Asymptotic properties of supercritical branching processes in random environments

Quansheng LIU 刘全升

Univ. Bretagne-Sud (France) & Changsha Univ. of Science and Technology (China)

The 10th Workshop on Markov processes and related topics Beijing Normal Univ. & Xidian Univ., Xian, 14-18 Aug. 2014

Based on joint works with

Zhiqiang GAO, Chunmao HUANG, Yingqiu LI, Xingang LIANG, Hesong WANG

Quansheng Liu (LMBA, UBS) [Branching processes in random environments](#page-49-0) and the state of 1/40

Outline

 $4 - \frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$

TELES

Outline

[Introduction](#page-2-0)

- **[Preliminaries on BPRE](#page-4-0)**
- 3 [Weighted moments of](#page-15-0) *W*
- [LDP and MDP on](#page-26-0) $\log Z_n$
- ⁵ [Convergence rates of](#page-43-0) *Wⁿ* − *W*
- [Related results for BRW](#page-45-0)

4 17 18

 $A \cap \overline{B} \rightarrow A \Rightarrow A \Rightarrow A \Rightarrow B$

 \sim

Introduction

We consider a supercritical branching process (*Zn*) in an independent and identically distributed random environment ξ , and present some recent results on the asymptotic properties of the branching process. In particular, we show:

- ¹ a criterion for the existence of weighted moments of the limit variable *W* of the normalized population size $W_n = Z_n / \mathbb{E}[Z_n | \xi]$;
- ² limit theorems (such as moderate and large deviations principles) on (log *Zn*);
- 3 the convergence rates of $W_n W$ (a.s., in law, or in L^p).

The talk is mainly based on the short survey:

Y. Li, Q. Liu, Z. Gao, H. Wang. Front. Math. China, 9(4) 2014: $737 - 751.$

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ○ 君

Outline

[Introduction](#page-2-0)

2 [Preliminaries on BPRE](#page-4-0)

3 [Weighted moments of](#page-15-0) *W*

- [LDP and MDP on](#page-26-0) $\log Z_n$
- ⁵ [Convergence rates of](#page-43-0) *Wⁿ* − *W*
- [Related results for BRW](#page-45-0)

4 00 10

 \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow

Why Random Environment

In random environment models, the controlling distributions are realizations of a stochastic process, rather then a fixed (deterministic) distribution.

The random environment hypothesis is very natural, because in practice the distributions that we observe are just realizations of a (measure-valued) stochastic process, rather then being constant.

This explains partially why random environment models attract much attention of many mathematicians and physicians.

イロト イ押ト イヨト イヨトー

Branching Process in a Random Environment

Description of a BPRE (*Zn*)

By definition,

$$
Z_0 = 1, \quad Z_{n+1} = \sum_{|u|=n} X_u, \quad (n \ge 0).
$$

where given ξ , $\{X_u : |u| = n\}$ are conditionally independent of each other and have a common distribution

$$
p(\xi_n)=\{p_k(\xi_n):k\in\mathbb{N}\}
$$

on $\mathbb{N} = \{0, 1, \ldots\}$, Z_n represents the population size of *n*th generation, **and** X_u **the number of offspring of u.** First introduced by:

- Smith (1968), Smith-Wilkinson (1969): *iid environment*, i.e. the offspring distributions $p(\xi_n)$, $n \geq 0$, are iid;
- Athreya-Karlin (1971): *stationary and ergodic environment*, i.e. the offspring distributions $p(\xi_n), n \geq 0$, constitute a stationary and ergodic sequence. イロト イ押 トイラ トイラトー в Ω

Description of a BPRE (*Zn*)

By definition,

$$
Z_0 = 1, \quad Z_{n+1} = \sum_{|u|=n} X_u, \quad (n \ge 0).
$$

where given ξ , $\{X_u : |u| = n\}$ are conditionally independent of each other and have a common distribution

$$
p(\xi_n)=\{p_k(\xi_n):k\in\mathbb{N}\}
$$

on $\mathbb{N} = \{0, 1, \ldots\}$, Z_n represents the population size of *n*th generation, and *X^u* the number of offspring of *u*. First introduced by:

- Smith (1968), Smith-Wilkinson (1969): *iid environment*, i.e. the offspring distributions $p(\xi_n)$, $n \geq 0$, are iid;
- Athreya-Karlin (1971): *stationary and ergodic environment*, i.e. the offspring distributions $p(\xi_n)$, $n \geq 0$, constitute a stationary and ergodic sequence. イロト イ押 トイラ トイラトー Ω

Galton-Watson Process and its Classification

A Galton-Watson process is a branching process (*Zn*) with constant environment:

 $\xi_n = const.$

This is the case where all the offspring distributions are the same deterministic distribution $\{p_k : k \in \mathbb{N}\}\$. Let

$$
m=\mathbb{E}Z_1=\sum k p_k.
$$

Classification of Galton-Watson processes:

- Supercritical: $\log m > 0$. Then $Z_n \to \infty$ with positive prob.
- Critical: $\log m = 0$. Then $Z_n \to 0$ a.s.
- Subcritical: $\log m < 0$. Then $Z_n \to 0$ a.s.

