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Introduction

Perturbed Markov chains

Let @, be a time-homogeneous continuous-time Markov chain (CTMC)
on a countable state space E = Z, with the irreducible and regular
intensity matrix Q = (qgj;) (Q is regular means that Q is conservative and
Q-process is unique). The unique Q-function (transition function) is
denoted by P* = (P}). Suppose that ®, is positive recurrent with the
unique invariant probability measure 7. We suppose that Q is perturbed
to be another irreducible intensity matrix Q= (gij)- Let A= Q- Q.

Note:
>> A typical perturbation form: Q=Q+¢G.

> Throughout we assume the unperturbed component Q is irreducible.
This type of perturbation is called regular perturbation, otherwise is
called singular perturbation. For singular perturbation, please refer to the
book G.G. Yin and Q. Zhang (2013).
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Introduction

We are interested in two things:

(i) Condition sufficient for the regularity of Q and then the stability of
the perturbed Q-process;

t>(ii) Computable bounds on v — m when (NQ—process is ergodic with the
invariant distribution v.

The perturbation A is supposed to be small. However small perturbation
may result in a big change of the stability of a process.
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Introduction

lllustrative Example:

Consider a birth-death process whose intensity matrix Q = (gjj) is
conservative and its birth (death) coefficients b; (a;) are given by:

bp=1, bi=a;=i",i>1,
where v > 0.
From M.F.Chen (2003), we know that the Q-process is
e ergodic if and only if v > 1,
e exponentially ergodic if and only if v > 2,

e and strongly ergodic if and only if v > 2.
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Cont’'d

Now we consider another intensity matrix Q = (gij) given by

gio + €, if i>1,j=0,
Z],'j: gii — &, if i>1,j=1,
gij, else.

or in matrix form (N? = Q@ + €G, where

0 0 0 O
1 -1 0 0
G=|1 0 -1 0
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Cont’'d

It can be shown that Q is also regular (see also Zhang Y.H. 1998). Define
a drift function V by Vo =0and V; =1 i > 1. Then it is easy to show

un Vi< -1+ *I{O}( i),

JEE

where I4(-) denotes the indicator function about the set A. From
M.F.Chen (2003), we know that the Q-process is always strongly ergodic
(independently of ) whenever € > 0.

Observe that both @ and (N? can be understood to be a perturbed matrix
from each other. The value of ¢ reflects the size of the perturbation. By
the above analysis, a very small perturbation may change a non-ergodic
Markov chain into a strongly ergodic one and vice versa. Hence the small
perturbation may cause drastic influence on the stability and the
invariant measure of a process.

7/32



Introduction

Types of the bounds

Three types of bounds: component-wise, |V, — 7
V-norm-wise bounds ||v — 7|y,

; norm-wise, ||v — ||1;

For a finite measure y, define ||ullv = >, cg [1i]Vi. The V-norm for any
matrix L = (L) on E x E is given by

1
ILllv = ?UEV;.Z L V.
€ €R

The V-normwise perturbation bounds enable us to measure the
perturbation of the moments of the invariant distribution, which causes
an essential difference from the component-wise or normwise bounds.

For example, let ®, be the queue length of the M/M/1 queue and
V; =i, then

(V) =x(V)| < v —=lv
(the perturbation of the expected stationary queue length).
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Introduction

Review the literature: discrete-time case

For discrete-time Markov chains:
(1) finite state space:

> C.D. Meyer (1980), G.E.Cho and Meyer (2000), [ group inverse,
norm-wise bounds |

> E. Seneta (1988, 1991) [ergodicity coefficient, group inverse,
norm-wise bounds]

> J.J. Hunter (2003, 2006)  [first hitting times component-wise
bounds]

(2) Infinitely many state space

> N.V. Kartashov (1980, 1986, 1996), Aissani and Kartashov (1983)
[Lyapunov-like method, V-norm bounds]
> Aissani D. and his students (2008, 2010...)

> Y.Y. Liu (2012) [Proposing two new norm-wise bounds and one

V-normwise bound in sprit of Lyapunov-like method. ]
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Introduction

CTMCGCs

(1) finite state space:
> A.Y. Mitrophanov (2004, 2006)[ convergence rates]

(2) countable state space with bounded intensity matrices:

> E. Altman, C.E. Avrachenkov, R. Nifiez-Queija (2004) [regular and
singular perturbation]

> * Heidergott B, Hordijk A, Leder N. (2009,2010) [series expansion]
> A.l. Zeifman (1995, 2009, 2014,...) [non-homogeneous CTMCs]
> All these bounds depend on the accuracy of the convergence rate

> Y.Y. Liu (2012) [extend the Lyapunov-like method to
continuous-time case. The bounds are better.]

