X_t) dt, \quad X_0 = x \in \mathbb{R}^d,$$
(3)

where $b \in L^q([0, T], L^p(\mathbb{R}^d))$ with $\frac{d}{p} + \frac{2}{q} < 1$.

- Fedrizzi–Flandoli (Stoch Anal Appl, 2013): X_t is indeed a stochastic flow of homeomorphisms on ℝ^d which are Hölder continuous, by Kolmogorov's theorem.
- Fedrizzi–Flandoli (JFA, 2013): if $v_0 \in \bigcap_{r \ge 1} W^{1,r}(\mathbb{R}^d)$, then $v(t,x) := v_0(X_t^{-1}(x))$ is the unique weakly differentiable solution to the stochastic transport eq.

$$\mathrm{d} v + \langle b, \nabla v \rangle \, \mathrm{d} t + \langle \nabla v, \circ \, \mathrm{d} W_t \rangle = 0, \quad v|_{t=0} = v_0.$$

Main result

 \mathcal{L}^d : Lebesgue measure on \mathbb{R}^d .

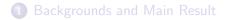
Since $X_t : \mathbb{R}^d \to \mathbb{R}^d$ is a.s. a homeomorphisms, the push-forward $\mathcal{L}^d \circ X_t^{-1}$ is well defined.

What is the relation between $\mathcal{L}^d \circ X_t^{-1}$ and \mathcal{L}^d ?

Theorem 1

Assume $b \in L^q([0, T], L^p(\mathbb{R}^d))$ with $\frac{d}{p} + \frac{2}{q} < 1$. Then $\forall t \in [0, T]$, $\mathcal{L}^d \circ X_t^{-1}$ is equivalent to \mathcal{L}^d almost surely.

In other words, the Lebesgue measure \mathcal{L}^d is quasi-invariant under the flow X_t of homeomorphisms generated by (3).



Main idea

Recall that if $b \in L^q([0, T], L^p(\mathbb{R}^d))$ with $\frac{d}{p} + \frac{2}{q} < 1$, then $dX_t = dW_t + b(t, X_t) dt$

generates a flow X_t of homeomorphisms on \mathbb{R}^d . Our purpose is to show $\mathcal{L}^d \circ X_t^{-1} \sim \mathcal{L}^d$. This is well known when *b* is smooth. Indeed, if $\sigma(t, \cdot), b(t, \cdot) \in C_b^2(\mathbb{R}^d)$, uniformly in *t*, then SDE

 $\mathrm{d}X_t = \sigma(t, X_t) \,\mathrm{d}W_t + b(t, X_t) \,\mathrm{d}t$

generates a flow X_t of diffeomorphisms on \mathbb{R}^d . Let

$$\rho_t = \frac{\mathsf{d}(\mathcal{L}^d \circ X_t^{-1})}{\mathsf{d}\mathcal{L}^d} = \big| \mathsf{det}(\nabla X_t^{-1}) \big|, \ \bar{\rho}_t = \frac{\mathsf{d}(\mathcal{L}^d \circ X_t)}{\mathsf{d}\mathcal{L}^d} = \big| \mathsf{det}(\nabla X_t) \big|.$$

Then we have $ho_t(x) = \left[ar
ho_t ig (X_t^{-1}(x))
ight]^{-1}$ and

10 / 20

$$\bar{\rho}_t(x) = \exp\left\{\int_0^t \left\langle \operatorname{div}(\sigma)(s, X_s(x)), \operatorname{d} W_s \right\rangle + \int_0^t \left[\operatorname{div}(b) - \frac{1}{2} \langle \nabla \sigma, (\nabla \sigma)^* \rangle \right](s, X_s(x)) \operatorname{d} s \right\}.$$
(4)

If $\sigma \equiv \mathit{Id}$, the above identity reduces to

$$\bar{\rho}_t(x) = \exp\bigg\{\int_0^t \operatorname{div}(b)(s, X_s(x)) \,\mathrm{d}s\bigg\}.$$

When $b \in L^q([0, T], L^p(\mathbb{R}^d))$, it is natural to

- approximate b with smooth vector fields bⁿ, and
- prove $\bar{\rho}_t^n(x) \rightarrow ?$ by limit theorem.