Cf. e.g. Harris (1963), Athreya-Ney (1972).

イロト 不優 トメ 差 トメ 差 トー

Galton-Watson Process and its Classification

A Galton-Watson process is a branching process (*Zn*) with constant environment:

$$
\xi_n = const.
$$

This is the case where all the offspring distributions are the same deterministic distribution $\{p_k : k \in \mathbb{N}\}$. Let

$$
m=\mathbb{E}Z_1=\sum kp_k.
$$

Classification of Galton-Watson processes:

- Supercritical: $\log m > 0$. Then $Z_n \to \infty$ with positive prob.
- Critical: $\log m = 0$. Then $Z_n \to 0$ a.s.
- Subcritical: $\log m < 0$. Then $Z_n \to 0$ a.s.

Cf. e.g. Harris (1963), Athreya-Ney (1972).

 $(1.1 \times 1.0) \times 1.2 \times 1.1$

Classification of BPRE

Let

$$
m_0=\mathbb{E}_{\xi}Z_1=\sum k p_k(\xi_0).
$$

- **●** Supercritical: $\mathbb{E} \log m_0 > 0$. Then $Z_n \to \infty$ with positive prob.
- Critical: $\mathbb{E} \log m_0 = 0$. Then $Z_n \to 0$ a.s.
- Subcritical: $\mathbb{E} \log m_0 < 0$. Then $Z_n \to 0$ a.s.
- Cf. Athreya-Karlin (1971), Tanny (1977)

∍

 $(0,1)$ $(0,1)$ $(0,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$

The martingale in BPRE

Denote

$$
m_n=\sum_k k p_k(\xi_n)
$$

 $P_0 = 1$, $P_n = m_0 \cdots m_{n-1}$ for $n > 1$.

Then the normalized population size

$$
W_n = \frac{Z_n}{P_n}
$$

is a nonnegative martingale, so that for some real r.v. *W*,

$$
W_n \to W \quad \text{a.s.}
$$

Non-degeneration of *W* (Kesten -Stigum type theorem): for iid environment,

$$
\mathbb{P}(W=0) < 1 \Leftrightarrow \mathbb{E}W = 1 \Leftrightarrow \mathbb{E}\frac{Z_1}{m_0}\log^+ Z_1 < \infty
$$

Cf. Athreya-Karlin (1971) for "⇐", Tanny (198[8\) f](#page-11-0)[or](#page-13-0) ["](#page-11-0)⊖["](#page-13-0)[.](#page-0-0) ERRESEARCHING UNIVERSITY Ournshering processes in random environments Ω [Branching processes in random environments](#page-0-0) 11 / 40

Supercritical BPRE

We consider the *supercritical* case where

$$
\mathbb{E} \log m_0 \in (0,\infty) \quad \text{ and } \quad \mathbb{E}\frac{Z_1}{m_0} \log^+ Z_1 < \infty.
$$

The first condition implies that the process is supercritical $(Z_n \to \infty)$ with positive probability) ; the second implies that *W* is non-degenerate $(P(W = 0) < 1$, which implies $EW = 1$). Moreover, $\mathbb{E}_{\xi}W = 0$ or 1, and

$$
\mathbb{P}_{\xi}(W > 0) = \mathbb{P}_{\xi}(Z_n \to \infty) = \lim_{n \to \infty} \mathbb{P}_{\xi}(Z_n > 0) \quad a.s..
$$

For simplicity, we also assume that the environment sequence (ξ*n*) is i.i.d., although some results that we will present also hold for a stationary and ergodic environment.

We are interested in the asymptotic properties of *W*, the limit theorems on $\log Z_n$, and the convergence rate of $W_n - W$ [.](#page-12-0)

Supercritical BPRE

We consider the *supercritical* case where

$$
\mathbb{E} \log m_0 \in (0,\infty) \quad \text{ and } \quad \mathbb{E}\frac{Z_1}{m_0} \log^+ Z_1 < \infty.
$$

The first condition implies that the process is supercritical $(Z_n \to \infty)$ with positive probability) ; the second implies that *W* is non-degenerate $(P(W = 0) < 1$, which implies $EW = 1$). Moreover, $\mathbb{E}_{\xi}W = 0$ or 1, and

$$
\mathbb{P}_{\xi}(W > 0) = \mathbb{P}_{\xi}(Z_n \to \infty) = \lim_{n \to \infty} \mathbb{P}_{\xi}(Z_n > 0) \quad a.s..
$$

For simplicity, we also assume that the environment sequence (ξ_n) is i.i.d., although some results that we will present also hold for a stationary and ergodic environment.

