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Perturbed Markov chains

Let Φt be a time-homogeneous continuous-time Markov chain (CTMC)
on a countable state space E = Z+, with the irreducible and regular
intensity matrix Q = (qij) (Q is regular means that Q is conservative and
Q-process is unique). The unique Q-function (transition function) is
denoted by P t = (P t

ij). Suppose that Φt is positive recurrent with the
unique invariant probability measure π. We suppose that Q is perturbed
to be another irreducible intensity matrix Q̃ = (q̃ij). Let ∆ = Q̃ − Q.

Note:

� A typical perturbation form: Q̃ = Q + εG .

� Throughout we assume the unperturbed component Q is irreducible.
This type of perturbation is called regular perturbation, otherwise is
called singular perturbation. For singular perturbation, please refer to the
book G.G. Yin and Q. Zhang (2013).
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We are interested in two things:

�(i) Condition sufficient for the regularity of Q̃ and then the stability of
the perturbed Q̃-process;

�(ii) Computable bounds on ν − π when Q̃-process is ergodic with the
invariant distribution ν.

The perturbation ∆ is supposed to be small. However small perturbation
may result in a big change of the stability of a process.
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Illustrative Example:

Consider a birth-death process whose intensity matrix Q = (qij) is
conservative and its birth (death) coefficients bi (ai ) are given by:

b0 = 1, bi = ai = iγ , i ≥ 1,

where γ ≥ 0.

From M.F.Chen (2003), we know that the Q-process is

• ergodic if and only if γ > 1,

• exponentially ergodic if and only if γ ≥ 2,

• and strongly ergodic if and only if γ > 2.
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Now we consider another intensity matrix Q̃ = (q̃ij) given by

q̃ij =

 qi0 + ε, if i ≥ 1, j = 0,
qii − ε, if i ≥ 1, j = i ,
qij , else.

or in matrix form Q̃ = Q + εG , where

G =


0 0 0 0 · · ·
1 −1 0 0 · · ·
1 0 −1 0 · · ·
...

...
...

...
. . .

 .
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It can be shown that Q̃ is also regular (see also Zhang Y.H. 1998). Define
a drift function V by V0 = 0 and Vi = 1

ε , i ≥ 1. Then it is easy to show∑
j∈E

qijVj ≤ −1 +
1

ε
I{0}(i),

where IA(·) denotes the indicator function about the set A. From
M.F.Chen (2003), we know that the Q̃-process is always strongly ergodic
(independently of γ) whenever ε > 0.

Observe that both Q and Q̃ can be understood to be a perturbed matrix
from each other. The value of ε reflects the size of the perturbation. By
the above analysis, a very small perturbation may change a non-ergodic
Markov chain into a strongly ergodic one and vice versa. Hence the small
perturbation may cause drastic influence on the stability and the
invariant measure of a process.
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Types of the bounds

Three types of bounds: component-wise, |νk − πk |; norm-wise, ‖ν − π‖1;
V -norm-wise bounds ‖ν − π‖V ,

For a finite measure µ, define ‖µ‖V =
∑

i∈E |µi |Vi . The V -norm for any
matrix L = (Lij) on E× E is given by

‖L‖V = sup
i∈E

1

Vi

∑
j∈E
|Lij |Vj .

The V -normwise perturbation bounds enable us to measure the
perturbation of the moments of the invariant distribution, which causes
an essential difference from the component-wise or normwise bounds.

For example, let Φt be the queue length of the M/M/1 queue and
Vi = i , then

|ν(V )− π(V )| ≤ ‖ν − π‖V
(the perturbation of the expected stationary queue length).
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Review the literature: discrete-time case

For discrete-time Markov chains:

(1) finite state space:

. C.D. Meyer (1980), G.E.Cho and Meyer (2000), [ group inverse,
norm-wise bounds ]

. E. Seneta (1988, 1991) [ergodicity coefficient, group inverse,
norm-wise bounds]

. J.J. Hunter (2003, 2006) [first hitting times component-wise
bounds]

(2) Infinitely many state space

. N.V. Kartashov (1980, 1986, 1996), Aissani and Kartashov (1983)
[Lyapunov-like method, V -norm bounds]

. Aissani D. and his students (2008, 2010...)

. Y.Y. Liu (2012) [Proposing two new norm-wise bounds and one
V -normwise bound in sprit of Lyapunov-like method. ]

9 / 32



Introduction Main results Augmented truncation of invariant probability measures Proof of the main results Future research

CTMCs

(1) finite state space:
. A.Y. Mitrophanov (2004, 2006)[ convergence rates]

(2) countable state space with bounded intensity matrices:

. E. Altman, C.E. Avrachenkov, R. Núñez-Queija (2004) [regular and
singular perturbation]

. * Heidergott B, Hordijk A, Leder N. (2009,2010) [series expansion]

. A.I. Zeifman (1995, 2009, 2014,...) [non-homogeneous CTMCs]

. All these bounds depend on the accuracy of the convergence rate

. Y.Y. Liu (2012) [extend the Lyapunov-like method to
continuous-time case. The bounds are better.]

