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Introduction

Introduction

We consider a supercritical branching process (Zn) in an independent
and identically distributed random environment ξ, and present some
recent results on the asymptotic properties of the branching process.
In particular, we show:

1 a criterion for the existence of weighted moments of the limit
variable W of the normalized population size Wn = Zn/E[Zn|ξ];

2 limit theorems (such as moderate and large deviations principles)
on (log Zn);

3 the convergence rates of Wn −W (a.s., in law, or in Lp).

The talk is mainly based on the short survey:
Y. Li, Q. Liu, Z. Gao, H. Wang. Front. Math. China, 9(4) 2014:
737õ751.
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Preliminaries on BPRE

Why Random Environment

In random environment models, the controlling distributions are
realizations of a stochastic process, rather then a fixed (deterministic)
distribution.

The random environment hypothesis is very natural, because in
practice the distributions that we observe are just realizations of a
(measure-valued) stochastic process, rather then being constant.

This explains partially why random environment models attract much
attention of many mathematicians and physicians.
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Preliminaries on BPRE

Branching Process in a Random Environment

X=X1 2

φ

11 1X1

u

u1 u2 uXu

φ

ξ = (ξn)(n≥0) i.i.d.

the population size
of nth generation 

Zn = �{u : |u| = n}

|u| = n, Pξ(Xu = k) = pk(ξn)
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Preliminaries on BPRE

Description of a BPRE (Zn)

By definition,
Z0 = 1, Zn+1 =

∑
|u|=n

Xu, (n ≥ 0).

where given ξ , {Xu : |u| = n} are conditionally independent of each
other and have a common distribution

p(ξn) = {pk(ξn) : k ∈ N}

on N = {0, 1, ...}, Zn represents the population size of nth generation,
and Xu the number of offspring of u. First introduced by:

Smith (1968), Smith-Wilkinson (1969): iid environment, i.e. the
offspring distributions p(ξn), n ≥ 0, are iid;
Athreya-Karlin (1971): stationary and ergodic environment, i.e.
the offspring distributions p(ξn), n ≥ 0, constitute a stationary and
ergodic sequence.
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Preliminaries on BPRE

Galton-Watson Process and its Classification

A Galton-Watson process is a branching process (Zn) with constant
environment:

ξn = const.

This is the case where all the offspring distributions are the same
deterministic distribution {pk : k ∈ N}. Let

m = EZ1 =
∑

kpk.

Classification of Galton-Watson processes:

Supercritical: log m > 0. Then Zn →∞ with positive prob.

Critical: log m = 0. Then Zn → 0 a.s.

Subcritical: log m < 0. Then Zn → 0 a.s.

Cf. e.g. Harris (1963), Athreya-Ney (1972).
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Preliminaries on BPRE

Classification of BPRE

Let
m0 = EξZ1 =

∑
kpk(ξ0).

Supercritical: E log m0 > 0. Then Zn →∞ with positive prob.

Critical: E log m0 = 0. Then Zn → 0 a.s.

Subcritical: E log m0 < 0. Then Zn → 0 a.s.

Cf. Athreya-Karlin (1971), Tanny (1977)
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Preliminaries on BPRE

The martingale in BPRE

Denote
mn =

∑
k

kpk(ξn)

P0 = 1, Pn = m0 · · ·mn−1 for n ≥ 1.

Then the normalized population size

Wn =
Zn

Pn

is a nonnegative martingale, so that for some real r.v. W,

Wn → W a.s.

Non-degeneration of W (Kesten -Stigum type theorem): for iid
environment,

P(W = 0) < 1⇔ EW = 1⇔ E
Z1

m0
log+ Z1 <∞

Cf. Athreya-Karlin (1971) for "⇐", Tanny (1988) for "⇒".
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Preliminaries on BPRE

Supercritical BPRE

We consider the supercritical case where

E log m0 ∈ (0,∞) and E
Z1

m0
log+ Z1 <∞.