We are interested in the asymptotic properties of *W*, the limit theorems on $\log Z_n$, and the convergence rate of $W_n - W$

Outline

[Introduction](#page-2-0)

- **[Preliminaries on BPRE](#page-4-0)**
- 3 [Weighted moments of](#page-15-0) *W*
- [LDP and MDP on](#page-26-0) $\log Z_n$
- ⁵ [Convergence rates of](#page-43-0) *Wⁿ* − *W*
- [Related results for BRW](#page-45-0)

4.000.00

 \leftarrow \leftarrow \leftarrow

ヨメ イヨメ

Weighted moments for a Galton-Watson process

For a supercritical branching process (*Zn*) , many limit theorems depend on the existence of moments or weighted moments of *W*.

The existence of moments has been studied by many authors: see e.g.

Harris (1963), Athreya and Ney (1972), Bingham and Doney (1974), Alsmeyer and Rösler (2004).

 \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow \mathcal{A} $\overline{\mathcal{B}}$ \rightarrow

Weighted Moments for a Galton-Watson process

Of particular interest is the following comparison theorem about weighted moments of *W* and *Z*1, for a Galton-Watson process *Zⁿ* with $\mathbb{E}Z_1 \in (1,\infty)$:

¹ Bingham and Doney (1974) (via Tauberian theorems): when *p* > 1 is not an integer and ℓ is a positive function slowly varying at ∞ (that is, $\lim_{x\to\infty} \ell(\lambda x)/\ell(x) = 1 \,\forall \lambda > 0$),

$$
\mathbb{E} W^p \ell(W) < \infty \Leftrightarrow \mathbb{E} Z_1^p \ell(Z_1) < \infty. \tag{3.1}
$$

K ロ ▶ K 個 ▶ K 重 ▶ K 重 ▶ …

2 Alsmeyer and Rösler (2004) showed that the equivalence remains true when p is not of the form 2^n for some integer $n \geq 1$, by a nice martingale argument.

³ Liang and Liu (2013) showed that the equivalence is always true whenever $p > 1$.

Weighted Moments for a Galton-Watson process

Of particular interest is the following comparison theorem about weighted moments of *W* and *Z*1, for a Galton-Watson process *Zⁿ* with $\mathbb{E}Z_1 \in (1,\infty)$:

¹ Bingham and Doney (1974) (via Tauberian theorems): when *p* > 1 is not an integer and ℓ is a positive function slowly varying at ∞ (that is, $\lim_{x\to\infty} \ell(\lambda x)/\ell(x) = 1 \,\forall \lambda > 0$),

$$
\mathbb{E} W^p \ell(W) < \infty \Leftrightarrow \mathbb{E} Z_1^p \ell(Z_1) < \infty. \tag{3.1}
$$

2 Alsmeyer and Rösler (2004) showed that the equivalence remains true when p is not of the form 2^n for some integer $n \geq 1$, by a nice martingale argument.

3 Liang and Liu (2013) showed that the equivalence is always true whenever $p > 1$. 4 0 8 4 6 8 4 9 8 4 9 8 1

в

Weighted Moments for a Galton-Watson process

Of particular interest is the following comparison theorem about weighted moments of *W* and *Z*1, for a Galton-Watson process *Zⁿ* with $\mathbb{E}Z_1 \in (1,\infty)$:

¹ Bingham and Doney (1974) (via Tauberian theorems): when *p* > 1 is not an integer and ℓ is a positive function slowly varying at ∞ (that is, $\lim_{x\to\infty} \ell(\lambda x)/\ell(x) = 1 \,\forall \lambda > 0$),

$$
\mathbb{E} W^p \ell(W) < \infty \Leftrightarrow \mathbb{E} Z_1^p \ell(Z_1) < \infty. \tag{3.1}
$$

2 Alsmeyer and Rösler (2004) showed that the equivalence remains true when p is not of the form 2^n for some integer $n \geq 1$, by a nice martingale argument.