However, the divergence $div(b)(s, \cdot)$ does not exist. Therefore, we cannot directly consider the approximation equations of

$$\mathrm{d}X_t = \mathrm{d}W_t + b(t, X_t)\,\mathrm{d}t.$$

Preliminary results

Some functional spaces:

•
$$L^{q}_{p}(T) := L^{q}([0, T], L^{p}(\mathbb{R}^{d})),$$

•
$$\mathbb{H}^{q}_{2,p}(T) = L^{q}([0,T], W^{2,p}(\mathbb{R}^{d})).$$

Theorem 2

Fix $\lambda > 0$. Assume $b \in L_p^q(T)$ with $\frac{d}{p} + \frac{2}{q} < 1$. Then \exists a unique solution in $\mathbb{H}^q_{2,p}(T)$ to the backward parabolic system

$$\partial_t u + \frac{1}{2}\Delta u + b \cdot \nabla u = \lambda u - b, \quad u(T, x) = 0.$$
 (5)

Moreover, $\exists C > 0$ depending on d, p, q, T, λ and $\|b\|_{L_p^q(T)}$ s.t.

$$\|\partial_t u\|_{L^q_p(T)} + \|u\|_{\mathbb{H}^q_{2,p}(T)} \leq C \|b\|_{L^q_p(T)}.$$

Some properties of the solution

Lemma 3

Let u_{λ} be the solution of (5). Then

$$\sup_{t\leq T} \|\nabla u_{\lambda}\|_{\infty} \to 0 \quad \text{as } \lambda \to \infty,$$

where $\|\cdot\|_{\infty}$ is the supremum norm in $C(\mathbb{R}^d)$.

In view of the above lemma, we fix $\lambda > 0$ such that

$$\sup_{t\leq T} \|\nabla u_{\lambda}\|_{\infty} \leq \frac{1}{2}.$$

Define

ine
$$\phi_{\lambda}(t,x) = x + u_{\lambda}(t,x), \quad (t,x) \in [0,T] \times \mathbb{R}^{d}.$$

Zvonkin type transform

Proposition 4

The following statements hold:

- (i) uniformly in $t \in [0, T]$, $\phi_{\lambda}(t, \cdot)$ has bounded first derivatives which are Hölder continuous;
- (ii) for every $t \in [0, T]$, $\phi_{\lambda}(t, \cdot)$ is a C^1 -diffeomorphism on \mathbb{R}^d ;
- (iii) $\phi_{\lambda}^{-1}(t, \cdot) := (\phi_{\lambda}(t, \cdot))^{-1}$ has bounded first spatial derivatives, uniformly in t;

(iv) ϕ_{λ} and ϕ_{λ}^{-1} are jointly continuous in (t, x).

In the following, we omit λ and write $\phi_t(x) = x + u(t, x)$. Define

$$Y_t = \phi_t(X_t) = X_t + u(t, X_t).$$

As ϕ_t is smooth, it is enough to show $\mathcal{L}^d \circ Y_t^{-1} \sim \mathcal{L}^d$.

Equation for Y_t

Since u(t, x) solves the equation (5):

$$\partial_t u + \frac{1}{2}\Delta u + b \cdot \nabla u = \lambda u - b,$$

Itô's formula leads to

$$dY_t = (Id + \nabla u(t, X_t)) dW_t + \lambda u(t, X_t) dt$$

= $\tilde{\sigma}(t, Y_t) dW_t + \tilde{b}(t, Y_t) dt,$ (6)

where $\tilde{\sigma}(t, y) = Id + \nabla u(t, \phi_t^{-1}(y)), \quad \tilde{b}(t, y) = \lambda u(t, \phi_t^{-1}(y)).$

Proposition 5

We have $abla ilde{b} \in Cig([0,\,T],\,\mathcal{C}_b(\mathbb{R}^d)ig)$ and

 $\tilde{\sigma} \in C([0,T], C_b(\mathbb{R}^d)) \cap L^q(0,T, W^{1,p}(\mathbb{R}^d)).$

We still cannot directly apply density formula (4) to SDE (6) for Y_t . Nevertheless, div $(\tilde{\sigma})$ and div (\tilde{b}) make sense.