(3) infinitely countable state space with general intensity matrices:

. R.L. Tweedie (1980) [ the component-wise bounds, specific
perturbation]
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Deviation matrix

Our focus: V-norm bounds for general CTMCs

To perform the perturbation analysis, one key tool is the deviation matrix
D = (Dij), defined by

Dij =

∫ ∞
0

(P t
ij − πj)dt.

The formulas
νQ̃ = 0, QD = Π− I

leads to a key fact:

ν − π = ν(Q̃ − Q)D = ν∆D.

This is the starting point for perturbation analysis.
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Drift condition for exponential ergodicity

D(V , λ, b,C):There exist a finite function V satisfying V ≥ 1, some
finite set C , and positive constants λ, b <∞ such that∑

j∈E
qijVj ≤ −λVi + bIC (i), i ∈ E.

Remark: (i) The drift condition is equivalent to exponential ergodicity.
The explicit drift function V has been found for many continuous-time
Markov models, see, e.g. Y.H. Mao and Y.H. Zhang (2004) for single
birth process, multidimensional Q-processes, and branching processes.

(ii) From P. Coolen-Schrijner and E A.Van Doorn (2003), we know that
the deviation matrix exists (i.e. D <∞) if and only if the process is
`-ergodic of order 2 (see, M.F. Chen and Y.Z. Wang (2013), Y.H. Mao
(2004) or Y.Y. Liu et al (2010)). Obviously, the drift condition is
sufficient for the existence of the deviation matrix.
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Theorem 1: bound on ‖∆D‖V .

The first result gives the V -norm-wise bound on ‖∆D‖V in terms of the
drift condition.

Theorem 1. (Y.Y. Liu 2014) Let Q be irreducible and regular, and let i0
be any fixed state in E. Suppose that Q satisfies the drift condition
D(V , λ, b,C) for C = {i0} and Vi0 = 1. Let c = 1 + π(V ). Then we
have

‖∆D‖V ≤ c

λ
‖∆‖V

≤ λ+ b

λ2
‖∆‖V .
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Theorem 2: bound on ‖ν − π‖V .

Theorem 2. (Y.Y. Liu 2014) Let Q be irreducible and conservative, and
let i0 be any fixed state in E. Suppose that Q satisfies the drift condition
D(V , λ, b,C) for C = {i0} , Vi0 = 1 and limi→∞ Vi =∞. Let
c = 1 + π(V ).
(i) If ‖∆‖V < λ

c , then Q̃ is regular, the Q̃-process Φ̃(t) is exponentially
ergodic, ν = π

∑∞
n=0(∆D)n, and

‖ν − π‖V ≤
cπ(V )‖∆‖V
λ− c‖∆‖V

.

(ii) If ‖∆‖V < λ2

b+λ , then Q̃ is regular, the Q̃-process Φ̃(t) is

exponentially ergodic, ν = π
∑∞

n=0(∆D)n, and

‖ν − π‖V ≤
b[(b + λ)‖∆‖V ]

λ3 − λ[(b + λ)‖∆‖V ]
.

15 / 32



Introduction Main results Augmented truncation of invariant probability measures Proof of the main results Future research

Remark on Theorem 2

Remark:

.(i) In this theorem, the drift function V is required to satisfy
limi→∞ Vi =∞, which however is not needed for the other two theorems.
This condition is imposed for guaranteeing the regularity of Q and Q̃.

.(ii) Theorem 1 reveals an interesting phenomenon that the exponentially
ergodic process Φt displays good stability:

� (i) Φt is always strongly stable (i.e. every intensity matrix Q̃ in the
set {Q̃ : ‖∆‖V < ε} is regular and has a unique invariant probability
measure ν such that ‖ν − π‖V → 0 as ‖∆‖V → 0);

� (ii) the perturbed process Φ̃t is also exponentially ergodic with
respect to small perturbation in the sense of V -norm.
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.(iii) We could have obtained bounds on ‖D‖V more directly through the
estimate of the convergence rates. If Q satisfies D(V , λ, b, {i0}), then it
follows from S.P Myen and R.L. Tweedie (1993) that there exist positive
constants α, β such that

‖P t − Π‖V ≤ αe−βt ,

which implies that ‖D‖V ≤ α
β . However, the constants α, β are difficult

to determine except for some special cases, for example, Q is monotone.