³ Liang and Liu (2013) showed that the equivalence is always true whenever $p > 1$. K ロ ▶ K 個 ▶ K 重 ▶ K 重 ▶ …

Moments for a BPRE

For a branching process in an iid random environment, a necessary and sufficient condition for the existence of the moments of *W* was first announced by Guivarc'h and Liu (2001): for $p > 1$, writing $m_0 = \sum_k k p_k(\xi_0) = \mathbb{E}_\xi Z_1$, we have

$$
\mathbb{E}W^{p} < \infty \Leftrightarrow \mathbb{E}W_{1}^{p} < \infty \text{ and } \mathbb{E}m_{0}^{-(p-1)} < 1. \tag{3.2}
$$

The result suggests that under a moment condition on m_0 , W_1 and W have similar tail behavior. This is confirmed by the following comparison theorem between weighted moments of *W*¹ and *W*.

イロト イ押 トイラ トイラトー

Weighted Moments for a BPRE

Theorem 3.1 (Weighted moments, Liang and Liu 2013)

 \mathcal{L} et $p>1$ be such that $\mathbb{E}m_0^{1-p} < 1$ and $\mathbb{E}m_0^{1-(p+\delta)} < \infty$ for some $\delta > 0.$ *Let* $\ell : [0, \infty) \mapsto [0, \infty)$ *be a function slowly varying at* ∞ *. Set W*[∗] = sup_{*n*>1} *W_n*. Then the following assertions are equivalent: (a) $\mathbb{E}W_1^p$ $T_1^p\ell(W_1)<\infty$;

- (b) $\mathbb{E} W^{*p} \ell(W^*) < \infty$;
- (c) $0 < \mathbb{E} W^p \ell(W) < \infty$.

The argument in the proof is a refinement of that of Alsmeyer and Rösler (2004), and is based on the Burkholder-Davis-Gundy inequalities for martingales.

The case where $p = 1$ was also considered in Liang and Liu (2013).

The method leads to a new proof for a criterion of non-degeneration of

 Ω

Weighted Moments for a BPRE

Theorem 3.1 (Weighted moments, Liang and Liu 2013)

 \mathcal{L} et $p>1$ be such that $\mathbb{E}m_0^{1-p} < 1$ and $\mathbb{E}m_0^{1-(p+\delta)} < \infty$ for some $\delta > 0.$ *Let* $\ell : [0, \infty) \mapsto [0, \infty)$ *be a function slowly varying at* ∞ *. Set W*[∗] = sup_{*n*>1} *W_n*. Then the following assertions are equivalent: (a) $\mathbb{E}W_1^p$ $T_1^p\ell(W_1)<\infty$; (b) $\mathbb{E} W^{*p} \ell(W^*) < \infty$; (c) $0 < \mathbb{E} W^p \ell(W) < \infty$.

The argument in the proof is a refinement of that of Alsmeyer and Rösler (2004), and is based on the Burkholder-Davis-Gundy inequalities for martingales.

The case where $p = 1$ was also considered in Liang and Liu (2013). The method leads to a new proof for a criterion of non-degeneration of Ω *W*.

Weighted Moments for a BPRE

Theorem 3.1 (Weighted moments, Liang and Liu 2013)

 \mathcal{L} et $p>1$ be such that $\mathbb{E}m_0^{1-p} < 1$ and $\mathbb{E}m_0^{1-(p+\delta)} < \infty$ for some $\delta > 0.$ *Let* $\ell : [0, \infty) \mapsto [0, \infty)$ *be a function slowly varying at* ∞ *. Set W*[∗] = sup_{*n*>1} *W_n*. Then the following assertions are equivalent: (a) $\mathbb{E}W_1^p$ $T_1^p\ell(W_1)<\infty$; (b) $\mathbb{E} W^{*p} \ell(W^*) < \infty$; (c) $0 < \mathbb{E} W^p \ell(W) < \infty$.

The argument in the proof is a refinement of that of Alsmeyer and Rösler (2004), and is based on the Burkholder-Davis-Gundy inequalities for martingales.

The case where $p = 1$ was also considered in Liang and Liu (2013). The method leads to a new proof for a criterion of non-degeneration of Ω

Quenched Moments for a BPRE

The above results concern the annealed moments. We can also consider the quenched moments $\mathbb{E}_\xi W^p.$ Actually, Huang and Liu (2014) have proved the following criterion:

Theorem 3.2 (Quenched moments, Huang and Liu 2014)

Let
$$
p > 1
$$
. Then $\mathbb{E}_{\xi} W^p < \infty$ a.s. if and only if $\mathbb{E} \log \mathbb{E}_{\xi} \left(\frac{Z_1}{m_0} \right)^p < \infty$.

The sufficiency of the condition was first proved in Li, Hu and Liu (2011) by a different method.