The first condition implies that the process is supercritical (Zn →∞
with positive probability) ; the second implies that W is non-degenerate
( P(W = 0) < 1, which implies EW = 1). Moreover, EξW = 0 or 1, and

Pξ(W > 0) = Pξ(Zn →∞) = lim
n→∞

Pξ(Zn > 0) a.s..

For simplicity, we also assume that the environment sequence (ξn) is
i.i.d., although some results that we will present also hold for a
stationary and ergodic environment.
We are interested in the asymptotic properties of W, the limit theorems
on log Zn, and the convergence rate of Wn −W.
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Weighted moments of W

Weighted moments for a Galton-Watson process

For a supercritical branching process (Zn) , many limit theorems
depend on the existence of moments or weighted moments of W.

The existence of moments has been studied by many authors: see e.g.

Harris (1963),
Athreya and Ney (1972),
Bingham and Doney (1974),
Alsmeyer and Rösler (2004).
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Weighted moments of W

Weighted Moments for a Galton-Watson process

Of particular interest is the following comparison theorem about
weighted moments of W and Z1, for a Galton-Watson process Zn with
EZ1 ∈ (1,∞):

1 Bingham and Doney (1974) (via Tauberian theorems): when p > 1
is not an integer and ` is a positive function slowly varying at∞
(that is, limx→∞ `(λx)/`(x) = 1 ∀λ > 0),

EWp`(W) <∞⇔ EZp
1`(Z1) <∞. (3.1)

2 Alsmeyer and Rösler (2004) showed that the equivalence remains
true when p is not of the form 2n for some integer n ≥ 1, by a nice
martingale argument.

3 Liang and Liu (2013) showed that the equivalence is always true
whenever p > 1.
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Weighted moments of W

Moments for a BPRE

For a branching process in an iid random environment, a necessary
and sufficient condition for the existence of the moments of W was first
announced by Guivarc’h and Liu (2001): for p > 1, writing
m0 =

∑
k kpk(ξ0) = EξZ1, we have

EWp <∞⇔ EWp
1 <∞ and Em−(p−1)

0 < 1. (3.2)

The result suggests that under a moment condition on m0, W1 and W
have similar tail behavior. This is confirmed by the following
comparison theorem between weighted moments of W1 and W.
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Weighted moments of W

Weighted Moments for a BPRE

Theorem 3.1 (Weighted moments, Liang and Liu 2013)

Let p > 1 be such that Em1−p
0 < 1 and Em1−(p+δ)

0 <∞ for some δ > 0.
Let ` : [0,∞) 7→ [0,∞) be a function slowly varying at∞. Set
W∗ = supn≥1 Wn. Then the following assertions are equivalent:

(a) EWp
1`(W1) <∞ ;

(b) EW∗p`(W∗) <∞ ;

(c) 0 < EWp`(W) <∞ .

The argument in the proof is a refinement of that of Alsmeyer and
Rösler (2004), and is based on the Burkholder-Davis-Gundy
inequalities for martingales.
The case where p = 1 was also considered in Liang and Liu (2013).
The method leads to a new proof for a criterion of non-degeneration of
W.
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Weighted moments of W

Quenched Moments for a BPRE

The above results concern the annealed moments. We can also
consider the quenched moments EξWp. Actually, Huang and Liu
(2014) have proved the following criterion:

Theorem 3.2 (Quenched moments, Huang and Liu 2014)

Let p > 1. Then EξWp <∞ a.s. if and only if E logEξ
(

Z1
m0

)p
<∞.

The sufficiency of the condition was first proved in Li, Hu and Liu
(2011) by a different method.
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Weighted moments of W

Tail behavior : a conjecture

The tail behavior of W is not fully known. Inspired by the criterion (3.2)
for existence of moments, we can formulate the following conjecture:

Conjecture 3.3

Let p > 1 be such that Em−(p−1)
0 = 1. Under a finite moment condition

on W1 (e.g. EW(p+ε)
1 <∞) and a non-lattice condition on log m0 (i.e. m0

is not concentrated on a geometric progression), we should have

0 < lim
x→∞

xpP(W > x) <∞.
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LDP and MDP on log Zn

Limit theorems on log Zn

For simplicity, in this section we assume always that

p0(ξ0) = 0 a.s.