Suppose that Q is monotone and that Q satisfies D(V , λ, b, {0}) for a
non-decreasing function V , then it follows from R.B. Lund etal (1996)
that (17) holds for α = 2

(
1 + b

λ

)
and β = λ, which implies

‖D‖V ≤ 2(λ+b)
λ2 , ‖∆D‖V ≤ 2(λ+b)

λ2 ‖∆‖V . Hence if ‖∆‖V < λ2

2(λ+b) , then

‖ν − π‖V ≤
b[2(b + λ)‖∆‖V ]

λ3 − λ[2(b + λ)‖∆‖V ]
.
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Theorem 3: bound on ‖D‖V .

Theorem 3. (Y.Y. Liu 2014) Let Q be irreducible and regular, and let i0
be any fixed state in E. Suppose that Q satisfies the drift condition
D(V , λ, b,C) for C = {i0} and Vi0 = 1. Let c = 1 + π(V ). Then we
have

‖D‖V ≤
c2

λ
≤ (λ+ b)2

λ3
.

Remark: Let |g | ≤ V . Then h = Dg is a solution of the Poisson equation
Qh = −[g − π(g)], and

|hi | = |
∑
j∈E

Dijgj | ≤
∑
j∈E
|Dij |Vj | ≤ ‖D‖VVi .

While by P. Glynn and S. Meyn (1996), we can only show that
|hi | ≤ d(1 + Vi ) for an existing but unknown positive constant d .
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Augmented truncation

Suppose that Φt is ergodic with intensity matrix Q and the unique
invariant probability measure π. Let (n)E = {0, 1, 2, · · · , n} and let K be
any fixed state in E. Denote by (n)Q, n ≥ K , the (n + 1)× (n + 1)
northwest corner truncation of Q. The (K + 1)-th column augmentation,
denoted by (n,K)Q = ((n,K)qij), is given by

(n,K)qij =

{
qij + I{K}(j) ·

∑
j /∈En

qij , if i , j ∈ En,

0, otherwise.

From the special construction, we know that (n,K)Q has a unique
invariant probability measure (n,K)π.

Does (n,K)π converge to π for an arbitrary K? Not always!
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Non-convergence example

Consider a CTMC with the following conservative intensity matrix

Q =


q0 p0 − 1 0 0 · · ·
q1 0 p1 − 1 0 · · ·
q2 0 0 p2 − 1 · · ·
...

. . .

 ,

where p0 = 1
2 and for any n ≥ 1

pn =

{ 1
2 , n is an odd,

1− 1

3
n
2
, n is an even.

Q is irreducible, regular and Q-process is strongly ergodic. If we perform
the last column augmentation (i.e. K = n) of the truncated intensity
matrix, then we know that (n,n)π 9 π. (Reason: Consider P = Q + I and
use Example 2.1 in Y.Y. Liu (2010).)

A basic question is: what conditions ensure that (n)π → π.
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Basic properties about augmented truncation

Proposition: Let Q be irreducible and regular. Suppose that Q satisfies
the drift condition D(V , λ, b, {i0}) with Vi0 = 1. Then we have

(i) (n,i0)Q satisfy D(V , λ, b, {i0}) for any n ≥ i0;

(ii) (n,i0)Pij(t)→ Pij(t), n→∞;

(iii) ‖(n,i0)π − π‖V → 0, n→∞.
——————————————————————————————–
. (i) follows from∑

j∈(n)E
(n,i0)qijVj =

∑
j∈(n)E,j 6=i0

qijVj + qii0Vi0 +
∞∑

k≥n+1

qikVi0 ≤
∞∑
k∈E

qikVk .

. Hart and Tweedie (2012) proved (ii) and limn→∞ ‖(n,i0)π − π‖ = 0.
proved. Actually their arguments can be modified easily to obtain the stronger
convergence (iii). Key step: For any fixed i ∈ (n)E and m ∈ N+,

‖(n,i0)π − π‖V ≤ ‖(n,i0)R
m
i· − (n,i0)π‖V + ‖Rm

i· − π‖V + ‖(n,i0)R
m
i· − Rm

i· ‖V

≤ 2MV (i)ρm +
m−1∑
s=0

∑
k∈E

R s
ik(
β + b

β + λ
)m−1−s‖Rk· − (n,i0)Rk·‖V
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Proof of Theorem 1: Step 1

⇒‖∆D‖V ≤
c

λ
‖∆‖V ≤

λ+ b

λ2
‖∆‖V .

We only need to prove the first inequality. The second inequality follows
the first one and that c = 1 + π(V ) ≤ 1 + b

λ (by the drift condition).

(1) We prove the result for the case that Q is bounded, i.e. there exists a
positive constant h such that supi∈E(−qii ) ≤ 1

h . Let Ph = I + hQ,

P̃h = I + hQ̃, and ∆h = P̃h − Ph = h∆. Denote by Dh the deviation
matrix of Ph. Note that Ph has the same invariant probability measure as
Q and Dh = D

h . From N.V. Kartashov (1986), we know that

Dh = (I − Π)
∞∑
n=0

T n
h (I − Π).

where Th is the the same as Ph except the first row (all changed into 0).
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Since Q satisfies D(V , λ, b, {i0}), we have

‖Th‖V ≤ 1− λh.