 $4.69 + 4.$

Tail behavior : a conjecture

The tail behavior of *W* is not fully known. Inspired by the criterion [\(3.2\)](#page-20-1) for existence of moments, we can formulate the following conjecture:

Conjecture 3.3

 \mathcal{L} et $p > 1$ *be such that* $\mathbb{E}m_0^{-(p-1)} = 1$. Under a finite moment condition *on W*₁ (e.g. $\mathbb E W_1^{(p+\varepsilon)} < \infty$) and a non-lattice condition on $\log m_0$ (i.e. m_0 *is not concentrated on a geometric progression), we should have*

$$
0<\lim_{x\to\infty}x^p\mathbb{P}(W>x)<\infty.
$$

Outline

[Introduction](#page-2-0)

- **[Preliminaries on BPRE](#page-4-0)**
- 3 [Weighted moments of](#page-15-0) *W*
- [LDP and MDP on](#page-26-0) $\log Z_n$
	- ⁵ [Convergence rates of](#page-43-0) *Wⁿ* − *W*
- [Related results for BRW](#page-45-0)

4 17 18

 \overline{AB}

ヨメ イヨメ

Limit theorems on log *Zⁿ*

For simplicity, in this section we assume always that

$$
p_0(\xi_0)=0 \quad a.s.
$$

Therefore $W > 0$ and $Z_n \to \infty$ a.s.. Notice that

$$
\log Z_n = \log P_n + \log W_n. \tag{4.1}
$$

 $(0,1)$ $(0,1)$ $(0,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$

Since $W_n \to W > 0$ a.s., certain asymptotic properties of $\log Z_n$ would be determined by those of $\log P_n$. We shall show that $\log Z_n$ and $\log P_n$ satisfy the same limit theorems under suitable moment conditions.

Law of large numbers

It is well known (see e.g. Tanny(1977)) that log *Zⁿ* satisfies a law of large numbers:

$$
\lim_{n\to\infty}\frac{\log Z_n}{n}=\mathbb{E}\log m_0\quad a.s.\ (\text{on }\{Z_n\to\infty\}).
$$

We are interested in the asymptotic properties of the corresponding deviation probabilities.

イロト イ押 トイラト イラト

Central Limit Theorem

It can be easily seen that log *Zⁿ* satisfies the same central limit theorem $\log P_n = \log m_0 + ... + \log m_{n-1}$:

Lemma 4.1 (Central Limit Theorem, Huang and Liu 2012)

If $\sigma^2 = \text{var}(\log m_0) \in (0, \infty)$ *, then*

$$
\frac{\log Z_n - n \mathbb{E} \log m_0}{\sqrt{n}\sigma} \to N(0, 1) \quad \text{in law.}
$$

K ロ ▶ K 個 ▶ K 君 ▶ K 君 ▶ ..

Large Deviation Principle: the rate function

We find that $\log Z_n$ and $\log P_n$ satisfy the same large deviation principe.

Let

$$
\Lambda(t)=\log \mathbb{E} m_0^t,
$$

and

$$
\Lambda^*(x) = \sup_{t \in \mathbb{R}} \{xt - \Lambda(t)\}
$$

be the Fenchel-Legendre transform of Λ .

(ロ) (*同*) (ヨ) (ヨ)

Large Deviation Principle: Assumption (H)

We will use the following assumption:

Assumption(H)

There exist constants $A > A_1 > 1$ such that

$$
A_1 \leq \mathbb{E}_{\xi} Z_1, \qquad \mathbb{E}_{\xi} Z_1^2 \leq A^2.
$$

Remark. The hypothesis (H) can be relaxed to a more natural moment condition.

 $4 - \frac{1}{2} + \frac$

Large Deviation Principle

Theorem 4.1 (Large Deviation Principle, Huang and Liu 2012)

 \mathcal{A} *ssume (H). If* $\mathbb{E}Z_1^s < \infty$ *for all s* > 1 *and* $p_1 = 0$ *a.s., then for any measurable subset B of* R*,*

$$
- \inf_{x \in B^o} \Lambda^*(x) \leq \liminf_{n \to \infty} \frac{1}{n} \log \mathbb{P}\left(\frac{\log Z_n}{n} \in B\right)
$$

$$
\leq \limsup_{n \to \infty} \frac{1}{n} \log \mathbb{P}\left(\frac{\log Z_n}{n} \in B\right)
$$

$$
\leq - \inf_{x \in \bar{B}} \Lambda^*(x),
$$

where B^o denotes the interior of B , and \bar{B} its closure.