Therefore W > 0 and Zn →∞ a.s.. Notice that

log Zn = log Pn + log Wn. (4.1)

Since Wn → W > 0 a.s., certain asymptotic properties of log Zn would
be determined by those of log Pn. We shall show that log Zn and log Pn

satisfy the same limit theorems under suitable moment conditions.
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LDP and MDP on log Zn

Law of large numbers

It is well known (see e.g. Tanny(1977)) that log Zn satisfies a law of
large numbers:

lim
n→∞

log Zn

n
= E log m0 a.s. (on {Zn →∞}).

We are interested in the asymptotic properties of the corresponding
deviation probabilities.
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LDP and MDP on log Zn

Central Limit Theorem

It can be easily seen that log Zn satisfies the same central limit theorem
as log Pn = log m0 + ...+ log mn−1:

Lemma 4.1 (Central Limit Theorem, Huang and Liu 2012)

If σ2 = var(log m0) ∈ (0,∞), then

log Zn − nE log m0√
nσ

→ N(0, 1) in law.
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LDP and MDP on log Zn

Large Deviation Principle: the rate function

We find that log Zn and log Pn satisfy the same large deviation principe.

Let
Λ(t) = logEmt

0,

and
Λ∗(x) = sup

t∈R
{xt − Λ(t)}

be the Fenchel-Legendre transform of Λ.
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LDP and MDP on log Zn

Large Deviation Principle: Assumption (H)

We will use the following assumption:

Assumption(H)
There exist constants A > A1 > 1 such that

A1 ≤ EξZ1, EξZ2
1 ≤ A2.

Remark. The hypothesis (H) can be relaxed to a more natural
moment condition.
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LDP and MDP on log Zn

Large Deviation Principle

Theorem 4.1 (Large Deviation Principle, Huang and Liu 2012)

Assume (H). If EZs
1 <∞ for all s > 1 and p1 = 0 a.s., then for any

measurable subset B of R,

− inf
x∈Bo

Λ∗(x) ≤ lim inf
n→∞

1
n

logP
(

log Zn

n
∈ B
)

≤ lim sup
n→∞

1
n

logP
(

log Zn

n
∈ B
)

≤ − inf
x∈B̄

Λ∗(x),

where Bo denotes the interior of B, and B̄ its closure.
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LDP and MDP on log Zn

Large Deviation Principle: tail probabilities

From Theorem 4.1, we obtain the following corollary:

Corollary ( Bansaye and Berestycki (2009))
Under the conditions of Theorem 4.1, we have

lim
n→∞

1
n

logP
(

log Zn

n
≤ x
)

= −Λ∗(x) for x ≤ E log m0,

lim
n→∞

1
n

logP
(

log Zn

n
≥ x
)

= −Λ∗(x) for x ≥ E log m0.

This result was first obtained by Bansaye and Berestycki in 2009.
Our approach is different.
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LDP and MDP on log Zn

Moderate Deviation Principle

Large deviation principle: log Zn−nE log m0
n

Central limit theorem: log Zn−nE log m0√
n

Moderate deviation principle: log Zn−nE log m0
an

,
where {an} is a sequence of positive numbers satisfying

an

n
→ 0 and

an√
n
→∞, as n→∞.
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LDP and MDP on log Zn

Moderate Deviation Principle

Theorem 4.2 (Moderate Deviation Principle, Huang and Liu 2012)

Assume (H) and σ2 = var(log m0) ∈ (0,∞) . Then for any measurable
subset B of R, we have

− inf
x∈Bo

x2

2σ2 ≤ lim inf
n→∞

n
a2

n
logP

(
log Zn − nE log m0

an
∈ B
)

≤ lim sup
n→∞

n
a2

n
logP

(
log Zn − nE log m0

an
∈ B
)

≤ − inf
x∈B̄

x2

2σ2 .