Since ∆hΠ = 0, we have

‖∆D‖V = ‖∆hDh‖V =

∥∥∥∥∥∆h

∞∑
n=0

T n
h (I − Π)

∥∥∥∥∥
V

≤ ‖∆‖V
c

λ
.
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Step 2

(2) Performing the augmented truncations to both Q and Q̃ obtain (n)Q

and (n)Q̃, respectively. Take (n)∆ = (n)Q − (n)Q̃. Let (n)π and (n)ν be the

invariant probability measure of (n)Q and (n)Q̃, respectively. Let (n)D be
the deviation matrix with respect to (n)Q.

lim
n→∞

∑
j∈(n)E

|((n)∆(n)D)ij |Vj =
∑
j∈E
|(∆D)ij |Vj .

——————————————————————————————–
To prove the above fact, we need to show limn→∞ (n)Dij = Dij .
Since (n)Q satisfies D(V , λ, b, {i0}) uniformly for any n > i0, there exist
positive constants d , α such that∑

j∈(n)E

|(n)P
t
ij −(n) πj |Vj ≤ dV (i)e−αt .

Since limn→∞ (n)P
t
ij = P t

ij and limn→∞ (n)πj = πj , by the bounded convergence
theorem, we obtain

lim
n→∞ (n)Dij =

∫ ∞
0

lim
n→∞

[(n)P
t
ij −(n) πj ]dt = Dij .
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Step 3

(3) There exists big enough N such that for any n ≥ N

‖(n)∆(n)D‖V ≥ ‖∆D‖V − ε.

Since (n)Q satisfies D(V , λ, b, {i0}) uniformly for any n > i0, applying
the fist part, we

‖(n)∆(n)D‖V ≤ ‖∆‖V
c

λ
.

Thus by (2) and (3), we have

‖∆D‖V ≤
c

λ
‖∆‖V

because ε is arbitrarily small.
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Proof of Theorem 2:

(i) Since ‖∆‖V < λ
c , we obtain∑
j∈E

q̃ijVj ≤ −
(c − 1)λ

c
Vi + bI{i0}(i).

By M.F. Chen (2003), we know that both Q and Q̃ are regular due to
the extra assumption that limi→∞ Vi =∞. Moreover, the Q̃-process
Φ̃(t) is exponentially ergodic. Since ‖∆‖V < λ

c , by Theorem 1, we have
‖∆D‖V < 1. Since ν(I −∆D) = π, we have

ν = π

∞∑
n=0

(∆D)n,

which follows

‖ν − π‖V ≤ π(V )
∞∑
n=1

‖∆D‖nV ≤
cπ(V )‖∆‖V
λ− c‖∆‖V

.

(ii) Since cπ(V )‖∆‖V
λ−c‖∆‖V is increasing of c , the statements of (ii) hold when c

and π(V ) are changed into b+λ
λ and b

λ , respectively.
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Future research

Developing the technique of augmented truncation for CTMCs:

. reducing the exponential ergodicity condition

. extending to high-dimensional CTMCs

Establishing the lower bound for the error. (By far, all the known
perturbation bounds are upper bounds)
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Altman E, Avrachenkov CE, Núñez-Queija R. Perturbation analysis
for denumerable Markov chains with application to queueing models.
Advances in Applied Probability, 2004, 36: 839–853

31 / 32



Introduction Main results Augmented truncation of invariant probability measures Proof of the main results Future research

Glynn P W, Meyn S P. A Liapounov bound for solutions of the
Poisson equation. Annals of Probability, 1996, 24: 916–931

Hart A G, Tweedie R L. Convergence of invariant measures of
truncation approximations to Markov processes. Applied
Mathematics, 2012, 3: 2205–2215

Tweedie R L. Perturbations of countable Markov chains and
processes. Annals of the Institute of Statistical Mathematics, 1980,
32: 283–290

Liu Y. Augmented truncation approximations of discrete-time
Markov chains. Operation Research Letters, 2010, 38: 218–222

Liu Y. Perturbation bounds for the stationary distributions of Markov
chains. SIAM Journal on Matrix Analysis and Applications, 2012, 33:
1057–1074

Liu Y, Zhang H J, Zhao Y Q. Subexponential ergodicity for
continuous-time Markov chains. Journal of Mathematical Analysis
and Applications, 2010, 368: 178–189

Liu Y. Perturbation analysis for continuous-time Markov chains.
Submitted, 2014. 32 / 32


	Introduction
	Main results
	Augmented truncation of invariant probability measures 
	Proof of the main results
	Future research