 $(1.1 \times 1.0) \times 1.2 \times 1.1$

Large Deviation Principle: tail probabilities

From Theorem [4.1,](#page-32-1) we obtain the following corollary:

Corollary (Bansaye and Berestycki (2009))

Under the conditions of Theorem [4.1,](#page-32-1) we have

$$
\lim_{n \to \infty} \frac{1}{n} \log \mathbb{P}\left(\frac{\log Z_n}{n} \le x\right) = -\Lambda^*(x) \quad \text{for } x \le \mathbb{E} \log m_0,
$$

$$
\lim_{n \to \infty} \frac{1}{n} \log \mathbb{P}\left(\frac{\log Z_n}{n} \ge x\right) = -\Lambda^*(x) \quad \text{for } x \ge \mathbb{E} \log m_0.
$$

This result was first obtained by Bansaye and Berestycki in 2009. Our approach is different.

Moderate Deviation Principle

- Large deviation principle: log *^Zn*−*n*^E log *^m*⁰ *n*
- Central limit theorem: $\frac{\log Z_n n \mathbb{E} \log m_0}{\sqrt{n}}$ *n*
- Moderate deviation principle: $\frac{\log Z_n-n\mathbb{E}\log m_0}{a_n}$, where $\{a_n\}$ is a sequence of positive numbers satisfying

$$
\frac{a_n}{n}\to 0 \quad \text{and} \quad \frac{a_n}{\sqrt{n}}\to \infty, \text{ as } n\to \infty.
$$

イロト イ押 トイヨ トイヨ トー

Moderate Deviation Principle

Theorem 4.2 (Moderate Deviation Principle, Huang and Liu 2012)

Assume (H) and $\sigma^2 = \text{var}(\log m_0) \in (0, \infty)$ *. Then for any measurable subset B of* R*, we have*

$$
-\inf_{x \in B^o} \frac{x^2}{2\sigma^2} \leq \liminf_{n \to \infty} \frac{n}{a_n^2} \log \mathbb{P}\left(\frac{\log Z_n - n \mathbb{E} \log m_0}{a_n} \in B\right)
$$

$$
\leq \limsup_{n \to \infty} \frac{n}{a_n^2} \log \mathbb{P}\left(\frac{\log Z_n - n \mathbb{E} \log m_0}{a_n} \in B\right)
$$

$$
\leq -\inf_{x \in \overline{B}} \frac{x^2}{2\sigma^2}.
$$

Remark. For the LDP and MDP, the hypothesis (H) can be relaxed to a more natural moment condition: cf. Grama, Liu, Miqueu (2014).

(ロ) (*同*) (ヨ) (ヨ)

Proof of Theorem LDP (Theorem [4.1\)](#page-32-1)

Notice that the Laplace transform of $\log Z_n$ is $\mathbb{E} Z_n^t = \mathbb{E} e^{t \log Z_n}$. Theorem [4.1](#page-32-1) is a consequence of *Gatner-Ellis Theorem* and the following result.

Theorem 4.3 (Moments of *Zn*, Huang and Liu 2012)

Under the conditions of Theorem [4.1,](#page-32-1) we have

$$
\lim_{n\to\infty}\frac{\mathbb{E}Z_n^t}{(\mathbb{E}m_0^t)^n}=C(t)\in(0,\infty),\quad\forall t\in\mathbb{R}.
$$

Remarks.

1) This is an extension of a result of Ney and Vidyashankar (2003) on the Galton-Watson process.

2) The result suggests more than a LDP; actually we can give a much sharper result like Cramér's large deviation expansion: see Grama, Liu, Miqueu (2014). (0.12333338) Ω

Proof of Theorem LDP (Theorem [4.1\)](#page-32-1)

Notice that the Laplace transform of $\log Z_n$ is $\mathbb{E} Z_n^t = \mathbb{E} e^{t \log Z_n}$. Theorem [4.1](#page-32-1) is a consequence of *Gatner-Ellis Theorem* and the following result.

Theorem 4.3 (Moments of *Zn*, Huang and Liu 2012)

Under the conditions of Theorem [4.1,](#page-32-1) we have

$$
\lim_{n\to\infty}\frac{\mathbb{E}Z_n^t}{(\mathbb{E}m_0^t)^n}=C(t)\in(0,\infty),\quad\forall t\in\mathbb{R}.
$$

Remarks.

1) This is an extension of a result of Ney and Vidyashankar (2003) on the Galton-Watson process.

2) The result suggests more than a LDP; actually we can give a much sharper result like Cramér's large deviation expansion: see Grama, Liu, Miqueu (2014). $(0,1)$ $(0,1)$ $(0,1)$ $(1,1$ Ω

Proof of Theorem LDP (Theorem [4.1\)](#page-32-1)

Notice that the Laplace transform of $\log Z_n$ is $\mathbb{E} Z_n^t = \mathbb{E} e^{t \log Z_n}$. Theorem [4.1](#page-32-1) is a consequence of *Gatner-Ellis Theorem* and the following result.