(3) infinitely countable state space with general intensity matrices:

> R.L. Tweedie (1980) [ the component-wise bounds, specific
perturbation]
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Main results

Deviation matrix

Our focus: V-norm bounds for general CTMCs

To perform the perturbation analysis, one key tool is the deviation matrix
D = (Dj), defined by

DU:/O (P,-j-—?'(‘j)dt.

The formulas B
vR@R=0, D=TI-1

leads to a key fact:
V—T = V(Q — Q)D =vAD.

This is the starting point for perturbation analysis.
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Main results

Drift condition for exponential ergodicity

D(V, )\, b, C):There exist a finite function V satisfying V > 1, some
finite set C, and positive constants A\, b < oo such that

> aiVj < =AVi 4 blc(i), i€E.
JEE

Remark: (i) The drift condition is equivalent to exponential ergodicity.
The explicit drift function V' has been found for many continuous-time
Markov models, see, e.g. Y.H. Mao and Y.H. Zhang (2004) for single
birth process, multidimensional @-processes, and branching processes.

(ii) From P. Coolen-Schrijner and E A.Van Doorn (2003), we know that
the deviation matrix exists (i.e. D < oo) if and only if the process is
¢-ergodic of order 2 (see, M.F. Chen and Y.Z. Wang (2013), Y.H. Mao
(2004) or Y.Y. Liu et al (2010)). Obviously, the drift condition is
sufficient for the existence of the deviation matrix.
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Main results

Theorem 1: bound on ||AD]|]y.

The first result gives the V-norm-wise bound on ||AD||y in terms of the
drift condition.

Theorem 1. (Y.Y. Liu 2014) Let @ be irreducible and regular, and let iy
be any fixed state in E. Suppose that @ satisfies the drift condition
D(V,\ b,C) for C ={ip} and V;; = 1. Let c =1+ 7(V). Then we
have

IADIlv

IN

C

—lA

SN
A+ b

< THA”V
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Main results

Theorem 2: bound on ||v — 7||y.

Theorem 2. (Y.Y. Liu 2014) Let Q be irreducible and conservative, and
let ip be any fixed state in [E. Suppose that Q satisfies the drift condition
D(V,\ b,C) for C={ip} , Vi, =1and lim;_ o V; = oco. Let
c=1+mn(V).

(M) If Ay < % then Q is regular, the Q-process ®(t) is exponentially
ergodic, v =7y~ (AD)", and

cr(V)I[Allv
v—r|y £ ——F——-
| v < "= clAlly

(i) Ay < ﬁi\, then @ is regular, the @-process ®(t) is
exponentially ergodic, v =7 Y > (AD)", and

b[(b + MIA[v]
= Al(b+MIAllv]

v =l < 33

15/32



Main results

Remark on Theorem 2

Remark:

>(i) In this theorem, the drift function V is required to satisfy
lim;_ o Vi = oo, which however is not needed for the other two theorems.

This condition is imposed for guaranteeing the regularity of @ and Q.

>(ii) Theorem 1 reveals an interesting phenomenon that the exponentially
ergodic process @, displays good stability:

o (i) @, is always strongly stable (i.e. every intensity matrix Q in the
set {Q : ||A|lv < €} is regular and has a unique invariant probability
measure v such that ||[v — ||y — 0 as ||Ally — 0);

o (ii) the perturbed process ®, is also exponentially ergodic with
respect to small perturbation in the sense of V-norm.
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Main results

Cont’'d

>(iii) We could have obtained bounds on ||D||\y more directly through the
estimate of the convergence rates. If Q satisfies D(V, A, b, {ip}), then it
follows from S.P Myen and R.L. Tweedie (1993) that there exist positive
constants «, 3 such that

[Pt — Ny < ae™ Pt

which implies that [[Dv < . However, the constants «, § are difficult
to determine except for some special cases, for example,  is monotone.