Remark. For the LDP and MDP, the hypothesis (H) can be relaxed to a
more natural moment condition: cf. Grama, Liu, Miqueu (2014).
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LDP and MDP on log Zn

Proof of Theorem LDP (Theorem 4.1)

Notice that the Laplace transform of log Zn is EZt
n = Eet log Zn . Theorem

4.1 is a consequence of Gatner-Ellis Theorem and the following result.

Theorem 4.3 (Moments of Zn, Huang and Liu 2012)

Under the conditions of Theorem 4.1, we have

lim
n→∞

EZt
n

(Emt
0)n = C(t) ∈ (0,∞), ∀t ∈ R.

Remarks.
1) This is an extension of a result of Ney and Vidyashankar (2003) on
the Galton-Watson process.
2) The result suggests more than a LDP; actually we can give a much
sharper result like Cramér’s large deviation expansion: see Grama,
Liu, Miqueu (2014).
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LDP and MDP on log Zn

Proof of Theorem 4.1 (LDP)

To prove Theorem 4.3, we introduce a new BPRE and need a theorem
about the harmonic moments of W:

Theorem 4.4 (Harmonic moments, Huang and Liu 2012)

Assume (H).
(i) (General case). There always exists a constant a > 0 such that

EW−a <∞.

(ii) (Special case). If p1 ≤ p̄1 a.s. for some constant p̄1 < 1, then ∀a > 0,

EW−a <∞ if and only if Ep1ma
0 < 1.
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LDP and MDP on log Zn

Harmonic moments

Corollary (Critical value)

Assume (H) and p1 ≤ p̄1 a.s. for some constant p̄1 < 1. If Ep1ma0
0 = 1,

then
EW−a <∞ if 0 < a < a0,

EW−a =∞ if a ≥ a0.

Remark

According to Hambly(1992), under (H), the number α0 := − E log p1
E log m0

is
the critical value for the a.s. existence of the quenched moments
EξW−a(a > 0). By Jensen’s inequality, it is easy to see that a0 ≤ α0.
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LDP and MDP on log Zn

Proof of MDP (Theorem 4.2 )

Similar to the case of LDP (Theorem 4.1), Theorem 4.2 is a
consequence of Gatner-Ellis Theorem and the following result.

Theorem 4.5 (Huang and Liu 2012)

Assume (H). We have

lim
n→∞

logEZ
an
n t

n

logEP
an
n t

n

= 1 ∀t 6= 0.
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Convergence rates of Wn − W

Convergence rates of Wn −W

A.s. (In the spirit of LLN of Marcinkiewicz - Zygmund) Under a moment
condition of order p ∈ (1, 2), we can find the best a > 0 such that
W −Wn = o(e−na) a.s.; assuming only EW1 log Wα+1

1 <∞ for some
α > 0, we can find the best α > 0 such that W −Wn = o(n−α) a.s.
See Huang & Liu (2014)

In law (In the spirit of CLT) Under a second moment condition, there are
norming constants an(ξ) (that we calculate explicitly) such that
an(ξ)(W −Wn) converges in law to a non-degenerate distribution:
See Wang, Gao & Liu (2011) and Huang & Liu (2014)

In Lp We can find the least ρ ∈ (0, 1) such that E|W −Wn|p = O(ρn): see
Huang & Liu (2014).
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BRW with a random environment in time

Many of the preceding results can be extended to branching random
walks with a random environment in time: e.g.

1 weighted moments of W: see Liang & Liu (2014),
2 convergence rate in Lp of Wn −W: see Huang & Liu (2014).

For limit theorems on the counting measure

Zn(A) = #{ particles of generation situated in A}

of a BRW in with a random environment in time:
1 CLT, convergence to stable laws, LDP: see Huang & Liu (2014) ;
2 Exact convergence rate in the CLT, local limit theorem:

see Gao & Liu (2014).
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Thank you !
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