Theorem 4.3 (Moments of *Zn*, Huang and Liu 2012)

Under the conditions of Theorem [4.1,](#page-32-1) we have

$$
\lim_{n\to\infty}\frac{\mathbb{E}Z_n^t}{(\mathbb{E}m_0^t)^n}=C(t)\in(0,\infty),\quad\forall t\in\mathbb{R}.
$$

Remarks.

1) This is an extension of a result of Ney and Vidyashankar (2003) on the Galton-Watson process.

2) The result suggests more than a LDP; actually we can give a much sharper result like Cramér's large deviation expansion: see Grama, Liu, Miqueu (2014). $(0,1)$ $(0,1)$ Ω

Proof of Theorem [4.1](#page-32-1) (LDP)

To prove Theorem [4.3,](#page-36-1) we introduce a new BPRE and need a theorem about the harmonic moments of *W*:

Theorem 4.4 (Harmonic moments, Huang and Liu 2012)

Assume (H). (i) (General case). There always exists a constant a > 0 *such that*

 $\mathbb{E} W^{-a} < \infty$.

(ii) (Special case). If $p_1 \leq \bar{p}_1$ *a.s. for some constant* $\bar{p}_1 < 1$ *, then* $\forall a > 0$ *,*

 $\mathbb{E}W^{-a} < \infty$ *if and only if* $\mathbb{E}p_1 m_0^a < 1$.

G.

イロト イ押 トイラ トイラトー

Harmonic moments

Corollary (Critical value)

Assume (H) and $p_1 \leq \bar{p}_1$ *a.s.* for some constant $\bar{p}_1 < 1$. If $\mathbb{E} p_1 m_0^{a_0} = 1$, then

> $E W^{-a} < \infty$ if 0 < *a* < *a*₀. $E W^{-a} = \infty$ if $a > a_0$.

According to Hambly(1992), under (H), the number $\alpha_0 := -\frac{\mathbb{E} \log p_1}{\mathbb{E} \log m_0}$ $\frac{\mathbb{E} \log p_1}{\mathbb{E} \log m_0}$ is the critical value for the a.s. existence of the quenched moments $\mathbb{E}_\xi W^{-a} (a>0).$ By Jensen's inequality, it is easy to see that $a_0 \leq \alpha_0.$

4 0 8 4 4 9 8 4 9 8 4 9 8

Harmonic moments

Corollary (Critical value)

Assume (H) and $p_1 \leq \bar{p}_1$ *a.s.* for some constant $\bar{p}_1 < 1$. If $\mathbb{E} p_1 m_0^{a_0} = 1$, then

> $E W^{-a} < \infty$ if 0 < *a* < *a*₀. $E W^{-a} = \infty$ if $a > a_0$.

Remark

According to Hambly(1992), under (H), the number $\alpha_0 := -\frac{\mathbb{E} \log p_1}{\mathbb{E} \log m_0}$ $\frac{\mathbb{E} \log p_1}{\mathbb{E} \log m_0}$ is the critical value for the a.s. existence of the quenched moments $\mathbb{E}_\xi W^{-a} (a>0)$. By Jensen's inequality, it is easy to see that $a_0 \leq \alpha_0$.

4 0 8 4 6 8 4 9 8 4 9 8 1

Proof of MDP (Theorem [4.2](#page-35-1))

Similar to the case of LDP (Theorem [4.1\)](#page-32-1), Theorem [4.2](#page-35-1) is a consequence of *Gatner-Ellis Theorem* and the following result.

Theorem 4.5 (Huang and Liu 2012)

Assume (H). We have

$$
\lim_{n\to\infty}\frac{\log \mathbb{E}Z_n^{\frac{a_n}{n}t}}{\log \mathbb{E}P_n^{\frac{a_n}{n}t}}=1 \qquad \forall t \neq 0.
$$

 $4 - \frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$

Outline

[Introduction](#page-2-0)

- **[Preliminaries on BPRE](#page-4-0)**
- 3 [Weighted moments of](#page-15-0) *W*
- [LDP and MDP on](#page-26-0) $log Z_n$
- 5 [Convergence rates of](#page-43-0) $W_n W$
	- [Related results for BRW](#page-45-0)

a miller

 \leftarrow \leftarrow \leftarrow \leftarrow

あきする 新

Convergence rates of *Wⁿ* − *W*

- A.s. (In the spirit of LLN of Marcinkiewicz Zygmund) Under a moment condition of order $p \in (1, 2)$, we can find the best $a > 0$ such that $W - W_n = o(e^{-na})$ a.s.; assuming only ${\mathbb E} W_1 \log W_1^{\alpha + 1} < \infty$ for some $\alpha > 0$, we can find the best $\alpha > 0$ such that $W - W_n = o(n^{-\alpha})$ a.s. See Huang & Liu (2014)
- In law (In the spirit of CLT) Under a second moment condition, there are norming constants $a_n(\xi)$ (that we calculate explicitly) such that $a_n(\xi)(W - W_n)$ converges in law to a non-degenerate distribution: See Wang, Gao & Liu (2011) and Huang & Liu (2014)
	- In L^p We can find the least $\rho \in (0, 1)$ such that $E|W W_n|^p = O(\rho^n)$: see Huang & Liu (2014).