We need an approximation argument.

Let b^n be a sequence of smooth compactly supported vector fields converging to b in $L^q_p(T)$. Consider

$$\mathrm{d}X_t^n = \mathrm{d}W_t + b^n(t, X_t^n)\,\mathrm{d}t.$$

An approximation result

Lemma 6

Let b^n be a sequence of smooth compactly supported vector fields converging to b in $L_p^q(T)$, and u^n the solution to

$$\partial_t u^n + \frac{1}{2}\Delta u^n + b^n \cdot \nabla u^n = \lambda u^n - b^n.$$

Then we have

(i) as
$$n \to \infty$$
, $u^n(t, x) \to u(t, x)$ and $\nabla u^n(t, x) \to \nabla u(t, x)$
locally uniformly;

(ii)
$$\lim_{n\to\infty} \|u^n - u\|_{\mathbb{H}^q_{2,p}(T)} = 0;$$

(iii) $\sup_{n\geq 1} \sup_{t,x} |\nabla u^n(t,x)| \leq \frac{1}{2}$ for λ big enough;

We fix $\lambda > 0$ s.t. (iii) holds.

Approximating SDEs

Let $\phi_t^n(x) = x + u^n(t,x)$ and $Y_t^n = \phi_t^n(X_t^n)$. Then we have

$$\mathrm{d}Y_t^n = \tilde{\sigma}^n(t, Y_t^n) \,\mathrm{d}W_t + \tilde{b}^n(t, Y_t^n) \,\mathrm{d}t$$

with

$$\tilde{\sigma}^n(t,y) = Id + \nabla u^n(t,\phi_t^{n,-1}(y)), \quad \tilde{b}^n(t,y) = \lambda u^n(t,\phi_t^{n,-1}(y)).$$

Let

$$\rho_t^n := \frac{\mathsf{d}(\mathcal{L}^d \circ Y_t^{n,-1})}{\mathsf{d}\mathcal{L}^d} = \big| \det \big(\nabla Y_t^{n,-1}\big) \big|,$$
$$\bar{\rho}_t^n := \frac{\mathsf{d}(\mathcal{L}^d \circ Y_t^n)}{\mathsf{d}\mathcal{L}^d} = \big| \det \big(\nabla Y_t^n\big) \big|.$$

・ロ ・ ・ 一 ・ ・ 三 ・ ・ 三 ・ ・ 三 ・ り へ (* 18 / 20

Convergence of densities

We have

$$\begin{split} \bar{\rho}_t^n(x) &= \exp\bigg\{\int_0^t \left\langle \operatorname{div}(\tilde{\sigma}^n)(s,Y_s^n(x)), \mathrm{d}W_s \right\rangle \\ &+ \int_0^t \Big[\operatorname{div}(\tilde{b}^n) - \frac{1}{2} \langle \nabla \tilde{\sigma}^n, (\nabla \tilde{\sigma}^n)^* \rangle \Big](s,Y_s^n(x)) \, \mathrm{d}s \bigg\}. \end{split}$$

Using Lemma 6, we can show that

$$\begin{split} \bar{\rho}_t^n(x) &\to \exp\bigg\{\int_0^t \left\langle \operatorname{div}(\tilde{\sigma})(s, Y_s(x)), \operatorname{d}W_s \right\rangle \\ &+ \int_0^t \Big[\operatorname{div}(\tilde{b}) - \frac{1}{2} \langle \nabla \tilde{\sigma}, (\nabla \tilde{\sigma})^* \rangle \Big](s, Y_s(x)) \operatorname{d}s \bigg\}. \end{split}$$

which implies $\mathcal{L}^d \circ Y_t^{-1} \sim \mathcal{L}^d$

Thanks for your attention!