Suppose that Q is monotone and that Q satisfies D(V/, A, b, {0}) for a
non-decreasing function V/, then it follows from R.B. Lund etal (1996)
that (17) holds for a = 2 (14 2) and 3 = A, which implies

D)y < 2532, |aD|y < “" V| Afly. Hence if Ay <

2(>\+b) then

bl2(b+ N)[IA]lv]
A= AR(b+N)Av]

[v = =llv <
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Main results

Theorem 3: bound on ||D||y.

Theorem 3. (Y.Y. Liu 2014) Let Q be irreducible and regular, and let i
be any fixed state in E. Suppose that @ satisfies the drift condition
D(V,\ b,C) for C = {ip} and V;; =1. Let c =1+ w(V). Then we
have

Remark: Let |g| < V. Then h = Dg is a solution of the Poisson equation
Qh=—[g —7(g)], and

hil =1 Dygl <> |DgVj| < D]lv V.
JEE JEE

While by P. Glynn and S. Meyn (1996), we can only show that
|hi| < d(1 4 V;) for an existing but unknown positive constant d.
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Augmented truncation of invariant probability measures

Augmented truncation

Suppose that @, is ergodic with intensity matrix @ and the unique
invariant probability measure 7. Let (,)E = {0,1,2,--- ,n} and let K be
any fixed state in E. Denote by (,)Q, n > K, the (n+ 1) x (n+ 1)
northwest corner truncation of Q. The (K + 1)-th column augmentation,
denoted by (, kyQ = ((n,k)qij). is given by

gl U) - Xk, 9y i 0. € En,
(mK) 9y 0, otherwise.

From the special construction, we know that (, )@ has a unique
invariant probability measure (, k).

Does (, k)m converge to 7 for an arbitrary K7 Not always!
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Augmented truncation of invariant probability measures

Non-convergence example

Consider a CTMC with the following conservative intensity matrix

Go po—1 0 0
q1 0 p1—1 0 .
Q=] @ o 0 p-1 - |

where py = % and for any n > 1

1- -1 n is an even.

1 n is an odd,
Pn =

Q is irreducible, regular and Q-process is strongly ergodic. If we perform
the last column augmentation (i.e. K = n) of the truncated intensity
matrix, then we know that (n,n)™ = . (Reason: Consider P = Q + / and
use Example 2.1 in Y.Y. Liu (2010).)

A basic question is: what conditions ensure that (,m — 7.
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Augmented truncation of invariant probability measures

Basic properties about augmented truncation

Proposition: Let @ be irreducible and regular. Suppose that @ satisfies
the drift condition D(V/, A, b, {ip}) with V;, = 1. Then we have

(i) (n,ip) Q satisfy D(V/, A, b, {io}) for any n > ig;
(ii) (i) Pii(t) = Py(t), n— oo;

(III) H(n,io)ﬂ' — 71'”\/ — 0, n— oo.

> (i) follows from
Z (n,io) i V - Z qij \/J + qllo + Z q,k < Z dik Vk
JE(nE JE€(mE.j#io k>n+1 kEE

> Hart and Tweedie (2012) proved (ii) and limp—sco [|(n,i)™ — 7| = 0.
proved. Actually their arguments can be modified easily to obtain the stronger
convergence (iii). Key step: For any fixed i € (,hE and m € N,

lminT = 7llv - < i) R™ = (nuio) 7T|\v +IRT = 7llv + llniy R — R llv

S +bm S
2MV(i)p +ZZR 5 IRk = (mig) Recllv

s=0 keE

IN
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Proof of the main results

Proof of Theorem 1: Step 1

A+ b
)2
We only need to prove the first inequality. The second inequality follows

the first one and that ¢ = 1+ (V) < 1+ 2 (by the drift condition).

C
=[ADllv < {l1Allv < [A]v-

(1) We prove the result for the case that Q is bounded, i.e. there exists a
positive constant h such that sup;cg(—gii) < % Let P, =1+ hQ,

P, =1+ hQ, and Ay = P, — P, = hA. Denote by Dj, the deviation
matrix of P,. Note that Pj, has the same invariant probability measure as
Q and D, = 2. From N.V. Kartashov (1986), we know that

Dy = (1= Ta(I—1).
n=0

where Ty is the the same as Py except the first row (all changed into 0).
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Proof of the main results

Since Q satisfies D(V, A\, b, {ip}), we have
I Thllv <1—Xh.