イロトメ 倒 トメ きょくきょう きっ

Outline

[Introduction](#page-2-0)

- **[Preliminaries on BPRE](#page-4-0)**
- 3 [Weighted moments of](#page-15-0) *W*
- [LDP and MDP on](#page-26-0) $log Z_n$
	- ⁵ [Convergence rates of](#page-43-0) *Wⁿ* − *W*
- [Related results for BRW](#page-45-0)

4.000.00

 $A \cap \overline{B} \rightarrow A \Rightarrow A \Rightarrow A \Rightarrow B$

BRW with a random environment in time

Many of the preceding results can be extended to branching random walks with a random environment in time: e.g.

- ¹ weighted moments of *W*: see Liang & Liu (2014),
- ² convergence rate in *L ^p* of *^Wⁿ* [−] *^W*: see Huang & Liu (2014).

For limit theorems on the counting measure

 $Z_n(A) = \#\{$ particles of generation situated in A

of a BRW in with a random environment in time:

- ¹ CLT, convergence to stable laws, LDP: see Huang & Liu (2014) ;
- ² Exact convergence rate in the CLT, local limit theorem: see Gao & Liu (2014).

K ロ > K 何 > K 君 > K 君 > 「君」 のなで

Concerned papers

C. Huang, Q. Liu. Moments, moderate and large deviations for a branching process in a random environment. Stoch. Proc. Appl. 122 (2012), 522-545.

C. Huang, Q. Liu. Convergence rates for a supercritical branching process in a random environment. Markov Processes and Related Fields, 20 (2014), 265-286.

C. Huang, Q. Liu. Convergence in L^p and its exponential rate for a branching process in a random environment. Submitted to EJP; in revision.

Y. Li, Y. Hu, Q. Liu. Weighted moments for a supercritical branching process in a varying or random environment. Sci. China, Series A: mathematics. 54 (2011) no.7, 1437-1444.

Y. Li, Q. Liu, Z. Gao, H. Wang. Asymptotic properties of supercritical branching processes in random environments. Front. Math. China 2014, $9(4)$: 737 - 751

X. Liang, Q. Liu. Weighted moments for the limit of a normalized supercritical Galton-Watson process. C. R. Math. Acad. Sci. Paris 351 (2013), no. 19-20, 769-773.

X. Liang, Q. Liu. Weighted moments of the limit of a branching process in a random environment. Proceedings of Steklov Institue of Mathematics, 282 (2013), no.1, 127-145.

H. Wang, Z. Gao, Q. Liu. Central limit theorems for a branching process in a random environment. Stat. Prob. Letters 81 (2011) 539-547.

 $(0,1)$ $(0,1)$ $(0,1)$ $(1,1$

References

-
- G. Alsmeyer, U. Rösler. On the existence of ϕ -moments of the limit of a normalized supercritical Galton-Watson process. J. Theoret. Probab., 2004, 17(4): 905 - 928.

K. B. Athreya, S. Karlin. On branching processes in random environments I, II. Ann. Math. Statist. 42 (1971), 1499-1520, 1843-1858.

V. Bansaye, J. Berestycki. Large deviations for branching processes in random environment. *Markov Process. Related Fields, 15 (2009), 493-524.*

B. Hambly. On the limit distribution of a supercritical branching process in a random environment. *J. Appl. Prob., 29 (1992), 499-518.*

P. E. Ney, A. N. Vidyashanker. Harmonic moments and large deviation rates for supercritical branching process. *Ann. Appl. Prob., 13 (2003), 475-489.*

D. Tanny. Limit theorems for branching processes in a random environment. *Ann. Prob., 5 (1977), 100-116.*

D. Tanny. A necessary and sufficient condition for a branching process in a random environment to grow like the product of its means. Stoch. Proc. Appl. 28 (1988), 123-139.

 $(0,1)$ $(0,1)$ $(0,1)$ $(1,1$

Thank you ! quansheng.liu@univ-ubs.fr

Quansheng Liu (LMBA, UBS) [Branching processes in random environments](#page-0-0) 40 / 40

イロト イ押 トイラト イラト