Since ALl = 0, we have

[AD|lv = ||AnDnllv

AR TR(I-1)
n=0

v

IN

C
1Al
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Proof of the main results

(2) Performing the augmented truncations to both @ and Q obtain n)Q
and Q respectively. Take (A = () Q — ,,)Q Let (,ym and (v be the

invariant probability measure of (,)Q and ,,)Q respectively. Let (mD be
the deviation matrix with respect to (,,)Q.

lim > [((mAwD)ilV; =D I(AD);| V.

n—oo
Je(n JEE

To prove the above fact, we need to show lim,_oo (n)Djj = Dj;.
Since () Q satisfies D(V, A, b, {io}) uniformly for any n > io, there exist
positive constants d, « such that

> P~V < dV(i)e ™.

JEME
Since limy_s 00 () Pf = Pf and lim,_, 00 ()7 = 7, by the bounded convergence
theorem, we obtain

lim (,,)D,‘j :/ lim [(,,)P,j Wj]dt D
0 n—oo

n—oo
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Proof of the main results

(3) There exists big enough N such that for any n > N
lmAwDllv = [AD]v —e.
Since () Q satisfies D(V/, A, b, {io}) uniformly for any n > iy, applying
the fist part, we
c

oDl < 1411

Thus by (2) and (3), we have
c
1a0)y < Saly

because ¢ is arbitrarily small.
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Proof of the main results

Proof of Theorem 2:

(i) Since [|A]ly < 2, we obtain

un i < - %)/\Vi-ﬁ-bl{io}(’.)'

JEE
By M.F. Chen (2003), we know that both @ and Q are regular due to
the extra assumption that lim;_., V; = co. Moreover, the Q- process
®(t) is exponentially ergodic. Since || Ally < A , by Theorem 1, we have
|AD||v < 1. Since v(I — AD) = m, we have

v=m» (AD)"

which follows

( VA
v—rl|y <w(V AD
| [ § [ADIlY < N—cldly

ii) Since M is increasing of ¢, the statements of (ii) hold when ¢
c[[ally

and 7(V/) are changed into M and b, respectively. s
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Future research

Future research

m Developing the technique of augmented truncation for CTMCs:

> reducing the exponential ergodicity condition

> extending to high-dimensional CTMCs

m Establishing the lower bound for the error. (By far, all the known
perturbation bounds are upper bounds)

30/32



Future research

Chen M F. From Markov Chains to Non-equilibrium Particle
Systems, second ed. World Scientific, Singapore, 2003

Chen M F. and Wang Y.Z. Algebraic convergence of Markov chains.
Annals of Applied Probability, 2003, 13:2, 604-627

Mao Y H. Ergodic degrees for continuous-time Markov chains.
Science in China, Series A, 2004, 47: 161-174.

Mao Y H, Zhang Y H. Exponential ergodicity for single birth
processes. Journal of Applied Probability, 2004, 41: 1022-1032

) & W & =

Zhang Y.H. Regularity of Q-matrices being linear combinations of
two regular Q-matrices. Journal of Bejing Normal University, 1998,
34: 292-296. (In Chinese)

(=)

Kartashov N V. Strongly stable Markov chains. Journal of Soviet
Mathematics, 1986, 34: 1493-149

[d Altman E, Avrachenkov CE, Nufiez-Queija R. Perturbation analysis
for denumerable Markov chains with application to queueing models.
Advances in Applied Probability, 2004, 36: 839-853

31/32



Future research

B Glynn P W, Meyn S P. A Liapounov bound for solutions of the
Poisson equation. Annals of Probability, 1996, 24: 916-931

@ Hart A G, Tweedie R L. Convergence of invariant measures of
truncation approximations to Markov processes. Applied
Mathematics, 2012, 3: 2205-2215

@ Tweedie R L. Perturbations of countable Markov chains and
processes. Annals of the Institute of Statistical Mathematics, 1980,
32: 283-290

@ Liu Y. Augmented truncation approximations of discrete-time
Markov chains. Operation Research Letters, 2010, 38: 218-222

@ Liu Y. Perturbation bounds for the stationary distributions of Markov
chains. SIAM Journal on Matrix Analysis and Applications, 2012, 33:
1057-1074

@ LiuY, Zhang H J, Zhao Y Q. Subexponential ergodicity for
continuous-time Markov chains. Journal of Mathematical Analysis
and Applications, 2010, 368: 178-189

B Liu Y. Perturbation analysis for continuous-time Markoy chains.
Submitted. 2014. 32/32



	Introduction
	Main results
	Augmented truncation of invariant probability measures 
	Proof of the main results
	Future research

